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ON ¢, SPACES AND INFINITE 3-DIRECT SUMS
OF BANACH SPACE

THEODOSSIOS ZACHARIADES

ABSTRACT. In this paper, the sequence Banach spaces £y,
are defined for a class of convex functions ¢ and properties
of these spaces and their dual spaces are proved. It can be
seen that some well-known sequence Banach spaces are spaces
of this type. The 3-direct sum of a sequence (Xp)nen of
Banach spaces is also defined. The modulus of convexity of
this space is estimated in terms of the modulus of convexity of
the spaces £y, and Xy, n =1,2,.... Based on this estimate,
conditions are proved under which uniform convexity, uniform
smoothness and uniform non-squareness are inherited by -
direct sums.

1. Introduction. A norm ||-|| on C? is called absolute if ||(21, 22)||
Il(I21], |22])]] for (21,22) € C? and is called normalized if ||(1,0)]|
I(0,1)|| = 1. For a continuous and convex function ¢ on [0, 1] satisfying
¥(0) = ¥(1) = 1 and max{l — s,s} < ¢(s) <1 for every 0 < s < 1,
Bonsall and Duncan [3] defined the norm

~

_ S (sl + D) i (21, 22) # (0,0
oozl =, it (21, 72) = (0,0)

on C?, and they proved that a norm || on C? is absolute and
normalized if and only if there is a function ¥ with the above properties
such that |-[| = [|-[|,,. ¢, norms are typical examples of such norms,

but there are plenty non £,-type norms on C? which are absolute and
normalized.

For every v as above, Takahashi, Kato and Saito [19] introduced
the -direct sum X 691!) Y of Banach spaces X and Y equipped with
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972 THEODOSSIOS ZACHARIADES

the norm. [[(,9)| = [[(lzIl, lylDll, for @ € X, y € Y, and proved
that this space is strictly convex if and only if X,Y and % are strictly
convex. Saito and Kato [16] proved that the space X @, Y is uniformly
convex if and only if X,Y are uniformly convex and ¥ is strictly convex
and Kato, Saito and Tamura [9] that it is uniformly non-square if
1y # I, and [, # -]

Saito, Kato and Takahashi [18] extended the result of Bonslall-
Duncan in the absolute and normalized norms on C" for n = 2,3, ...,
using a family of continuous and convex functions defined on a certain
convex subset of [0, 1]"~1. They also proved that such a norm is strictly
convex if and only if 1 is strictly convex. Mitani, Saito and Suzuki [14]
proved an equivalent condition in terms of ¢ in order that (C, ||-[[,)
be smooth. Kato, Saito and Tamura [8] defined the -direct sum of a
finite family of Banach spaces Xi,...,X, and proved that this space
is strictly (respectively uniformly, locally uniformly) convex if and only
if the spaces Xi,...,X, are strictly (respectively uniformly, locally
uniformly) convex and the function v is strictly convex. As Dowling
[6] remarked the construction of i-direct sum is a special case of a
general construction of Day [4]. Following this, Dowling in [6] gave a
simple proof that the ¢ direct sum of Xi,...,X,, is strictly convex
(respectively uniformly convex, locally uniformly convex, uniformly
convex in every direction) if and only if ¢ is strictly convex and
Xi,...,X, is strictly convex (respectively uniformly convex, locally
uniformly convex, uniformly convex in every direction). But this proof
does not work for smoothness, uniform smoothness and uniform non-
squareness. Mitani, Oshiro and Saito [12] proved that the ¢-direct sum

of a finite family of Banach spaces X,... , X, is smooth (respectively
uniformly smooth) if and only if the space (C™, ||-[|,,) is smooth and X;
is smooth (respectively uniformly smooth) for i =1,... ,n.

