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NONNIL-NOETHERIAN RINGS
AND THE SFT PROPERTY

SANA HIZEM AND ALI BENHISSI

ABSTRACT. A commutative ring R is said to be nonnil-
Noetherian if every ideal which is not contained in the nil-
radical of R is finitely generated. @n'We show that many
of the properties of Noetherian rings are true for nonnil-
Noetherian rings. Then we study the rings of formal power
series over a nonnil-Noetherian ring. We prove that if R is
an SFT nonnil-Noetherian ring then dim R[[X1,...,Xx]] =
dim R + n and that the ring R[[X1,...,Xy]] is also SFT.
We provide an answer to an open question concerning the
relationship between the nilradical of R and the nilradical
of R[[X]] [6, page 284]. We prove that, for a commuta-
tive ring R, Nil(R)[[X1,...,Xn]] = Nil(R[[X1,...,Xn]]) if
and only if Nil(R) is an SFT ideal of R, and in that case
Nil (R[[X1,...,Xn]]) is also an SFT ideal of R[[X1,... ,Xy]]-

1. Introduction. In this paper, all rings are commutative with
identity; {Xi,...,X,} is a finite, nonempty set of analytically inde-
pendent indeterminates over any ring. The dim(ension) of a ring means
its Krull dimension.

Let R be a commutative ring with identity. An ideal I of R is said to
be a nonnil ideal if it is not contained in Nil (R), where Nil (R) denotes
the nilradical of R. The ring R is called a nonnil-Noetherian ring if
every nonnil ideal of R is finitely generated [4, 5].

In [4, 5], the authors have investigated nonnil-Noetherian rings with
a prime, divided nilradical. They prove that many of the properties of
Noetherian rings are true for nonnil-Noetherian rings.

In the first part of this paper, we generalize some of these properties
to a nonnil-Noetherian ring without any assumption on the nilradical.

In the second part of this paper, we study the ring of formal power
series over a nonnil-Noetherian ring.
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Recall [1], that an ideal I of a commutative ring R is an ideal of strong
finite type (or an SFT ideal) provided there is a finitely generated ideal
F C I and an integer k such that z* € F, for any x € I. If each ideal
of R is an SFT ideal, then we say that R satisfies the SFT property. In
[1], Arnold studied the Krull dimension of a power series ring R[[X]]
over a commutative ring R and showed that the dimension of R[[X]] is
infinite unless R is an SFT ring.

In this section, we begin first by providing an answer to an open
question concerning the relationship between the nilradical of R and
the nilradical of R[[X]] [6, page 284]. We prove that a necessary and
sufficient condition on the nilradical of a commutative ring R so that a
power series is nilpotent if and only if each of its coefficients is nilpotent
is that Nil (R) is an SF'T ideal which is equivalent to the existence of an
integer k € N, such that for any = € Nil (R), ¥ = 0. The result is also
true for a finite number of variables. We prove that for a commutative
ring R, Nil(R)[[Xy,...,X,]] = Nil(R[[X1,...,X,]]) if and only if
Nil (R) is an SFT ideal of R, and in that case Nil(R[[X1,...,Xy]])
is also an SFT ideal of R[[X1,...,X,]].

Next, we study the stability of the SFT property over the ring of
power series over a nonnil-Noetherian ring. In fact, in [7], Coykendall
showed that for an SFT ring R, the ring of formal power series R[[X]]
is not necessarily SFT. Here we prove that if R is an SFT nonnil-
Noetherian ring, then for any n € N*, R[[X},...,X,]] is an SFT ring.

Finally, we study the dimension of R[[X]] over a nonnil-Noetherian
ring R. We prove, in contrast to the case of Noetherian rings, that there
exist nonnil-Noetherian rings which do not satisfy the SF'T property.
This fact forces us to consider only SFT rings to study the Krull
dimension of the ring of formal power series over a nonnil-Noetherian
ring. We prove the following result:

Theorem. Let R be a nonnil-Noetherian ring. Then:
1. If R is an SFT ring, then dim R[[X},...,X,]] = dim R + n.
2. If R is not SFT, then dim R[[X1,... ,X,]] = +oo.

In the third part of this paper, we study the possible transfer of the
nonnil-Noetherian property from a commutative ring R to the ring of
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the power series R[[X]]. In fact, it is known that a commutative ring
R is Noetherian if and only if R[X] is Noetherian if and only if R[[X]]
is Noetherian. Here we study the stability of the nonnil-Noetherian
property over the ring of formal power series. We prove (in contrast to
the case of Noetherian rings) that R[[X]] is nonnil-Noetherian if and
only if R[X] is nonnil-Noetherian if and only if R is Noetherian.

1. Nonnil-Noetherian rings.

Proposition 1.1. Let R be a commutative ring. Then the following
are equivalent:

1. R is a nonnil-Noetherian ring.
2. R satisfies the ascending chain condition on nonnil ideals.

3. Every non-empty set of nonnil ideals in R has a mazimal element.

Proof. 1) = 2). Let I C I C --- C I, C --- be an increasing
sequence of nonnil ideals in R. Let I = U, I,,; then [ is a nonnil ideal.
So there exist z1,...,zs € I such that I = (xy,...,z). For any
1 <i<s,let a; €N, such that z; € I, and o = sup{a;,1 < i < s};
then x; € I, for any 1 < i < s. So I = I,. Hence, for any n > «,
I,=1,.

2) = 3). Let E be a non-empty set of nonnil ideals in R. If E
does not have a maximal element (for inclusion), then let Iy € E.
As I, is not maximal, then there exists Is € E, such that Iy C I5. So
we construct inductively a non-terminating strictly increasing sequence
ILLCcI,C---CI, C--- of nonnil ideals in E.

3) = 1). Let I be a nonnil ideal of R and E the set of nonnil finitely
generated ideals of R contained in I. Then F # @. So E has a maximal
element for inclusion. Let J be such an element. If J C I, then there
exists an © € I\J. We consider J; = J + zR; then J; is finitely
generated, J C J; C I and J; is a nonnil ideal. This is impossible as J
is maximal. So, J = I and then I is finitely generated. o

The next three propositions are known [4, Corollary 2.3], [5, Corollary
2.9] and [4, Theorem 2.7] under the assumption that Nil (R) is a divided
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prime ideal, and can be easily generalized to the case of any nonnil-
Noetherian ring.

Proposition 1.2. Let R be a commutative ring. Then R is a
nonnil-Noetherian ring if and only if for any P in spec (R) such that
P ¢ Nil(R). Then, P is finitely generated.

Proposition 1.3. The homomorphic image of a nonnil-Noetherian
ring s also nonnil-Noetherian.

Example 1.4. If R is a nonnil-Noetherian ring and [ is an ideal of
R, then R/I is nonnil-Noetherian.

Proposition 1.5 [4, Theorem 2.7]. Any localization Rg of a nonnil-
Noetherian ring is nonnil-Noetherian.

Proposition 1.6. Let R be a nonnil-Noetherian ring. Then any flat
overring of R is also a nonnil-Noetherian ring.

Proof. Let Ry be a flat overring of R. Then there exists a multiplica-
tively closed set S of ideals of R such that

Ry, =Rs={z €T;2A C R for some A € S},

where T is the total quotient ring of R. Moreover, S may be chosen such
that ARy = Ry, for each A € S and if Q € spec(R;) and P = Q N R;
then @ = Pgs [3, Theorem 1.3].

Let Q € spec (Ry) such that @ ¢ Nil(R,); then P = QNR ¢ Nil(R).
In fact, if P C Nil(R) then for any = € @ there exists an A € S such
that xA C P. So zAR; C PR;. Hence x € PR;. So z € Nil(Ry), for
any x € @), which is impossible. As R is a nonnil-Noetherian ring and
P ¢ Nil(R), then P is finitely generated. Let z1,... ,z, be in P such
that P = 1R+ - + x, R. We claim that Q = x1R; + --- + z,Ry.
In fact, forany 1 <i<mn,z; € PC Q. Sox R, + -+ x,R; C Q.
Conversely, let € @Q, so there exists an A € S such that A C P.
Hence, ARy C PRy = z1R1+---+x,R;. So @ is finitely generated. O
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Proposition 1.7. Let A and B be two commutative rings. Then
A x B is a nonnil-Noetherian ring if and only if A X B is Noetherian
if and only if A and B are Noetherian.

Proof. Let I be anideal of AxB. Let Iy = {zx € A;3y € B, (z,y) € I}
and I = {y € B;3z € B,(z,y) € I}. Then I C I, X I;. Conversely, let
(x,y) € I x I, so there exists (z1,22) € A x B such that (z,z3) € I
and (z1,y) € I. As I is an ideal of A x B, then (z,z3)(1,0) = (2,0) € I
and (z1,¥)(0,1) = (0,y) € I. So, (z,y) € I and I = I; x I5. Moreover,
clearly I is finitely generated if and only if I; and I are.

So A x B is Noetherian if and only if A and B are Noetherian.
In that case A x B is nonnil-Noetherian. We prove that if A x B
is nonnil-Noetherian then A and B are Noetherian. Indeed, A x B
is nonnil-Noetherian if and only if for any ideal I x J of A x B, if
I xJ ¢ Nil(Ax B), then I x J is finitely generated. Let I be an ideal
in A. So I x B is a nonnil ideal in A X B, so I x B is finitely generated,
which implies that I is finitely generated. So, A is Noetherian. In the
same way, we prove that B is Noetherian. ]

Recall that a ring R is said to have a Noetherian prime spectrum if
R satisfies the ascending chain condition for radical ideals and that is
equivalent to: Any prime ideal of R is the radical of a finitely generated
ideal of R [11, Corollary 2.4].

Proposition 1.8. If R is a nonnil-Noetherian ring, then spec (R) is
Noetherian. Hence, for any ideal I of R, there are only a finite number
of prime ideals minimal over I.

Proof. We prove that any prime ideal of R is the radical of a finitely
generated ideal of R. Indeed, let p € Spec (R). If p  Nil(R), then p is
finitely generated, so p = /p is the radical of a finitely generated ideal.

If p C Nil(R), then p = Nil(R) = 1/(0). O

Remark 1.9. The converse of Proposition 1.8 is false. Indeed, if V is
a discrete valuation domain of rank > 2, then V is an SFT ring so V'
has a Noetherian prime spectrum [2], but V is not Noetherian. As V
is integral, then V is not nonnil-Noetherian.
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Proposition 1.10 [4, Theorem 2.2]. Let R be a nonnil-Noetherian
ring. Then R/Nil(R) is Noetherian.

We show later that the converse of this proposition is false in general.

The next three propositions are known in a Noetherian ring [12,
Théoréme 4, Théoréme 5 and Théoréme 6, page 82]. We have the
following similar results for a nonnil ideal of a nonnil-Noetherian ring.

Proposition 1.11. Any nonnil ideal of a nonnil-Noetherian ring
contains a product of prime ideals.

Recall that a proper ideal I of a commutative ring R is said to be
irreducible if I does not have a decomposition of the form I = I; N I
with I; and I, two ideals of R such that I C I; and I C I5.

Proposition 1.12. Let R be a nonnil-Noetherian ring. Then any
nonnil ideal is a finite intersection of irreducible ideals.

Proposition 1.13. Let R be a nonnil-Noetherian ring. Then any
nonnil irreducible ideal is primary.

Recall that an ideal I of a commutative ring is said to be decompos-
able if it is a finite intersection of primary ideals.

Corollary 1.14. In a nonnil-Noetherian ring, each nonnil ideal is
decomposable.

Proposition 1.15. Let R be a nonnil-Noetherian ring. Then each
nonnil ideal contains a power of its radical.

Proof. Let I be a nonnil ideal of the nonnil-Noetherian ring R. Then
ICVI. SoVIisa finitely generated ideal. Let VI=zR+ - +zsR.
There exists an n € N*, such that for any 1 < i < s, 2* € I. Let
m = sn. Then (vI)™ is generated by the products of the form



NONNIL-NOETHERIAN RINGS AND THE SFT PROPERTY 1489

it -z, with 7y 4+ - -+ 75 = m. So, there exists 1 < i < s, such that
r; > n. Then ' ---27 € I and (V)™ C I. o

2. Power series ring over an SFT nonnil-Noetherian ring.
First, we recall some definitions. An ideal I of a ring R is an SFT
(strong finite type) ideal if there exists an ideal F' of finite type with
F C I and an integer n such that for any a € I, a™ € F. The ring R
is an SF'T ring if every ideal of R is SFT, which is equivalent to each
prime ideal of R is SFT.

The aim of the first part of this section is to give a necessary and
sufficient condition on the nilradical of a commutative ring R so that
a power series in a finite number of variables over R is nilpotent
if and only if each of its coeflicients is nilpotent. We begin by a
characterization of when the nilradical of a commuative ring R is an
SFT ideal.

Proposition 2.1. Let R be a commutative ring and I an ideal of R
such that I C Nil (R). Then I is an SFT ideal of R if and only if there
exists k € N, such that for any x € I, z* = 0.

Proof. Let R be a commutative ring and I an ideal of R such that
I is an SF'T ideal of R, so there exists an F, a finitely generated ideal
contained in I, and s € N, such that for any x € I, 2* € F. As F is
finitely generated and contained in Nil (R), there exists an r € N, such
that for any x € F, " = 0. Then take k& = rs. Conversely, if there
exists a k € N, such that for any = € I, ¥ = 0, then, it suffices to take
F =(0). So I is an SFT ideal. o

Lemma 2.2. Let I be an ideal of a commutative ring R. Then I[[X]]
is an SFT ideal of R[[X]] if and only if T is an SFT ideal of R.

Proof. Suppose that I[[X]] is an SFT ideal of R[[X]], there exists
ann € N, f1,...,fs € I[[X]] such that for any f € I[[X]], f™ €
(fi,---,fs)- Let a; = fi(0) € I, for any 1 < i < n. Then for any
z €I, z"™ € (a1,...,as). Conversely, if I is an SFT ideal of R, then
there exists an m € N* and a finitely generated ideal F' of R such that
F C I and for any € I, 2™ € F. For any T € I/F in the ring R/F,
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we have 2 = 0. Then by [1, Lemma 4], any element of (I/F)[[X]] is
nilpotent and there exists n € N* such that for any f € I[[X]], f =0

in (R/F)[[X]]. So f* € F|[X]] = FR[[X]] as F is a finitely generated
ideal of R. Moreover, FR[[X]] is a finitely generated ideal of R[[X]]
such that FR[[X]] = F[[X]] C I[[X]]. So I[[X]] is an SFT ideal of
R[X]l. o

Proposition 2.3. Let I be an ideal of a commutative Ting R such
that I C Nil(R). The following are equivalent:

1. T[X]] € Nil (R[X]).

2. I is an SFT ideal of R.

3. There exists a k € N* such that for any x € I, z* = 0.
4. I[[X]] is an SFT ideal of R[[X]].

Proof. Using Lemma 2.2, we have 2 < 4.
Using Proposition 2.1, we have 2 & 3.
For 2 = 1. As [ is an SFT ideal of R, then there exists an n € N,

ai,...,as elements of I such that for any = € I, 2™ € (ay,...,as). As
I C Nil(R) then there exists an m € N such that a* = --- = a™ = 0.
So, for any y € (ay,...,as),y™® =0 and for any z € I, z"™° = 0. By

[1, Lemma 4], I[[X]] C Nil (R[[X]]).

For 1 = 3. Suppose that there is no k¥ € N* such that z* = 0
for any z € I. So we can find a sequence (a;)ien+ in I such that
for any p € N* there exists an ¢ € N* such that af # 0. Let

ZalX" € I[[X]] C Nil(R[[X]]). There exists a k > 2 such

=

that f’c = 0. We prove that for any n > k, the coefﬁc1ent of Xk
in f* is af. In fact, let f = g + X"tD'h with g = Zain' and

i=1
h= Y a; X"~ The coefficient of X*(™) in f* is equal to that
1=n+1
of X*(") in gk which is equal to a®. As f* = 0, we deduce that for any
n >k, a® = 0, which is impossible. ]

In the next corollary, we provide an answer to an open question con-
cerning the relationship between the nilradical of R and the nilradical
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of R[[X]] ( relation which ”is not good in general [6, page 284]”). In
fact, we give a necessary and sufficient condition on the nilradical of a
commutative ring R so that a power series is nilpotent if and only if
each of its coefficients is nilpotent.

Corollary 2.4. Let R be a commutative ring. Then the following
are equivalent:

- Nil (R[[X])) = Nil (R)[[X]]
Nil(R) is an SFT ideal.

There exists a k € N, such that for any z € Nil (R), zF = 0.
Nil (R[[X]]) is an SFT ideal of R[[X]].

—_

Ll

Proof. Take I = Nil(R) in Proposition 2.3 and use the fact that in a
commutative ring R, we have Nil (R[[X]]) C Nil (R)[[X]]. o

Corollary 2.5. Let R be a commutative ring and n € N*. Then the
following are equivalent:

1. Nil (R[[X1, ..., Xn]]) = Nil (R)[[X1,..., X))
2. Nil(R) is an SFT ideal of R.
3. Nil(R)[[X1,...,Xn]] is an SFT ideal of R[[X1,...,X,]].

Proof. By induction on n. For n = 1, use Corollary 2.4.

Suppose that 1 < 2 < 3 for an integer n > 1. We prove the result
for n + 1.

For 1 = 2, suppose that Nil (R[[ X1, . ..

X, Xaa]]. So Nil (R[[X1, ... Xy Xosa])ORI[Xs
X, X1 ]]VRIX4]]. Then, Nil (R[[X,])) = Nil (R)

X, Xpi1]]) = Nil (R)[[ X1, . ..
][] Nil (R)[[ X, ...,

[X1]]- So, by Corol-
lary 2.4, Nil (R) is an SFT ideal of R.
For 2 = 3, as Nil (R) is an SFT ideal of R, then Nil (R[[X1,...,X,]]) =
Nil (R)[[X1,...,X,]] is an SFT ideal of R[[X1,...,X,]]. Let B =
R[[Xi,...,X,]]- Then Nil(B) = Nil(R)[[X1,...,Xn]], moreover

Nil(B) is an SFT ideal. So, by Corollary 2.4, N11 (B[[Xn+1]]) =
Nil (B)[[Xn+1]] and Nil (B[[X,4+1]]) is an SFT ideal. So Nil (R)[[ X1, ...,
X, Xns1]] is SFT.
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For 3 = 1, suppose that Nil (R)[[Xi,...,Xn, Xn41]] is SFT. By
Lemma 2.2, Nil(R)[[X4,...,X,]] is SFT. So Nil(R[[X1,...,X4]]) =
Nil (R)[[X1, ..., Xn]] is SFT. Let B = R[[X,,...,X,]]; then Nil (B)
is SFT. By Corollary 2.4 Nil(B )[[ n+1]] = Nil(B[[Xn+1]])- But

]| =
Nil(B)[[Xn+1]] = Nil(R[[X1,..., Xn]])[[Xn+1]], which is equal to
Nil (R)[[ X1, .., Xa]l[[Xnta]] = Nil(R)[[X3, ..., Xn, Xnia]], and
Nil (B[[Xnal]) = Nil (R[X1,- ., Xnll[ X)) = Nil(R[X1, ., X,
Xn+1]])- Then Nil (R[X1, ..., Xn, Xn41]]) =Nil (R)[X1, . .., Xn, Xn4a]]-
O

Example 2.6 [1, Example 3|. It is possible to have a nonnil-
Noetherian ring which is not SFT. In fact, let A = Q[Y;;i € N¥|
and I = (Y*;i € N*) the ideal of A generated by Y;*, for i € N*, with
n an integer > 2 and R = A/I. Then, R is not an SFT ring. We show
that R is a nonnil-Noetherian ring. Let J be an ideal of R such that
J ¢ Nil(R); then there exists an f € I, with a non zero constant term
(otherwise as Y; is nilpotent for any i > 1 and f is a polynomial then
f would be nilpotent). So, f = a + g, with g € (Y;,i > 1) and a € Q*,
so ¢ is nilpotent and f is invertible. Hence J = R, which is finitely
generated.

Theorem 2.7. Let R be a nonnil-Noetherian ring and n € N*. The
following are equivalent:

1. For any n € N, R[[X1,...,Xy]] is an SFT ring.

2. There exists an n € N such that R[[X1,... ,X,]] is an SFT ring.
3. R is SFT.

4. Nil (R) is SFT.

Proof. 1 = 2 is clear.

For 2 = 3, if R[[Xy,...,Xy]] is an SFT ring, then so is the ring
R~ R[[Xy,..., X,]]/(X1,...,Xn).

3 = 4 is clear.

For 4 = 1, as Nil(R) is SFT, then by Corollary 2.5, Nil (R[[X1,...,
X,]]) = Nil (R)[[X1, .., X,]] is SFT. So R[[X1, .. ., X,]]/Nil (R[[ X1, ..,
Xl = RI[Xy, - Xoll/NiL(R)[[X1, . Xoul] ~ (R/NAL(R))[[X,, .. X,
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As R/Nil (R) is Noetherian, then so is the ring (R/Nil (R))[[ X1, . . ., Xn]]-
Let P € spec (R[[X1, ... ,Xy]]); then P/Nil (R[[X1, ..., X,]]) is finitely
generated. Let f1,...,fs € P such that P/Nil(R[[X1,...,Xn]]) =
(fi,---,Fs)- So P =Nil (R[X1,..., X,]])+ (f1,-.. , fs) is SFT. O

Remark 2.8. Let R be an SFT nonnil-Noetherian ring and P €
spec (R[[X]]).

First case: If X € P, then P = p+ XR[[X]]. If p  Nil (R), then p is
finitely generated, and so is P. Otherwise, p C Nil (R), so p = Nil (R).
As R is an SFT ring, then there exists a & € N, such that for any
x € Nil(R), z* = 0. Hence, for any f € P, f* € XR[[X]]. So, P is an
SET ideal.

Second case: If X ¢ P.

e If P ¢ Nil(R[[X]]), then there exists an f € P, f = Y a; X' ¢

iEN
Nil (R[[X]]) = Nil (R)[[X]] (as Nil (R) is an SFT ideal of R). So, there
exists an ¢ € N such that a; ¢ Nil(R). Let 49 = min{k € N such
that ax ¢ Nil(R)}, so for any j < 49, a; € Nil(R) C Nil (R[[X]]) C P.

Hence, Y a; X' € P. But X ¢ P = Y a; X" % € P. So a;, is
i=ig 1=1g
a constant term of an element in P. Let I = {g(0);¢g € P}; then
I is an ideal of R which is not contained in Nil (R). So I is finitely
generated. Let I = (ay,...,a,) and for any 1 < i < n, let f; € P
be such that f;(0) = «;. We prove that P = (f1,..., fn). Clearly, we
have (f1,...,fn) C P. Conversely, let g € P; then ¢ = a + Xgy, with
g1 € R[[X]] and a € I, so a = ) b;a;, with by,...,b, € R. Hence,

i=1

f—=> bifi = Xg1 € P; then g3 € P. We prove the same thing for
i=1

g1 -.. . Then we prove that f € (f1,...,fn). So P is finitely generated.

o If P C Nil (R[[X]]), then P = Nil (R[[X]]). But Nil (R) is an SFT
ideal, so there exists a k € N*, such that for any = € Nil (R), =¥ = 0.
Hence there exists an m € N*, such that for any f € Nil(R[[X]]) =
Nil (R)[[X]], f™ =0 [1, Lemma 4]. So P is an SFT ideal of R[[X]] (it
suffices to take F' = (0)).

Theorem 2.9. Let R be a nonnil-Noetherian ring and n € N*.
Then:
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1. If R is an SFT ring, then dim R[[Xy,...,X,]] = dim R + n.
2. If R is not SFT, then dim R[[X1, ..., X,]] = +o0.

Proof. Using [1, Theorem 1], 2) is clear.
We prove 1). As Nil (R) = Npegpec (r) P, then dim R = dim R/Nil (R),
for any commutative ring R.

Since R is an SFT, nonnil-Noetherian ring, then
Nil (R[[X71,. .., X,]]) = Nil(R)[[X1,- .- ,X4]]
So,
dim R[[ X1, ... ,X,]] = dim (R[[X1,. .., X,]]/Nil (R[[ X1, ..., X4.]])
=dim (R[[Xy,..., X,]]/Nil (R)[[X1,...,Xx]])
= dim (R/Nil (R))[[ X1, ... , X»]].

Hence,
dim (R/Nil (R))[[ X1, - .. , X,]] = dim (R/Nil (R)) + n = dim (R) + n.
So, dim R[[X7,...,X,]] = dim R + n. O

Remark 2.10. If R is a nonnil-Noetherian ring, then dim R[X] =
dim R + 1. (In fact, we have always Nil (R[X]) = Nil (R)[X]).

Example 2.11. Let A = Q[Y;;i € N*|, I = (Y;Y;;(4,7) € (N*)?)
and R = A/I. Then, for any i € N*, Y; is nilpotent. As spec(R) =
{Nil (R)}, then R is nonnil-Noetherian. Moreover, for any f € Nil (R),
f? = 0. So Nil(R) is an SFT ideal. By Theorem 2.7, R is an SFT
ring. But, as Nil (R) is not finitely generated as it contains Y; for
any ¢ > 1, then R[[X]] is not Noetherian (in fact, it is not a nonnil-
Noetherian ring: take the ideal Nil (R) + X R[[X]] € Nil(R[[X]]) but
is not finitely generated). So R is an SFT, nonnil-Noetherian ring
which is not Noetherian, and dim R = 0. Hence, for any n € N,
dim R[[X1,... ,X,]] = n.

3. Nonnil-Noetherian stability via power series. Now we
study the stability of the nonnil-Noetherian property when we pass to
the formal power series ring.
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Example 3.1. We construct an example of a nonnil-Noetherian
ring R (which is not an SFT ring) and such that R[[X]] is not nonnil-
Noetherian. Let R = A/I with A = Q[Y;;i € N*] and I = (Y};i €
N*); then R is a nonnil-Noetherian ring which does not satisfy the SFT
property. In fact, for any i € N*, Y] is nilpotent and Y, =0 but V7’ *
0, for any j < i. As spec(R) = {Nil(R)}, so R is nonnil-Noetherian.
Moreover, R is not an SFT ring, otherwise there exists a £ € N, such
that for any = € Nil(R), =¥ = 0, [Proposition 2.1]. We show that
R[[X]] is not a nonnil-Noetherian ring. Let f = X ¢ Nil(R[[X]]) and
for any n € N*, f, = Y,. Let J = (f, fn, for any n € N*). Then
J ¢ Nil (R[[X]]). We show that J is not finitely generated. Otherwise,
there exists an ng € N* such that J = (f, f1,..., fn,). So, for any

N o
n > ng, Y, = Y. figi + fg with g € R[[X]]. Take in this equality
i=1

X = 0. Then we obtain Y,, — ZO Y;9:(0) € I, which implies, when we
i=1

take Y; = 0, for any ¢ # n, that for any n > nyg, Y, € ¥,"Q[Y,], which
is impossible (n > 2). (In the same way, we prove that R[X] is not a
nonnil-Noetherian ring).

We remark that for a ring B which does not satisfy the SF'T property,
B[[X]] is never nonnil-Noetherian. In fact, as B is not SFT, then
by [1, Theorem 1], there exists an infinite chain of prime ideals of
B[[X]] : PL C P, C ---. As Nil(B[[X]]) C Py, so there exists an
infinite chain of nonnil ideals in B[[X]]. So, using Proposition 1.1, we
deduce that B[[X]] is not a nonnil-Noetherian ring.

Example 3.2. Here we give an example of an SFT, nonnil-
Noetherian ring such that R[[X]] is not a nonnil-Noetherian ring.
Let R be the ring of Example 2.11. Then R is an SFT nonnil-
Noetherian ring such that R[[X]] is not nonnil-Noetherian (take the
ideal Nil(R) + X R[[X]] € Nil(R[[X]]) but is not finitely generated).

This example shows also that the converse of Proposition 1.10 is false,
in general. In fact, if we put Ry = R[[X]], then R; is not a nonnil-
Noetherian ring. On the other hand, R;/Nil Ry = R[[X]]/Nil R[[X]].
As R is an SFT ring, then Nil (R)[[X]] = Nil(R[[X]]). So, R[[X]]/
Nil (R)[[X]] = R/Nil (R)[[X]] which is a Noetherian ring.
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Theorem 3.3. Let R be a commutative ring. Then the following are
equivalent:

1. R is nonnil-Noetherian and Nil (R) is finitely generated.
. R is Noetherian.

R[X] is Noetherian.
R[X] is nonnil-Noetherian.
[[X]] is Noetherian.
[l

- R
. R[[X]] is nonnil-Noetherian.

=

Proof. Clearly, we have 2 < 3 < 5, 5) = 6) and 3) = 4). To prove
1) = 2), let P € spec (R). If P ¢ Nil (R), then P is finitely generated.
If P C Nil(R), then P = Nil (R), so P is finitely generated.

To prove 6) = 1): as R ~ R[[X]]/XR[[X]], then R is a nonnil-
Noetherian ring (as a homomorphic image of a nonnil-Noetherian ring).
Moreover, the ideal Nil (R) + X R[[X]] € Nil (R[[X]]) (as it contains X
which is not nilpotent) so, Nil (R) + X R[[X]] and so Nil (R) are finitely
generated. In the same way we prove 4) = 1). O

Remark 3.4. The preceding theorem and example show that for a
nonnil-Noetherian ring, we don’t have in general the equivalence: R
is an SFT ring if and only if Nil (R) is finitely generated. Moreover a
nonnil-Noetherian, SFT ring needs not to be Noetherian in general.

Proposition 3.5. Let R be a nonnil-Noetherian ring and P €
spec (R[[X]]). Let p={f(0); f € P}. If p € Nil(R), then P is finitely
generated.

Proof. As p is an ideal of R which is not contained in Nil (R), so p
is finitely generated. Let aq,...,a, € p be such that p = {ay,...,an,)
and for any 1 < i <n, let f; € P such that f;(0) = a;.

First case: X € P. We show that P = (f1,..., fs,X). In fact,
(fi,---, fn, X) C P is clear. Conversely, let f € P. So f(0) € p;

then there exist aj,...,a, in R such that f(0) = > wa;. So
i=1

f- iam € XR[[X]]. Hence f € (f1,..., fn, X).
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Second case: X ¢ P. We show that P = (f1,...,fn). In fact,
(f1,-+--,fn) C P is clear. Conversely, let f € P. So f(0) € p; then

there exist ay, ... ,a, in R such that £(0) = Y a;a;. So f— > aifi =
: ~

Xgi(X), where g, € R|[X]. As X ¢ P and P € spec (R[X])),
so gg € P. In the same way, we write g; = iﬂifi + Xg2(X).
Continuation of the process leads as to hy, ..., hy 121R[[X]] such that
f:iéhifi. So f€(fi,... fa). O

Corollary 3.6. Let R be an SFT mnonnil-Noetherian ring and
P ¢ spec (R[[X]]) such that ht gy x)P > 1. Then P is finitely generated.

Proof. If P is not finitely generated, then p = {f(0),f € P} is
contained in Nil (R) [Proposition 3.5]. As PN R C p C Nil(R) =
HQESpec(R)Q and PN R € spec(R), then PN R = p = Nil(R) €
spec (R). So, P C p+ XR[[X]] = Nil(R) + XR][[X]]. We show then
that ht (Nil (R) + X R[[X]]) < 1.

Let @ € spec (R[[X]]) such that @ C Nil(R) + XR[[X]]; we prove
that @ = Nil(R)[[X]]. As Nil(R) € spec(R), so Nil(R) C QNR C
Q. But R is an SFT ring, then Nil(R)[[X]] € @ [1, Theorem 1].

Conversely, let f = a;X* € Q C Nil(R) + XR[[X]]. So ay €
i=0
Nil(R) C Nil(R[[X]]) € Q- So io: a; X" € Q. But X ¢ Q, otherwise
i=1

Q@ = Nil(R) + XR[[X]]. So Y a;X*"' € Q, and then a; € Nil(R).
i=1

We show by induction that for any ¢ € N, a; € Nil(R). Hence
@ = Nil(R)[[X]]. So ht(P) < 1, which is impossible and then P is
finitely generated. o

Proposition 3.7. Let A C B be an extension of commutative
rings. Then A + X B[[X]] is a nonnil-Noetherian ring if and only if
A + X B[[X]] is Noetherian if and only if A is Noetherian and B is a
finitely generated A-module.

Proof. The second equivalence is proved in [9]. Clearly, if A+X B[[X]]
is Noetherian, then it is a nonnil-Noetherian ring. Conversely, we
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suppose that A + X B[[X]] is nonnil-Noetherian.We show that A is
Noetherian. Let I be an ideal of A. Then the ideal I + X BJ[[X]] of
A+ X B[[X]] is not contained in Nil (A + X B[[X]]) (as it contains X).
So, I+ X B[[X]] is finitely generated. Then, I is finitely generated ( A ~
(A+ XB[[X]])/XB[[X]]). We now show that B is a finitely generated
A-module. The ideal XB[[X]] of A + XB[[X]] is not contained in
Nil (A+X B[[X]]), so it is finitely generated. So there exist fi,... , fn €
B[[X]] such that XB[[X]] = Xfi(A+ XB[X]]) + -+ + Xfn(A +
XB|[X])). So BI[X]) = fi(A+ XB[X]) + -+ Ju(A + XB[X]).
We obtain then B = f1(0)A+- -+ f,(0)A. So B is a finitely generated
A-module. o

Now, we construct a ring R of power series for which we don’t have
the equivalence R Noetherian if and only if R is nonnil-Noetherian.

Lemma 3.8. Let A be a commutative ring with unity and I a finitely
generated ideal of A such that 1> = I. Then there exists an a € I with
a’> =a and I = aA.

Proof. Since I is finitely generated then I = (z1,... ,z,). We define
the sequence of ideals of A: I} = (z1,... ,@n), Io = (z2,... ,&n)y... , In
= (z,) and In41 = (0). Then for 1 < i < n + 1, there exists a
z; € I such that (1 — z;)I C I;. Indeed, we prove this by induction
on i. Take z; = 0, and suppose that there exists a z; € I such that
(1—2)I CIfor 1 <i<mn;then (1—2) = (1—-2z)[>C LI In

particular, (1 — z;)z; = Y w2z, with z;; € I; then (1 — z; — zi)z; =
j=i

> xjzij € Iiy1. We can take 1 — 2,11 = (1 — 2;)(1 — 2; — 235). Then
j=i+1
(]—_Zi—i-l)-[ = (1—zi)(1—zi—zii)1 - (1_Zi_2ii)li = (1—zi—zii)(1i+1+
IzA) = (]. — Z; — Zii)-[i+1 + (]. — Z; — Z“)IzA Q Ii+1. We deduce that
(1 = 2p41)I = (0). So for each z € I, x = z2,,11 = I = 2,414, with
ZTQL+1 = Zn+41- [}

Proposition 3.9. Let A be a commutative ring and I an ideal of
A. Then A+ XI[[X]] is Noetherian if and only if A is Noetherian and
I?=1.

Proof. Since A + XI[[X]] is Noetherian then so is the ring A +
XI[[X]]/XI[[X]] ~ A. On the other hand I[[X]] is an ideal of
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A + XI[[X]]; then it is finitely generated. Let fi,...,fs € I[[X]]
such that, I[[X]] = f1 - (A + XI[[X]]) + --- + fu - (A + XI[[X]]).
Reducing modulo I?, we then get I/I?[[X]] = fi1A/I? +--- + f,A/I%
Let for 1 < ¢ < s, f; = io:aZXk. Let a € I; for each n € N,
k=0

there exists af,...,a? € A/I? such that aX" = o} fi + --- + a7 f,.
So, for each n € N, @ = afal + --- + a%a and, for any k # n,
0 = afal + --- + afai. On the other hand, (A/I2)® is a finitely
generated module on the Noetherian ring A/I?; then it is a Noetherian
module. For n € N, let M, = {(ag,...,q;) € (A/I?)%; for any
k>n, oz_lg + -+ +a,a; = 0}, then (M,), is an increasing sequence
of submodules of (A4/I?)*. Then there exists an n € N such that
M,, = My, 1. But (af,...,a7) € M,41, so (af,...,a”) € M, which
implies that aTal + -+ afas =0,s0 @ =0 and I = I2.

Conversely, we suppose that A is Noetherian and I? = I. In
particular I = aA, with a € A such that a> = a (Lemma 3.8).
Consider the unique A-homomorphism ¥ : A[[T]] — A[[X]] such that
U(T) = aX. Then Im () = A+ XI[[X]]. As A is Noetherian, then
A[[T]] is also Noetherian and then A + XI[[X]] is Noetherian. O

Proposition 3.10. Let A be a commutative ring and I an ideal of A
such that I|[X]] € Nil (A[[X]]). Then A+ XI[[X]] is nonnil-Noetherian
if and only if A+ XI[[X]] is Noetherian.

Proof. Clearly, if A + XI[[X]] is Noetherian then it is nonnil-
Noetherian. Conversely, we suppose that A + XI[[X]] is nonnil-
Noetherian. We show that A is Noetherian and I> = I. Let p €
spec (A). Then p + XI[[X]] € spec (A + XI[[X]]) and p + XI[[X]] €
Nil(A + XI[[X]]), so it is a finitely generated ideal which implies
that p ~ p + XI[[X]]/XI[[X]] is also finitely generated. Then A is
Noetherian. On the other hand, I[[X]] ¢ Nil (A4 + XI[[X]]), so I[[X]]
is a finitely generated ideal of A + XI[[X]]. Then, using the proof of
Proposition 3.10, we show that 1% = I. O

Remark 3.11. If A is a commutative ring and I a proper ideal of A
such that I[[X]] C Nil (A[[X]]), then A + XI[[X]] is never Noetherian.
In fact, if A + XI[[X]] is Noetherian, then I = aA, with a®> = a.
Moreover I C Nil(R), so a € Nil (A), which implies that ¢ = 0, and
then I = (0).
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In that case we have Nil (A + XI[[X]]) = Nil(4) + XI[[X]] and
spec (A + XI[[X]]) = {p + XI[[X]];p € spec (A)}.

However, A+ X I[[X]] may be a nonnil-Noetherian ring. To illustrate
that case, take in Example 3.2, J = Nil(R), then R + XJ[[X]] is a
nonnil-Noetherian ring (spec (R + X J[[X]]) = {Nil (R + XJ[[X])} =
{Nil(R) + X J[[X]]}).
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