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WEAK SOLUTIONS FOR
A SIXTH-ORDER THIN FILM EQUATION

CHANGCHUN LIU AND YUMEI TIAN

ABSTRACT. In this paper, the authors investigate the
initial boundary value problem for a sixth-order thin film
equation. By using the method of continuity, we establish
the existence of weak solutions. The uniqueness of solutions
is also discussed by means of a regularizing technique based
on elliptic operators.

1. Introduction. In this paper, we consider the following equation

ou 1
1.1 — = D(Jul" i
(1.1) %t (|v|"w), in Qr, n >0,

where Qr = (0,1) x (0,T), D = 0/0z.

Equation (1.1) is a typical higher order equation, which has a sharp
physical background and a rich theoretical connotation. It is relevant
to capillary driven flows of thin films of power-law fluids, where u
denotes the height from the surface of the oil to the surface of the solid.
Galaktionov [9] studied equation (1.1). A countable set of self-similar
solutions of equation (1.1) is described.

King [10] who first derived the equation

D0 (0ot
ot Oz u ox® are Oz Ozt azu 0z? 0z3
ou\2 03u ou [ 9?u\
n—2( 2" - n-2-7"(=2 ™7
+ Aru <6az> Ox3 T Bou Oz <8m2>
5
w

4 w3 % 3@+ w4 8_
7 oz ) 0z2 " H Ox ’

2010 AMS Mathematics subject classification. Primary 35D05, 35K55, 35K65.
Keywords and phrases. Sixth-order thin film equation, weak solutions, existence,

uniqueness.
Received by the editors on September 11, 2008, and in revised form on Decem-

ber 18, 2008.
DOI:10.1216/RMJ-2011-41-5-1547 Copyright ©2011 Rocky Mountain Mathematics Consortium

1547




1548 CHANGCHUN LIU AND YUMEI TIAN

where n, a;, B;, v and p are constants. Equation (1.1) is a special case
of this equation.

The pure sixth-order thin film equation was first introduced in [11,
12] in the case n =3
ou 0 [ ;0°u
—=—(u"=— ).
ot Oz 0xb

It describes the spreading of a thin viscous fluid under the driving force
of an elastica (or light plate). In [6, 7, 11, 12], a more general form
of this equation (now allowing for a reaction at the underlying solid
interface) is shown to arise in the industrial application of the isolation
oxidation of silicon.

During the past years, only a few works have been devoted to the
sixth-order thin film equation [2, 8]. Bernis and Friedman [2] have
studied the initial boundary value problems to the thin film equation

ou mo1 O o A
o+ 0 (10t ) =0,

where f(u) = |u|™fo(u), fo(u) > 0, n > 1 and proved existence of weak
solutions preserving nonnegativity. Barrett, Langdon and Nuernberg
[1] considered the above equation with m = 2. A finite element method
is presented which proves to be well posed and convergent. Numerical
experiments illustrate the theory.

Recently, Evans, Galaktionov and King [4, 5] considered the sixth-
order thin film equation containing an unstable (backward parabolic)
second-order term

% = div [Ju["VA%] — A(lulP'u)), 7 >0, p>1.

By a formal matched expansion technique, they show that, for the first
critical exponent p = pg = n+ 1+ (4/N) for n € (0,5/4), where N
is the space dimension, the free-boundary problem admits a countable
set of continuous branches of radially symmetric self-similar blow-up
solutions uy(z,t) = (I — t)~N/("N+6) £, (), y = x/[(T — t)/(PN+6)],
where T' > 0 is the blow-up time.
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On the basis of physical consideration, as usual the equation (1.1)
is supplemented with the zero-contact-angle, zero-shearing force and
zero-flux conditions

Du(0,t) = Du(1,t) = D3u(0,t) = D3u(1,t) = Du(0,1t)

(12) = D%u(1,t) = 0,

and the initial value condition
(1.3) u(z,0) = up(z).

For simplicity we set

Aw) —/Oua(s) ds, a(s)=|s|", n>0.

Equation (1.1) is degenerate; therefore, it has no classical solution in
general. We introduce weak solutions in the sense of the following

Definition. A function v € L*°(Qr) is said to be a weak solution of
the problem (1.1)—(1.3), if the following conditions are satisfied:

1) Du, D3u, D3u€ L*(0,T; H3(I)), A(u) € L°°(0,T; H3(I)), /0t A(u)
€ L*(Qr),

2) For any ¢ € C*°(Qr), suppy C (0,1) x [0,T], o(z,T) = 0,
the following integral equality holds:

1
—/ uo(z)p(z,0) dz — // wPy d:t:dt—i—/ D*A(u)D3p dz dt = 0.
0 T Qr

In this paper, we proved the existence of generalized solutions. The
main difficulties for treating the problem (1.1)—(1.3) are caused by the
nonlinearity of the principal part and the lack of maximum principle.
Due to the nonlinearity of the principal part, our approach lies in the
combination of the energy techniques with the method of continuity.
The uniqueness of solutions is also discussed by means of a regularizing
technique based on elliptic operators.

In addition, throughout this paper, we set I = (0, 1).
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2. Preliminaries. In this section, we are going to prove the
following theorems

Theorem 2.1. Let ug € H3(I). Then there is a function
u € L>=(0,T; H*(I)) N L3(0,T; H%(1)), wy € L*(Q7) Du, D3u, D%u €
L2(0,T; HY (D)) satisfying the equation

ou Db

ot "

and the initial value condition (1.3).

Theorem 2.1 could be deduced from earlier works like [13]. Hence,
we omit the details.

Theorem 2.2. Let ug € H3*(I), b € L*>(0,T;H3(I)), 0b/ot €
L*(Qr), 0 < by < b< My, b/0z|,—01 = 0. Then there exists a unique
function v € L*=(0,T;H3(I)) N L*(0,T;H%(I)), Du,D*u,D°u €
L2(0,T; H}(I)) satisfying the equation

(2.1) 8(;;“‘) = DS,

and the initial value condition (1.3).

Proof. We shall use the method of continuity. For this purpose, we
need some estimates.

Suppose that u satisfies (2.1), (1.2), (1.3). Multiplying equation (2.1)
by bu and integrating the resulting relation over (0,1) with respect to
x, we have by integrating by parts

1d [*

1
i ), (bu)zdx+/0 D3uD?(bu) dz = 0.
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Observing that
1
/ D3uD3(bu) dx
0
1 1
:/ b(D3u)2dac+3/ DbD*uD?u dx
0 0

1 1
+3 / D?*bDuD3udz + 3 / D2buD3udz
0 0
1/2

1 1
> bo/ (D*u)?dxz — Cy sup | D?u| (/ (Dau)2d:c>
0 0

1 1/2
—Cs sup|Du|(/ (D3u)2d:c>
0

1 1/2
—Cs sup|u</ (Dsu)2d:v>
0
bo ' 3,12 ' 2
> — | (D°u)*dz—C4 | (bu)”dz,
2 Jo 0

where C; (i = 1,2, 3, 4) denote the constants dependent on ||b|| e (o, 7; 13 (1))
but independent of the solution u. Therefore, we derive

d 1 bO 1 1
— [ (bu)?dz + —/ (D3u)%dz < C/ (bu)?dz.
dt Jo 2 Jo 0

Hence,
1
/ (bu)%dz < Clluoll?,
0

1
/ w2dz < Clluo|?,
0

where C' denotes the constant dependent on 7" but independent of the
solution u.

Multiply equation (2.1) by 0u/0t and integrate the resulting relation
over (0, 1), with respect to . Integrating by parts, we obtain

L 3(bu) Ou 1d [ 5
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Noticing that

1 9 (bu) du Lo fou)? Lob ou
we have

// e 260//t <%)2d$ds
o ff, () )
Zbo//t <%> dx ds
s3]
SNAC e

where C1, Cy denote the constants depending on ||0b/0t|| and by. We
finally obtain

1 1
(2.3) // < > dx ds +/ (D*u)?dz < C'sup |ul? —l—/ (D?ug)?dz.
t 0 Q¢ 0

Setting supg), |u|> = sup; |u(x, to)|? and using the embedding theorem,
we have

1
sup |u(z, to)|* < 5/ (Du(to, z))*dz
I 0

1
+C(E)/O u?(z, o) dz

1
<e / (DPu(to, 2))%dz + C(&)||uol .
0

where C'(¢) denotes the constants depending on €, but independent of
u. From this and (2.3), we get

1
(2.4) sup / (D3u)?dz < C,
0<t<T

(2.5) //( >dx<C.
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Using equation (2.1) itself, we obtain another estimate

(2.6) // (D%u)?dzds < C,

where C' denotes the constant dependent on 7', but independent of the
solution u.

Now we turn to the proof of the theorem. Set

ou o(bu
Lou—a——DG Liu= (at)—DGu,
Lyu=ALyu+ (1 \)Lou = % ~ DS,

where by = Ab+ (1 — A).

We want to look for a solution in the space

X = {u; w e L2(0,T; HS(I)) N L™ (0, T; H3(1)),

Du, D?u, D%u € L*(0,T; Hy (1)),
ou

51 € L@ u(0.2) = wo(@) |

where the norm in X; is defined by

llullx, = llwllzz(o,r;me () + H_
L2(Qr)

([ ) (], )

Denote by Xpr = {u € X1;||ul|lx, < M}, the closed ball in X; with
radius M, where M is a constant which is sufficiently large.

Let Y be the set of A for which we can find a solution of the equation
Lyu = f satisfying the conditions (1.2) and (1.3). We want to prove
the following assertions:

1.0ed..

2. > isopenin I.
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3. > is closed in I.

Once the above assertions are proved, we immediately derive the
existence of solutions of the problem (2.1), (1.2), (1.3).

By virtue of Theorem 2.1, we see that 0 € > . To prove that >_ is
open in I, we fix a point A9 € >_. It suffices to find a positive number

€ > 0 such that
()\0—5,)\0+5)ﬂz CZ.

For this purpose we first define an operator T on X;:
Ty : Xy — Xy,u —w

where w is determined by the equation

0(bu) Ou

and (1.2), (1.3). The operator T is well defined, provided that M is
sufficiently large and |\g— | sufficiently small by applying the estimates
(2.4), (2.5).

The fact that w is uniquely determined by w is due to the linearity
of L)\o .

Let |Ao — A| be sufficiently small. From

8(bu1 - bUQ) 8(u1 - UQ)

ot ot
we obtain the contractiveness of the operator T, that is, for every
uy,us € Xpr and wy = Thuy, wy = Thuse, the following holds

1

|wy —we||x, < §||u1 —uzl|x,-

LAO'UJ = L>\0u — L,\u = ()\0 — )\)

Ly, (w1 —wz) = (Ao — A) + (A= o)

Hence the operator T has a unique fixed point » in Xj;, namely
onu = L)\Ou - L>\u.

Thus we have proved that » is open in I. Now we prove that > is
closed in I. It suffices to prove that, for any sequence {\,} in >, if
An = Ao(n — 00), then A\ € Y. Since

L nzi_D(Sn:Oa
Ant ot “
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we have |lug||x, < C by the estimates (2.4)—(2.6). By extracting a
subsequence from {u,}, we get an element u in X s such that Ly,u =0
and this implies that A\p € 3.

Finally, we point out that the uniqueness of solutions of the problem
(2.1), (1.2) (1.3) is evident. The proof is complete. o

Remark 2.1. Theorem 2.2 could be deduced from the earlier works like
[13]. The use here is the explicit estimates on these strong solutions.

3. Regularized problems. Now we state the main theorem of this
section

Theorem 3.1. Let A.(ug) € H3(I), D'up(0) = Diup(l) = 0
(i=1,3,5)

Au(u) = /Ou(a(s)—i-e) ds, &> 0.

Then there exists a unique function u satisfying

ou 6
(3.1) 5 = DfA(u)
and
A.(u) € L=(0,T; H*(I)) N L*(0, T; HS(I)),
Du, D3u, D%u € L*(0,T; Hy (1)),
ou

ot < L*(Qr), u(0,z) = uo().

Proof. Set v = A.(u),u = B(v). Then equation (3.1) changes to the
form

(3.2) Fv) = — DSy = 0;

ot

without loss of generality, we may suppose that the function A(uo) is
defined on the whole region Q7 and F[A(ug)] € L?(Qr). Consider the
following space

Ov 9
7% S (QT)7

Dv, D®v, D% € L*(0, T; H(I)), v(0, z) = AE(uo(ac))}

Y = {v; v e L®(0,T; H3(I)) N L2(0, T; H%(I))
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and denote
Y = {v e Yilolly < M}

the closed ball in Y with radius M, where

|wy=<ATman%afﬂ+(AT

and the number M is sufficiently large.

ov

2 1/2
dt
)

Define a functional G on Y with parameter o:
(3.3) Glv,o] = F[v] — 0 F[A:(w)], o €]0,1].

Let > be the set of o for which we can find an element v € Y3, such
that G[v, o] = 0. The main purpose is to prove the following assertions.

1.1€>.
2. Y is open in I.
3. > is closed in I.

The first conclusion follows from the definition of Y . In order to
prove the other two conclusions we need some estimates.

Suppose u is a solution of the problem (3.1), (1.2), (1.3). Multiply
(3.1) by (0/0t)A.(u) and integrate the resulting relation over (0,1)
with respect to z. Integrating by parts, we get

1 2 1
Ou 1d
— ) dz+=— [ (D3*A.(v))%dz =0.
/ (a(u)—i—s)(at) v+ gg [ (D) =0
Hence, by integrating over (0,t), with respect to t, we get

(3.4) sup /0 (D3A. (u))2dz < C,

0<t<T

(3.5) / | <%>2d:c dt < C

where here and below C' is independent of ¢ and t.
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Using equations (3.1) and (3.4)—(3.5) yields

(3.6) /[ (D)<,

(3.7) / / | (%Ag(u)fda: it < C.

Using these estimates, we can now prove 2 and 3.

For 2, we take og € Y. It suffices to find a neighborhood N(oy) of
oo in I such that N(og) C >_. Let vy satisfy

G[’Uo, 0’0] =0.
Taking the Frechét derivatives at v on both sides of (3.3), we find that

9(b(vo)h)

—_ DS
ot R,

G;(’Uo, Uo)h = F,(’Uo)h =

where

b(vo) = B'(vo) = - € L>=(0,T; H3(I)),

a(up) +

O bw) € (@), 0.<bo < bloy) < My,

Applying Theorem 2.2 to the equation

F'(vg)h = 7‘?(1’%’;)}1) ~ DSh =0,

we know that the map F'(vg) : Y — L%(Qr) is invertible. Hence there
exists a neighborhood N(og) of o in I in which v can be expressed by
a function of o, that is,

v=uv(o), G[v(c),0]=0, foralloe N(og).

This shows that ) is open in I.

Finally we prove 3. Let o, € ), 0, = oo9(n — 00). There exists
v, € Y such that

Glvn, o] = Flug] — 0, F[A(u)] = 0.



1558 CHANGCHUN LIU AND YUMEI TIAN

By the estimates (3.4)—(3.7), we have
[onlly < C.
So we can extract a subsequence of {v,}, denoted also by {v,}, such
that
v, — vy in L%(0,T; HS(I)),
Oov, Ovo . .o
Pn %% i
o o @)
(2, t) — vo(z,t) a.e. in Qr,

for some element vy € Y. Change the corresponding equations to the
form of integration

0¢ 6
—/QT B(vn)ada:dt—/QTD U@ dz dt
=0, //T FlAc(up)]pdzdt, for all ¢ € CC(Qr),

which implies that

06 .
—/QT B(UO)dedt_/QTD vo dx dt
- // FIA(u)|ddadt, for all ¢ € C(Qr).

This shows that o9 € Y, and hence 3 holds. We have thus proved the
theorem. i

4. Existence.

Theorem 4.1. Let A(ug) € H3(I), D'up(0) = Diug(l) = 0
(1 = 1,3,5). Then the problem (1.1)—(1.3) admits a solution u in the
sense of Definition 1.1.

Proof. Define

a(s) 0<s< M,
(5) smooth connected M < |s| < M +1,
am(s) =
M a(M +1) s>M+1,

a(—M — 1) s<—M-—1,
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and consider the regularized problems

(4.1) g—? = D%A, pr(u),

(4.2)

Du(0,t)=Du(1,t)=D*u(0,t) = D3u(1,t)=D’u(0,t)=D°u(1,t)=0,
(4.3) u(z,0) = uon(z),

where A. a(u) = [y (an(s) + €)ds. From Theorem 3.1 the above
problem admits solutions u. ps. We need some estimates on . ps. Set

u
F57M :/ As,M(S) ds.
0
Multiplying (4.1) by A. pr(ue,n) and integrating the resulting relation
over I with respect to x, we get

1 1
i (/ FE M(us M) d.’E) +/ (DsAs M)zdx =0.
dt 0 ’ ’ 0 ’

It follows that

1

(4.4) sup / Fe m(ue,nr) de < C,
0<t<T JO

(4.5) / / (D®Av g (e, p)2dar ds < C.

Multiplying (4.1) by (0/0t)Ac m(ue,mr) and integrating the resulting
relation over (0, 1) with respect to z. Integrating by parts, we get

! aueM 2 1d ! 3 2
A ((LM(UE,M) +8)<8—t7> dr + 5% ; (D AE,M(UE,M)) dx = 0.

Hence, by integrating over (0,t), with respect to ¢, we get

1
sup / (D?’AE,M(uE,M))2d:c <C,
0<t<T Jo

where C is independent of €, M and t. It follows that

sup |Ac m(ue,m)| < C.
0<t<T
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This implies that

(4.6) sup |ue n(z,t)| < Mo,
0<t<T
with constant Mj independent of ¢, M.
If we take M = M, and denote u. ag, by ue, then u. satisfies the

equation

Ou. 4
(4.7) ot D As(ua)a

and the conditions (1.2), (1.3). Moveover, we have
1 ) 9 2
(4.8)  sup / (D*A.(ue))” <C, // <—Ag(u5)> drds < C,
0<t<T Jo .\ Ot

where C' is independent of £. From (4.8), we can select _a subsequence
from {u.}, denoted also by {u.}, and a function u € C(Qy), such that

S AL(ue) > - A(w), in L2(Qr),

Ac(ue) = A(u), ue = u, ae in Qr.

D3A5(u5) — D3A(u),

Letting ¢ — 0 in

1
/ uo(x)e(x,0)dr + // usg—f dz dt + // A.(u.)DSpdz dt =0,
0 T T

we get

1
/ uo(z)p(z,0) de + // u%—f dx dt + / A(u)D%pdz dt = 0.
0 T Qr
The proof is complete. ]

5. Uniqueness. In this section, we deal with the uniqueness of weak
solutions to the initial boundary value problem of equation (1.1). The
method we use for treating this problem was inspired by some ideas of
Brézis and Crandall [3].
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Theorem 5.1. The initial boundary value problem (1.1)—(1.3) has
at most one weak solution.

Proof. Let ui,us € L*®(Qr) be two weak solutions of problem
(1.1)—(1.3). Denote by w = u; — ug, v = A(u1) — A(uz). From the
definition of weak solutions, we have

(5.1) // w8¢tdxdt+// vDSpdxdt = 0.

For small > 0, we define the operator 7}, as the following
T, : L*(I) — H%(I), g— v,
where y = T),g is determined uniquely by the problem

(5.2) —D°y+py =g,
(5.3) Dy = D3 =D’y =0, xcdl.

It is easy to see that T}, is a self-adjoint operator, i.e., for arbitrary
fr9 € L*(9),

(5.4) / (@19 dn = / ' (T,0) do.

In fact, we get from the definition of 7},
1 1
/0 (T, f)g di = / (T, £) (D (T,g) + uTg) da

1 1

~ [ D@D T de b n [ (Th)(T9) do

0 0

1

- / (—D8 (T, f) + WTof) (Thg) d

- [ 1t ae

We also have the following properties

(5.5) p//T(TNg)Zda:dt, //T(D?’Tug)Zdazdt < //Tdexdt.
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Let k(z) € C§°(I), ¥(t) € C§°(I). Replacing p(z,t) by ¢ (t)T,k in
(5.1), we have

0= ")N(T,k)wdxd
/ Ok ded
6
+ / |, VD (k) dede
- / (1) (Tw)k(x) de dt
QT
/ P(t) — uT k(x)) dx dt
Qr
:/ V' (t)(Tyw)k(z) dz dt
QT

- / Y(t)k(x)(v — pT,v) de dt,
Qr
and hence for any ¢ € C§°(Qr),

// Tw&pdxdt // (v — uTyv)e dx dt,
T

which implies that 8/0¢(T,w) € L*(Qr) and
0

(5.6) 2 00 = WL (1) — o)
Set )

gu(t) = /0 (Tow(a, 6))w(z, t) da:
clearly
(5.7)

gu(t) = /0 T,w(— DT w) + pT,w) dx
1
= [ (@0 @)y + 07

For any ¢(t) € C§°(0,T), replacing ¢(z,t) by ¥ (t)T,w in (5.1), we
have

0= / | @ drd
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/ ¥(t) T pw) de dt
Qr
vDS(T,w) dzd
[ vtnnr ) deas
_ / ' (6)(Tw)w bz dt
Qr
+C 1,/)() 8(TUJ)da:dt

/ w(t) — (Tow(e)) de dt
QT

_ /0 W (t) dt /0 w(Tpw) de
- 2/0T P(t) dt/o1 w(v — pTyv) de,

which implies that

(5.8)

1
(0 =2 [ (uTy0(a,0) — o(o ), ) de.

1563

Thus g,(t) € L'(0,T), and hence g,(t) is absolutely continuous on

[0, 7).

Denote ac(s) the kernel of modifier in one dimension and

Ve(t) = /too (s —€)ds.

Replacing ¢(z,t) by ¥.(t)T,w in (5.1), we obtain

Qr

It follows that

(5.9)

9,(0) = lim ) ac(t—e)gu(t)dt

e—0

= il_r% // a.(t — e)w(T,w) dx dt
= 211m// Ve (t)vD®(T,w) dz dt

e—0

// e (t — Tw)da:dt+2/ Ve (t)vD8 (T, w) dz dt.
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Combining (5.5), (5.8), (5.9), and noticing that monotonicity of A(s)
implies that w and v have the same sign, we have

t

0 04() = 2,(8) = 2,0) = [ i (e)s

¢ 1
2/ ds/ (pTyv —v)wdz
0 0

t 1
< 2/ ds/ (pTyv)w dz
0 0

< \/ﬁ//QT M(Tuv)gdacdt+\/ﬁ//Tw2dxdt
g\/ﬁ// (v* + w?)dzdt — 0, (u — 0).

Finally, using (5.7), for any ¢ € C§°(Qr), we have

‘// we dz dt
Qr

2 2
= ‘// (=D%(T,w) + pT,w)p dz dt

2
= ‘// (D*(T,w) D + uT,we) dz dt
T

<C, // (D*(T,w)*dx dt

+Cup // (uT,we)dz dt — 0.
s

The proof is complete. ]
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