In Section 3 of this paper, following the construction of Kato, Saito
and Tamura [8], the space ¢, is introduced for a convex function 1,
defined on a certain convex subset of [0,1]N, with some appropriate
conditions, and properties of this space and its dual are proved. Also,
the 9-direct sum of a sequence of Banach spaces (X, )neN is introduced
and its dual space is characterized. In Section 4 an estimate of the
modulus of convexity of the ¥-direct sum of a finite family of Banach
spaces is proved (Theorem 4.2). From this result the well-known
theorem about uniform convexity of ¥-direct sums ([6, 8]) is improved,
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estimating the modulus of convexity of i-direct sum, and a new
result about uniform non-squareness of 1-direct sum follows. Also the
modulus of convexity of the i-direct sum of a sequence of Banach spaces
(Xn)nen is estimated (Theorem 4.5). From this theorem, conditions
under which uniform convexity, uniform smoothness and uniform non-
squareness are inherited by 1-direct sum of a sequence of Banach spaces
(Xn)nen follow (Corollary 4.7 and Corollary 4.8).

2. Preliminaries. Let n > 2. A norm ||-|| on C" is called absolute
if |[(z1,---522)| = [(J21l,--- s |2nl])|| for every (z1,...,2,) € C™ and
is called normalized if [|(1,0,...,0)|] = |[(0,1,0,...,0)]] = --- =
1(0,...,0,1)|| = 1. The family of all absolute and normalized norms
on C" is denoted by AN,,.

Let A, = {(81,-+-,80-1) € [0,1]>71 : 377 's; < 1}, Saito et
al. [18] considered the set ¥,, of all continuous and convex functions
¥ : A, — R which satisfy the conditions

(Ag): 9(0,0,...,0) =1(0,1,0,...,0) =--- =(0,...,0,1) = 1
(Al): '(»b(sla v 75n71) > (31 +o Snfl)

X 1 S1 Sn—1
sttt sn1’ Tsid ot se

. . 52 Sn—1
(AQ).’(/J(Sl,... 7377,—1) Z (1 31)’(/1(0, —1_81,... 5 1—31>
51 Sn—2
: 1) 2 (1 —s,-
(An) 1/1(51a ySn 1) sl (]- Sn 1)¢<1 — Sn—l, ) 1_ 5n1,0>,

and they proved the following theorem.
Theorem 2.1. i) If 1) € ¥, then ||-[|,, € ANy, where
n |z2] |2n |
i=1 1% ¢ LTt R D L
(Sl (bl ol )

H(Zl;...,Zn)Hzp: if (21, ,22) #(0,...,0)
0 if (z1,...,2n) =(0,...,0).
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it) If |||l € AN,, then the function v : A, — R, defined by

() = I(1—s1— - —8p_1,81,---y8n-1)|| for s = (s1,... ,8,_1) €
An, belongs to ¥, and ||-|| = |||,

Typical examples of these norms are £,-norms, for 1 < p < oo, but
there are plenty of examples of such norms which are non-¢,, norms ([8,
16, 17, 18]).

The following two lemmas are proved in [18].

Lemma 2.2. Let ¢y € ¥,,. Then
) Mleo < 1Ml < I-lly, and

i) 1/n < Yoo(s1,- -+ y8n—1) < Y(81,..+ ,8n—1) < 1 for all (s1,...,
Sn—1) € Ay, where 1o is the function which is defined by ||-|| -

Lemma 2.3. Let ¢ € ¥,, and z = (21,... ,2n), w = (W1,... ,w,) €
Ccn.

i) If [2i| < |wi| for every i =1,... ,n, then [[z[|, < [|w],-

ii) If o is strictly convex and |z;| < |w;| for some i, then ||z|[, <
[wlly-

Mitani et al. defined in [12] the dual function ¢* of ¢ € ¥,, as
’l/J*(Sl, ce ,Sn_l)

= sup
(t1yen tn_1)EA,

(I—t1——tp_1)(1=81——spn_1)+t1s1++tpn_15n_1
¢(t17--- 7tn71)

for (s1,...,8n—1) € A,. They also proved that ¢* € ¥,,, (¢*)* =9
and ||||f/) = ||[|y~- For ¢ and " the following generalized Hélder
inequality is proved.

Proposition 2.4. Let ¢p € U,,. Then we have | < z,y > | <
el lglly. for any 2,y € C.

Let v € ¥, and Xi,...,X,, be Banach spaces. The t-direct
sum of these spaces is the space [[;~; X; equipped with the norm
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H@1, @)l = Nzl lznlDlly, for (z1,... 20) € TL; Xi
This space is denoted by (3°1 ; B Xi)y.

About the dual space of the w-direct sum of a finite family, the
following property is proved in [12].

Proposition 2.5. For every ) € U,, the dual space of (3., D Xi)y
is isometric to (3 D X )y~

We recall some geometrical notions of Banach spaces.

Let (X,]|-]|]) be a Banach space with dim X > 2, and let Bx = {z €
X : ||z|| £ 1} be the unit ball of X.

For 0 < & < 2 the modulus of convexity dx () of X is defined by

T+
fw:x,yEBx,foszs}.

Sx () = inf {1

It is known that dx(g) < 1 — (1 — (¢2/4))Y/% for 0 < ¢ < 2 [11].
Therefore,

(2.1) dx(e) < for0<e<2.

N ™

The space X is called uniformly convex if §x(¢) > 0 for every 0 < ¢ < 2.

The space X is called uniformly non-square, if there exists a § > 0
such that min{||(z —y)/2|,||(z + y)/2||} < 1 —§ for every z,y € Bx.
It is clear that X is uniformly non-square if and only if there exists
0 < € < 2, such that dx(e) > 0.

For 7 > 0 the modulus of smoothness px (7) of X is defined by

T +y| +||lr—
pX(T)_Sup{| yll + lle — vl

2 ~traye X el =Lyl =)

The space X is called uniformly smooth if lirr%J (px(7))/T =0.
T—

The following duality result is proved in [5] (see [11]).
Proposition 2.6. For every Banach space X we have
i) px+(7) = sup{(re/2) — dx () : 0 < e < 2}, for every T > 0, and

ii) X is uniformly convez if and only if X* is uniformly smooth.
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Let X = (X;)icr be a family of Banach spaces. For 0 < & < 2 the
modulus of convexity dx(g) of X is defined by dx(g) = inf;c; dx, ().
The family X is called uniformly convex (respectively uniformly non-
square) if dx(g) > 0 for every (respectively for some) 0 < & < 2.
For 7 > 0 the modulus of smoothness px(7) of X is defined by
px(T) = sup;c; px,; (7). The family X is called uniformly smooth if
lim,_o(px(7))/T =0.

We put e(X) = sup{0 < e <2:dx(c) =0} If ¥ = {X} we write
e(X).

It is clear that

i) e(X) = 0 if and only if the family X is uniformly convex, and
ii) 0 < e(X) < 2 if and only if the family X is uniformly non-square.

Using Proposition 2.6 we obtain the following result for a family of
Banach spaces, which is proved in [15].

Proposition 2.7. Let X = (X;)ier be a family of Banach spaces
and X* = (X[)icr be the family of the dual spaces. The family X is
uniformly convex if and only if the family X* is uniformly smooth.

For more details about these geometrical notions see [1, 11].

3. {, spaces and infinite ¢-direct sums. Let A<¥ = {s =
(8n)nen € [0,1)N : {n € N : s,, # 0} is finite and > ., s, < 1} and
P A<Y — R.

We say that the sequence (¢,,)5,, where ¢, : A, — R is defined
by ¥n(s1,.--,8n-1) = ¥(s1,-+-,80-1,0,0,...) for n = 2,3,..., is
associated with 1.

Let s = (sp)nen € A<Y, such that s # 0. We put n, = max{n :
$n # 0}. Then ¢(s) = ¢¥p(s1,...,8,_1) for every n > ng.

It is also clear that:

1) Yn(s1,..-,8n-1) = Ynt1(s1,...,8n-1,0) for every n > 2 and
(81, - ,Snfl) € An

ii) ¢ is strictly convex if and only if 4, is strictly convex for every
n > 2.
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iii) If 4 is continuous, then 1, is continuous for every n > 2.

Let U, = {¢p : A<¥ > R:%¢, € U, for everyn =2,3,...}. It is
easy to see that a ¢ € U, is characterized by its associated sequence
(%)% 5 in the sense of the following lemma.

Lemma 3.1. Let (¢¥,)5%, be a sequence of functions such that

Yn € ¥, and ¥p(s1,-..,8n-1) = Ynt1(81,--.,80-1,0) for every
(s1,--+y8n_1) € Ap and n = 2,3,.... The function ¢ : A<¥ — R,
defined by
¥(s) = Un.+1(81,- - 5 8n,) z-fs f 0
1 if s =0,

belongs to U, and the sequence (V)52 is its associated sequence.

An element of ¥, is not necessarily continuous. For example, if
Y(s) = sup{l — 3,7 Sn, S1, S2,...} for s = (Sp)nen € A<Y, then
1 € U, but this is not continuous.

Typical examples of elements of ¥,, are the functions

1/p

p
[(1 -3, sn> + 3 s’fl} fl<p<oo
Yp(s) =
sup{l—zzo_lsn, 31,52,...} if p = oo,

for s = (sp)nen € A<Y.

Using Lemma 2.2 (ii), we obtain the following corollary.
Corollary 3.2. If ¢ € U, then Yoo (s) < (s) <1 for s € A<¥.

Let coo = {2 = (2n)nen € CN : {n € N : z,, # 0} be finite}, and let
(€n)nen be the usual Hamel basis of cgp. For z = (2, )nen € CN we
denote |z| = (|zn|)neN-

Definition 3.3. A norm ||-|| on cq is called absolute if ||z|| = |||z]|| for
every z € cop and is called normalized if ||e,, || = 1 for everyn = 1,2, ... .
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We denote by AN, the set of all absolute and normalized norms on
cop. For ¢ € ¥, we define

11y s zmse )l

DN CCTR

i=1

if (z1,-+- 2n,-..) #(0,...,0)
0 if (z1,+.+52n,...)=1(0,...,0)

for every (21,... ,2n,...) € Coo-

It is obvious that ¥(s) = [[(1— 3207, sn,s1,82,... )], for s =
(sn)neNn € A<“. From Theorem 2.1 we obtain the following corollary.

Corollary 3.4. i) If ¢ € ¥y, then |||, € AN,,.
ii) For any ||-|| € AN, the function ¢ : A< — R, defined by ¥ (s) =

|(L = >, ny51,52,... )|, belongs to W, and ||(z1,...,2n,...)||
(215 s 2ny oo )y for every (z1,... , 2n,...) € coo-

For n = 1,2,..., we denote by P, the projection P, : CN — C»
defined by Py, (21,--- s 2Zny,---) = (21, -+ ,2n) for (21,... ,2n,...) € CN.
If ¢ € U, and (¢,)52 5 is its associated sequence, then for every z € cgo
the sequence (|| P,(2)l],, )az2 is non-decreasing.

Definition 3.5. Let ¢ € U,,.

i) We define ¢y to be the completion of (cgo, ||[|,;). The extended
norm is denoted also by ||-[[ ;-

ii) We define £, o, = {z € CN : sup,, |1 Pn(2)lly, < +oo} equipped
with the norm ||z[|,, ., = sup,, ||Pa(z)]l,, for z € {y .

Using Lemma 2.2 (i), we obtain sup,, |2,| < [|2][,, o < 2207 |2n] for
every 2 = (Zn)nenN € £y, (the last sum may be infinite).

Proposition 3.6. {y . is a Banach space, for every € ¥,,.

Proof. Let (wn), be a Cauchy sequence in {y .. For every k
the sequence (Py(w,)), is a Cauchy sequence in the Banach space
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(Ck,||-||¢k), and let lim, Py(w,) = (vf,...,vF). Then vf = o} for
1 <i<kandl >k Wesetw = (v,...,vF ...) and we get
| Pr(wn) — Pr(w)]l,, — 0 for every k=2,3,....

For any € > 0 there exists an ng € N, such that [|w, — wp||, < ¢ for
every n,m > ng. Therefore, ||Py(wn) — Pi(wm)ll,, < ¢ forn,m > ng
and k > 2. Thus, ||Pr(wn) — Pe(w)||,, < e for every n > ng and k > 2.
From this we obtain w € £y o and ||w, —w|| — 0.

Proposition 3.7. Let ¢y € V.

i) £y is a closed subspace of y .

ii) The sequence (ep)neN is a monotone and unconditional basis of
ly.

iii) (én)nen is a boundedly complete basis of Ly if and only if Ly =
Ly oo

iv) If (en)nen is a shrinking basis of Ly, then £y o is isometric to
the second dual of Cy.

V) (én)nen s a shrinking and boundedly complete basis of £y, if and
only if Ly is reflexive.

Proof. (i), (ii) and (iii) are obvious from Definition 3.5. (iv) and (v)
follow from James’ theorems about unconditional bases and reflexivity
[7] (see also in [10]).

Examples. i) The spaces ¢, for 1 < p < oo, are typical examples
of £y spaces with corresponding functions 1,, 1 < p < co. For p = oo,
the space £y,  is identified to £, and its subspace £, is identified to
Co.

ii) Let p > 1 and w = (wp)nen € co \ ¢1, be such that 1 =
wy > wg > +-+ > w, > ---. The Lorentz sequence space d(w,p)
is the space d(w,p) = {2z = (Zn)neN : Yooy Wnzl < oo}, where
(2X)nen 1s a non-increasing rearrangement of (|z,|)nen, equipped
with the norm |z[|, , = (30 w2z )P, Since the restric-
tion of |||, ,) on coo belongs to AN, the function ¢(y ) (s) =
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H(]‘ o ZZOZI Sny81y82y. ¢ 380y )H(w@) for s = (Sn)neN € A<¥ be-
longs to W,,. The space £y, , is the Lorentz sequence space d(w, p).

iii) An Orlicz function is a continuous, convex and non-decreasing
function M : [0,00) — R such that M(0) = 0 and lim; o M(z) =
+00. To any Orlicz function M we associate the Orlicz sequence space
Uy = {z = (2n)nen : there exists ¢ > 0 such that > > | M(|z,|/t) <
oo} equipped with the norm ||z||,, = inf{t > 0 : Y 0> | M(|zs|/t) <
1} for 2 = (2n)nen € CN. Of particular interest is the sub-
space hpr of £y consisting of those z = (z,)nen € €y for which
Yoo M(|zn]/t) < oo for every t > 0. It is proved that the unit
vectors (en)nen form a symmetric basis of hps, and £y = hypy if and
only if limsup,_,, M(27)/M(t) < oo [10]. Let M be an Orlicz func-
tion with M (1) = 1. Since the restriction of ||-||,, on cgo belongs to
AN, the function ¢p(s) = [[(1 =307 SnyS1,52,-- -, Sn,---)|[,, for
s = (Sn)neN € A< belongs to U,,. It is easy to see that £y, oo = {m
and Cy,, = h-

There are also other classical sequence Banach spaces which are
spaces of this type. We can deduce plenty other examples of such
spaces from the examples in [8, 16, 17, 18], as well.

In order to define the dual function of ¢ € ¥, we need the following
lemma.

Lemma 3.8. Let ¢ € U, (Y,)neN be its associated sequence and ¢,

the dual function of 1y, forn =2,3,.... Then vy 1(s1,... ,80-1,0) =
Yi(s1,... ,8n—1) for every (s1,... ,8p-1) € Ap andn =2,3....
Proof. Let n > 2 and (s1,...,8,-1) € A,. Then we have
1/1:;4_1(51, cer 5y Sn—1, 0)
n n—1 n—1
_ sup (LT ta) (L= D0 ) — Doig tisi
(t1, tn)EAR1 Ynt1(ty, ... s tn)
n—1 n—1 n—1
> sup (L= ) (A= D0y si) — D icy tisi
(tl,...,tnfl,o)eAn+1 wn+1(t17"‘ 7tn—170)

~1 ~1 ~1
_ sup (1- Z?:l ti)(1— Z?:l 8i) — Z?:l tisi
(t1,...,tn_1)€An Qpn(tlﬂ“‘ 7t’n71)
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= 1/):;(51, e ,Sn_l).

Using property (Ap+1) of ¥,41, we obtain

¢;+1(517 ey 8n—1, 0)
(1_2:;1 ti)u_E:Z; si)— :;11 tisi

Yny1(te,... tn)

= sup
(t1yeestn)EARYL

(=37 4)/(—t) (A=D1 s) =D (8 /1—tn)ss

= (o iu)PeA » @1 stn))/(1—tn)

Tl
S S o DA CTA ) S D o D VAR
= ot )PéA » 1 ((t1/1=tn) e 5 (bn1/1=t5),0)

Tl

(172?:711 ti)“*ZE Si)*Z?:T tis;

Yty stn_1)

= sup
(t1yeeytn—1)EA,

= 1,/):;(81, - ,Snfl)

Using Lemma 3.1 and Lemma 3.8 we define the dual function of a
¥ € U, as follows.

Definition 3.9. Let ¢ € U,,. If (), )nen is the associated sequence
of Y € ¥, and 9 is the dual function of ¢, for n = 2,3, ..., the dual
function ¥ of 1 is defined to be the function with associated sequence

(Y7)nze:

From Proposition 2.4, we obtain the following generalized Hdélder
inequality.

Lemma 3.10. If ¢ € ¥,z = (2n)neN € ly,00 and w = (Wp)neN €
61/’*700’ th@n ZSLOZI |wnzn| S ||w‘

P*, 00 ||ZH1/;,OO

In order to see the relation between the spaces £y and fy+, we need
the following two lemmas.

Lemma 3.11. Let ¢y € U,. If (s1,...,5,.1) € UA,, then

Y*(815. 0y 8n-1) =SUP(¢y,..t,_1)E8A, (27;11 ti8;)/¢(t, ... tn 1), where
YA, is the boundary of A,,.
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Proof. Let (S1y...,8n-1) € ¥A,. Since 9A,, = {(t1,... ,tn—1) €
[0,1]" 1 Z;:ll t; = 1} we get ¥*(s1,...,8n—1) > SUD(4,, .t 1)edA, X
(Z?;ll tis;)/¥(t1,... ,tn_1). Using property A; of ¢ we obtain

I/ (0 ) s

V(81,0 ySn_1) = sup ~
e (bt 1)€An Dty e tn1) /S0
i
—1 —1
- sup Do (/200 ti)s;
T (e tnon€A Pt/ (0T )t /(5 1)

2 0
-1
= sup —22;1 Lisi .
(trse stm_1)€9A, Y1y s tn—1)

Thus, $*(s1,. ., Sn-1) =SUp(, 4 eon, (g ti8i) /Pt .o tn1).

Lemma 3.12. Let ¢ € ¥,,. If (en)neN i a boundedly complete basis
of by~ and x* € €}, then w =Y " | wpe, € Ly, where w, = z*(e,)
for every n € N.

Proof. For n=1,2,... we put

. _{|wn|/wn if w, #0
"o ifw,=0"

For every n > 2, we obtain
n
> e
=1 P*
- |ws| |wn| -
2 n
(et k) - (5
<; ) Dyl 30w ; '

y “ =300 t)lwal/ Q07 wil)+1/ Q07 lwi) Y7 tlwgal
p Yn(t1,-stn_1)
(t1,ee tn—1)EA,

n—1 n—1
(=D t)lwn |+ "ty lwja
Yn(ty,-. tn—1)

= sup
(t1y0estn_1)EAR
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n—1 * n—1 *
ca(l-) "tz (el)ﬂLij1 cjtjr”(ej41)

1/)n(t17"' 7t7l—1)

== sup
(tlv--- 7tn71)€An

z*(cl(172;:1 t,‘), cati,...sCntn—1, 0,... )
Yn(ty,.. tn—1)

-1
|(1—E?:1 tis t1,e ytn—1) ||T/’n
Yr(tiye tn—1)

= sup
(t1y00e ytn—1)EAL

™

IN

(t1y00n ytn—1)EAL

= [lz"[I -

Since (ey,) is boundedly complete, we have w = >~ wie; € Ly-.

Proposition 3.13. For ¢ € ¥, (en)nen s a shrinking basis of £y
if and only if (en)nenN s a boundedly complete basis of ly-.

Proof. We suppose that (e,)nen is a shrinking basis of £;. Let

P
(Wn)neN € ly+,00 and M = sup,, [|Pp(w)]|,.. From Lemma 3.10, we
have 33071 [wnllzn] < [[w]lye o 12]ly o for every 2 = (zn)nen € £y o0
Let ¢ > 0 and z* € (} defined by z*(z) = Y07, [wn|z, for z =
Zn)neN € Ly. Since (e, )nen is a shrinking basis of £y, there exists an
(2n)ne ) € g b

ng € N such that Hx*“(ei)?in]H < ¢ for every n > ng. Using Lemma

3.11, for every n > m > ng, we obtain

- - . || |w,|
w;€; = w1>¢n <0,...,0, n yeney n
i:Zm < Z Zizm |w1‘ Zi:m ‘wl‘

Ph* i=m
— sup Z:lzm 2(:i—l|u}i|
(trse tno1)€9A, Ynltls- oo s tn_1)
o ac*(O,...,O,tm_l,...,tn_l,O,...)
= sup .
(t1eer stm1) €O AR Yty tho1)
Using properties (Asz), ... ,(Am—2) of ¥,, we obtain for every (¢i,...,

tnfl) € ’19An,
10, 0, b1yt 1,0,y

n—1
tom— tr
:( > t,->¢n Oyeve, 0y b
> t; > ti

i=m—1 i=m—1 i=m—1

< ltey. . s tnt).
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Thus, ||>7,, wie;]
Ly« and so, (ey) is a boundedly complete basis of £y-.

wr < Hm*h(ei)zm]H < &. Therefore, w:Z?il w;e; €

We suppose that (e,,)nen is a boundedly complete basis of £y, and
let z* € E:‘l,. We put w = (wp)neN, where w, = z*(e,) forn =1,2,....
From Lemma 3.12 we obtain w = ), w;e; € {y~. Let € > 0. There
exists an ng € N such that ||> ;> wie;]|,. < ¢ for every n > ng. Let

¢*
n > ng and z = (2;)ien € £y be such that z; = --- = z, = 0 and
lzlly < 1. Then |2*(2)| = | 252,11 ziwil < lllly |20 wiei]] . <

e. Thus, (en)nen is a shrinking basis of £y.

For ¢ € ¥, we put Ty : Ly~ — £}, defined by Ty (w)(2) = Y071 wnzn
for every w = (wn)nen € Ly and z = (zp)neN € £y. From Lemma 3.10
we obtain that T is a bounded operator and [Ty (w)|| < [wll,. for
every w € fy=.

Lemma 3.14. Let ¢ € ¥,,. Then || Ty(w)|| = ||Ty(|w|)|| for every
w e €¢*_

Proof. Let w = (Wn)nen € {y-. For every ¢ > 0 there exists
z = (2n)nen € {fy with ||z]] < 1 such that ||Ty(w)|| < |Ty(w)(2)| +
e = |2y wnzal + & < 300 |wnlen] + & = (Ty(jw])(l2]) + & <
1Ty (Jw[)|| + €. Therefore, ||y (w)[| < | Ty (Jw])]]-

Forn=1,2,..., we put

. { |wn|/wyn,  if w, #0
" lo if w, = 0.
For every ¢ > 0 there exists a 2 = (2, )nen € £y with [|2]| < 1 such that
I T (lwDll < 1Ty (lwl)(2)|+e = | 2521 [wnlzal+e = | 2252, enwnza|+e.
We put 2’ = (2],)nenN, where 2!, = ¢z, for n € N. Since [z, < |z,],
we have [[2/| < [lz]] < 1. So [Ty(wl)ll < [X 72 wazp| +6 =
|Ty(w) ()] + & < [Ty (w)]| +&. Therefore, [Ty ([w|)]| < [Ty (w)]-
By the following theorem we characterized the dual space of £, when
(en)nen) is a shrinking basis of £y.

Theorem 3.15. Let ¢ € ¥,,.

i) Ty is an isometry and Ty (Cy+) = [(€})nen], where (e})nen is the
sequence of biorthogonal functionals of (ep)neN-
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ii) If (en) is a shrinking basis of {y, then the dual space of £y is
isometric to Ly-.

Proof. i) Let w = (wp,)neN € €y+ and € > 0. Then there exists an
n € N such that

[w]lye < (1 +€)[[Pa(w)lly.

n

—(1+5)(Z|wi|>¢2 n|w2| yeens n\wn\
i=1 =1

=<1+e>(i221|wi|)( up

tlv--- 7tn71)EAn

wn(th'" 7t"—1)
n—1 n—1
(1 - th> wi| + Y t5|wjpa]
i=1 j=1
=(1+¢) sup ‘ .
(tl,...,tnfl)eAn wn(t].?"' 7tn71)
For (t1,...,tn—1) € A, we put z; =1 — Z;:llti, 22 = tlyeen y2n =

tn—1 and zp, = 0 for every m > n. Then z = (zn)nen € ¢y and
121y = IPn()lly, = %a(trs-- . +tn-1) < L. Therefore

pr < (L+¢) sup [T (lw)(2)]
lzii<r l12ly

] < @+ 7wl

So, from Lemma 3.14 we obtain ||w|
[[wl[ -

It is clear that Ty (e,) = e}, for every n € N. Therefore, Ty, (£y+) =
[(e7)nen]-

ii) Because (ep)nen is a shrinking basis of £, the sequence of
biorthogonal functionals (e}),cn is a basis of £%, and the result follows
from (i).

pe < 1Ty (w)l|. Thus, [|Ty (w)l] =
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For ¢ € ¥, it is clear that dy,(c) = infren d(cn ||, )(€) for every
0 <e < 2. It is proved in [18] that for ¢) € ¥,, the space (C", ||-[[,) is
strictly convex and, because it has finite dimension, uniformly convex
if and only if 4 is strictly convex. This result is not true in the infinite
case. As the next example shows, there exists a ¢ € ¥, which is strictly
convex, and the space £, does not admit an equivalent uniformly convex
norm.

Example. Let v : A<¥ — R, such that ¢(s) = 1/v2[1 + (1 —
Yooy 8i)” + sy s3] for s = (si) € A<,

Let n > 2. Then, ¢, (s) = 1/v2[1+ (1= 0 )2+ 30 s2]1/2 for
$=(81,---,8n-1) € