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LEFT CENTRALIZERS ON RINGS
THAT ARE NOT SEMIPRIME

IRVIN R. HENTZEL AND M.S. TAMMAM EL-SAYIAD

ABSTRACT. A (left) centralizer for an associative ring R
is an additive map satisfying T'(zy) = T(z)y for all z,y in
R. A (left) Jordan centralizer for an associative ring R is an
additive map satisfying T'(zy+yz) = T(z)y+T (y)z forall z,y
in R. We characterize rings with a Jordan centralizer T'. Such
rings have a T invariant ideal I, T is a centralizer on R/I, and
I is the union of an ascending chain of nilpotent ideals. Our
work requires 2-torsion free. This result has applications to
(right) centralizers, (two-sided) centralizers, and generalized
derivations.

1. Introduction. Let R be aring, and let T : R — R be an additive
map such that

(1) T(zy +yz) =T(z)y+T(y)x forall z,y € R.
We define a function h: R x R — R by
h(z,y) = T(zy) — T(x)y.
It is immediate that T is a (left) centralizer if and only if h(z,y) = 0

for all z,y in R.

A derivation is an additive map D : R — R which satisfies D(zy) =
D(z)y + zD(y) for all z,y in R. A Jordan derivation is an additive
map which satisfies D(z2) = D(x)z + zD(z) for all z in R.

In [3] Herstein showed that in a prime ring of characteristic not 2,
any Jordan derivation is actually a derivation. In [2] Cusack improved
this result by replacing the requirement of prime by semi-prime.
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Hvala [4] introduced the concept of a generalized derivation. An
additive map F : R — R is a generalized derivation if F(zy) =
F(z)y + «D(y) where D : R — R is a derivation. For a generalized
derivation, the map G(z) = F(z) — D(x) becomes a (left) centralizer.
The study of generalized derivations is strongly dependent on the
study of (left) centralizers. Similarly, the study of generalized Jordan
derivations, i.e., F(x?) = F(z)z + 2D(z), is dependent on the study of
Jordan (left) centralizers.

Jordan centralizers have been studied by Zalar [5]. He showed that
when R is 2-torsion free and semiprime, then any Jordan centralizer
is actually a centralizer. This result suggests that if 7" is a Jordan
centralizer on a ring R, I is an ideal of R invariant under T, and R/I
is semiprime, then A(R, R) C I and T must be a centralizer on R/I.

The intent of our paper is to study Jordan centralizers on rings which
are not semiprime. Let N(R) be the (Baer lower) radical of R, i.e.,
R/N(R) is semiprime. We show that h(R,R) C N(R). We do not
show that T(N(R)) C N(R).

This paper will focus on the T invariant ideal I generated by H =
h(R, R). We show that I is the union of a chain of nilpotent ideals.
This shows that I C N(R). This allows us to prove that T is well
defined on the cosets of R/I and that this map is a centralizer on R/I.

2. Preliminaries. In this paper, we use the letter P to represent the
set of absolute left annihilators. P = {x € R; xR = 0}. P is a two sided
ideal of R. T will be a left Jordan centralizer. We will be using repeated
applications of 7. In particular 7°(z) = z; 7" (x) = T(T"(z)). The
“o” product or the “symmetric product” is defined by x oy = zy + yz.

Lemma 2.1. Let T be a (left) Jordan centralizer on a ring R. Then

Z TH(z)T?(z) = Z T (T (x)).

i+j=n i+j=n

Proof. We compute (1) for all possible 7,j, k where i + j + k = n,
i >1,0<j <k <n. The sum of all of these equations will give the
conclusion of Lemma 2.1.
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The form of equation (1) when ¢ > 1 and j < k is as follows.

TH(T9 (2)T*(2)) + TH(T* (2)T7 (2))
= T T+ (2)TF(2)) + T H(TH ()T (2)).

In this case the equation has exactly four terms. Each side has exactly
two terms. The form of equation (1) when ¢ > 1 and j =k =1is

TH(T(2)T'(2)) = T (T (2)T" ().

In this case the equation has exactly two terms. Each side has exactly
one term. To help visualize the pattern in the exponents, we use
T%(z) = z and T"(z) = T(z). In this notation we are trying to show

Y TUT(@)T(x) = ) TH(T(x)T(x)).

i+j=n i+j=n

The terms are all of the form T%(T?(x)T¢(z)), on the left hand side
a > 1, and on the right hand side b > 1. Any term T%(T®(z)T°(x))
with a > 1 appears on the left hand side in exactly one equation. It
appears as the first term if b < ¢ and as the second term if b > ¢. The
equation has exactly one term on the left hand side if b = c.

Any term T%(T%(z)T¢(x)) with b > 1 appears on the right hand side
in exactly one equation. It appears as the first term if b < ¢+ 1 and
as the second term if b > ¢+ 1. The equation has exactly one term on
the right hand side if b = ¢+ 1.

When taking the sum of all of these equations, the terms which appear
on both the right and left sides cancel. The terms on the left which do
not appear on the right are those of the form

T *(T%(2)T*(x)) for 0 <k < n.

The terms on the right hand side which do not appear on the left are
those of the form

T(T™ ¥ (2)T*(z)) for 0 <k < m.

These are the terms appearing in the sums mentioned in Lemma 2.1
with the term 7°(7°(z)T™(z)) added to both sides to make the nota-
tion easier. o
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Lemma 2.2. Let R be a ring and T a Jordan centralizer on R.
The function h is defined by h(z,y) = T'(zy) — T(z)y. The function h
satisfies the following.

(a) h(z,y) + h(y, ) = 0

(b) 2h(zy,z) = —h(z,y)z + h(y, z)z — h(z,x)y
(c) h([z,y],2) = —h(z,y)z

(d) Az, y)[z, w] + h(z,w)[z,y] = 0.

Proof. Part (a): h(z,y)+h(y, ) = T(zy)—T(z)y+T(yz)-T(y)z =0
by (1).
Part (b): We use (1) three times and the definition of h four times.

The numbers in parentheses below the terms identify identical terms.

+T(zyz) +T(zzy) -T(zy)z -T(z)zy =0 by (1)
(1) (2) (3) (4)
—T(zxy) —T(yzx) +T(zx)y +T(y)zxz =0 by (1)
(2) (5) (6) (7)
+T(yzz) +T(zyz) —T(y2)r —T(z)yz =0 by (1)
(5) (1) (8) (9)
+h(z,y)z —T(xy)z +T(z)yz =0 definition of h
(10) (3) (9)
+h(z,z)y —T(zx)y +T(2)zy =0 definition of h
(11) (6) (4)
—h(y,2)z  +T(yz)x —T(y)zz =0 definition of h
(12) (8) (7)
+2h(zy,z2) —2T(zyz) —+2T(xy)z =0 definition of h
L C) N € S G
2h(zy,z) +h(z,y)z —h(y,z)z +h(z,z)y =0

Part(c): We use part (b) 2 times and part (a) 3 times.

2h(zy, z) =—h(z,y)z+h(y, z)z—h(z,z)y Lemma 2.2(b)
(1) (2) 3)
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—2h(yz, z) =+h(y,z)z—h(z, z)y+h(z,y)r Lemma 2.2(b)

(4) (5) (6)

0 =—h(z,y)z—h(y,x)z Lemma 2.2(a)
(1) (4)

0 =—h(y,z)z—h(z,y)z Lemma 2.2(a)
(2) (6)

0 =+h(z,z)y+h(z, 2)y Lemma 2.2(a)
(3) (5)

Adding these five equalities gives:
2h([$, y]7 Z) = —2h(.’13, y)Z
Using 2-torsion free, we get part (c).
The proof of part (d) is from part (a) and part (c).
+h([z,y], [z, w]) + h([z,w], [z,y]) =0 Lemma 2.2 (a)
—h([z,y], [z,w]) = h(z,y)[2,w] Lemma 2.2 (c)
h(z,w)[z,y] Lemma 2.2 (c)
Adding these three equalities gives:

0 = h(z,y)[z, w] + h(z, w)[z, y]. O

Lemma 2.3. More properties of h.
(a) h(zy,z) = —h(zz,y)

(b) h(zy, z) = +h(y, z2)

(c) A([z,ylz,w) = 0.

Proof. Part (a): Uses Lemma 2.2 (b) with y = z once and Lemma
2.2 (a) twice.
2h(zy,y) = —h(z,y)y + h(y,y)z — h(y,z)y Lemma 2.2 (b

0= +h(z,y)y + h(y,z)y Lemma 2.2 (a)

0= —h(y,y)z Lemma 2.2 (a)

)
and 2-torsion free.
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Adding gives:
2h(zy,y) = 0 and 2-torsion free gives h(zy,y) = 0.

Linearizing this gives Lemma 2.3 (a).
Part (b): Uses Lemma 2.3 (a) and Lemma 2.2 (a)

h(zy,z) = —h(zz,y) Lemma 2.3 (a)
= +h(y,zrz)Lemma 2.2 (a).

Part (c): Uses Lemma 2.2 (a) and Lemma 2.3 (a)

h([z,y]z, w) = h(zyz,w) — h(yzz,w) definition of [z, y]
= h(zyz,w) + h(yzw, z) Lemma 2.3 (a)
= h(yz,zw) + h(zw,yz) Lemma 2.3 (b)
=0 Lemma 2.2 (a).

Lemma 2.4. Further properties of h.
(a) h(z,y)[z,w]R =0

(b) 7" (h(z,y))[z, wlR =0

(¢) h(z,y)T™(h(z,w)) C T(P) + P.

Proof. Part (a):

h(z,y)[z, wlr = —h([z,y], [z, w])r Lemma 2.2 (c)
+h([[z,y],[z,w]],”)  Lemma 2.2 (c)
C h([R,R|R,R)

=0 Lemma 2.3 (c)

Part (b): The case n = 0 is part(a).
Assume the result is true for n.

T (h(, y)) [z, w]r

(1™ (h(2,9)))[z, w]r

T(T"(h(z,y))[z, wlr) — R(T"(h(z,y)), [z, w]r) =0,
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by induction and Lemma 2.3 (c) and Lemma 2.2 (a).
Part (c):

Wz, y)T" (h(z,w))
= —h([z,y], T"(h(z,w))) by Lemma 2.2 (c)
+h(T"(h(z,w)), [z,y]) by Lemma 2.2 (a)
T(T™(h(z,w))[z,y]) — T (h(z,w))[z,y] by definition of h
T(P) + P by Lemma 2.4 (b). o

C

An extremely important result follows from Lemma 2.4 (b). Suppose
we have a product of the form T™(h(z,y))z12223 - zpw. It has a
T™(h(z,y)) on the left end. It ends with an element w of R on the
right end. The product is independent of the order of the z;z9 - - z,.

Tn(h(xa y))2122 T RpW = Tn(h(l‘, y))zhzizzis T2, W

n

for any permutation (iyigis---4,) of (123---n).
We will eventually prove that, for z;’s of a certain type, sandwiched
strings of large enough n are zero. The proof will involve replacing

terms of the form ' '
2T ()T (y) - - -

with
ST )T et y) =TT )= T T )

This allows us to reduce the problem to the case where the arguments
of the two adjacent elements are equal. This is necessary when we
apply Lemma 2.1. We shall refer to the elements which are sandwiched
between T"(h(z,y)) on the left and an element of R on the right as
a sandwiched string. Remember that the order of the elements of the
sandwiched string is immaterial.

Lemma 2.5. Using the “o” to denote the “symmetric product”
roy=uxy+yr.

(a) (h(R,R) o h(R,R))R =0,
(b) h(z,y)h(z, w)h(u,v)R = 0.
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Proof. Part (a): We must show that h(z,y)h(z, w)u+h(z, w)h(z,y)u
=0.
h(z,y)h(z,w)u = —h([z,y], h(z,w)u) by Lemma 2.2 (c)
= +h(u, h(z,w)[z,y]) by Lemma 2.3 (a)
and Lemma 2.2(a)
= —h(u, h(z,y)[z,w]) by Lemma 2.2 (d)
= +h([z,w], h(z,y)u) by Lemma 2.3 (a)
and Lemma 2.2(a)
= —h(z,w)h(z,y)u by Lemma 2.2 (c).
Therefore (h(z,y) o h(z,w))R = 0.
Part (b):
h(z,y)[h(z,w), h(u,v)]r =0 by Lemma 2.4 (a)
h(z,y)(h(z,w) o h(u,v))r = 0 by Lemma 2.5 (a).
Adding these gives 2h(z,y)h(z, w)h(u,v)r = 0. The 2-torsion free

assumption says that h(z,y)h(z, w)h(u, v)r = 0. This finishes the proof
of Lemma 2.5. O

Lemma 2.6. Let hy and hy be elements of H = h(R,R). Then
T™(hy) o T™(hs) is equal to a linear combination of terms of the form

T'(H)T!(H) or T*(P)

where i +j = 2n, 1 # j and 0 < k < 2n + 1. Remember that P is
the set of absolute left zero divisors of R. In particular we can replace
the expression T"(hy) o T™(hy) which has two terms of exponent n by
other terms at least one of which has exponent < n. At the same time
we may have to add some additional terms involving T*(P).

Proof. Using Lemma 2.1 with h € H,
Y THRTI(h)= Y T(hTI(h)).
i+j=2n i+j=2n

Each term on the left hand side involves an ¢ or a j which is less than n
except for the term with i = j = n. Each term on the right hand side
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involves hT7(h). By Lemma 2.4 (c), hT7(h) C T(P) + P. Transposing
all terms on the left hand side except the one with ¢ = j = n gives

2n+1
T(h)T"(R) C — > THR)TI(h)+ Y THP).
i+j=2n k=0
i#]

Now applying this three times to the right hand side of

T"(hy) o T"(hs)
=T"(hy + h2)T"(hy + h2) = T"(ha)T" (h1) — T (h2)T™ (ha),

we get the result. ]

Theorem 2.7. Any sandwiched product involving at least 2™ terms
of the form T*(P) with 0 < i < n is zero.

Proof. The proof is done by showing that such a sandwiched product
multiplied by an appropriate power of 2 is zero. Then 2-torsion free
implies the sandwiched product itself is zero.

Using the commutativity of the sandwiched string, we can collect the
2" terms of the form T%(P) with 0 < i < n into at least 2" ! pairs.
Either a pair contains two terms of the form T™(P) or at least one of the
pairs has exponent less than n. Using Lemma 2.1, the commutativity
within the sandwiched string, and an additional factor of two, we can
replace any pair of 7" (p;)T™(p2) with a sum of products of the form
T'(P)T7(P) where i < n. This creates a sandwiched string that has
at least 2”71 terms of form 7T%(P) with i < n — 1. Continuing in this
way, we reduce each string to have at least 2° terms of the form 7°(P).
Since T9(P) = P, and P is the set of left absolute zero divisors, the
product of the sandwiched string together with the end terms is zero. O

Theorem 2.8. Any product with at least 2+ 3 x 23" *! terms of the
form T*(H) with i < n is zero.

Proof. The proof is done by showing that such a product multiplied
by an appropriate power of 2 is zero. Then 2-torsion free implies the
string itself is zero.
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A product with at least 2 + 3 x 23"*1 terms of the form T%(H) with
i < n, contains a sandwiched string containing at least 3 x 23"*! terms
of the form 7%(H) with i < n. Partition this sandwiched string into
3x 227+ 1 substrings each containing at least 2" terms of the form 7" (H)
with ¢ < n. Within each of these substrings, collect 2" of the terms of
the form T%(H) with i < n into pairs. If both terms in a pair are of
the form T (h;)T™(h2), we use Lemma 2.6 to rewrite this product as
a sum. There are two types of terms in this sum. One type is T%(P)
for 0 < i < 2n + 1. The other type is T¢(H)T7(H) where either i or
j is less than n. In this way we replace the original substring by one
that has at least one instance of T%(P) for 0 < i < 2n + 1, or else
there are at least 2" ! terms of the form T%(H) with i < n — 1. We
continue in this way by repeatedly pairing and using Lemma 2.6 when
necessary. Eventually the substring will either have a term of the form
T(P) where 0 < i < 2n + 1, or else it will have a term of the form
TO(H) = H.

Now group these substrings into triples. If each member of the triple
has an element of the form 7°(H), then the product of that triple will
be zero by Lemma 2.5 (b). If not all of the elements of the triple have
an element of T°(H), then among the three elements of that triple
exists an element of T¢(P) with 0 < i < 2n + 1. Since we started
with 3 x 22"+ substrings, there were 22"*! triples. Since we have a
sandwiched string with at least 22"*! terms of the form 7%(P) with
0 <7 <2n+ 1, the product is zero by Theorem 2.7. a

Applications.

Theorem 2.9. Let T be a (left) Jordan centralizer on a ring R. Let
h(z,y) = T(xy) — T(z)y for all z,y in R. Let I be the T-invariant
ideal generated by h(R,R). Then I is the union of nilpotent ideals, T
is well defined on R/I, and T is a centralizer on R/I.

Proof. We use the notation (X) for the ideal of R generated by the
set X. Let Hy = (h(R, R)). Inductively, define H,,+1 = H,, + (T'(H,,)).
It is clear that each H,, is an ideal, and by Theorem 2.8, each H, is
nilpotent of index < 2 + 3 x 23"*!. Letting I = U2 H;, I will be an
invariant ideal because T'(H,) C H,1. I is a radical ring because
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it is the union of nilpotent ideals. T is well defined on R/I because
T(I)C I. T is a centralizer on R/I because h(z,y) C Hy C I. o

Remark 2.1. If R is a semiprime ring, then we can easily give a
short proof for Zalar’s results in [5] and also prove that any generalized
Jordan derivation is a generalized derivation.

Theorem 2.10. Let R be a 2-torsion free semiprime ring and
T: R — R aleft Jordan centralizer. That is, T is an additive mapping
and satisfies T(z%) = T'(x)z, for allz € R. Then T is a left centralizer,
i.e., T(zy) = T'(z)y, for all x,y € R.

Proof. Let h(z,y) = T(xy) — T(x)y. It is clear h(z,z) = 0. Our goal
is to prove that h(z,y) =0, for all z,y € R.

We will show that the ideal generated by h(R, R) is a nilpotent ideal,
i.e., we will prove that the ideal

(h(R,R)) = h(R, R) + Rh(R, R) + h(R, R)R + Rh(R, R)R,

is nilpotent. Consider the fourth power of the ideal generated by
h(R, R). Lemma 2.5 (b) gives h(R, R)h(R, R)h(R, R)x = 0. The fourth
factor of the ideal generated by h(R, R) is only used to provide the
right hand factor which is called “R” in Lemma 2.5 (b). Using Lemma
2.2 (c), we have h(z,y)z = —h([z,y],z) C h(R, R), for all z,y,z € R.
Therefore h(R, R)R C h(R, R). That is, h(R, R) acts like a right ideal.
Therefore

(h(R, R))(h(R, R))(h(R, R))(h(R, R))
=0 by Lemma 2.5 (b).
It follows that (h(R,R))(h(R,R)) is an ideal that squares to zero.
Applying semiprime once again, we get (h(R,R)) = 0, which gives
h(R, R) = 0 and so
T(zy) =T(z)y forall z,y € R,

that is, T is a left centralizer. a
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Corollary 2.11. Let R be a 2-torsion free semiprime ring, and let
G : R — R be a Jordan generalized derivation, i.e., G is an additive
mapping satisfying the relation G(z%) = G(z)z + D(z), for allx € R
and some derivation D of R. Then G is a generalized derivation, i.e.,
G satisfies the relation G(xy) = G(z)y + «D(y), for all z,y € R and
some derivation D of R.

Proof. If G(z%) = G(z)x + xD(x), where D is a derivation, then
G — D is a left Jordan centralizer. So G — D is a left centralizer, by the
above theorem, and so G is a generalized derivation.
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of the paper.
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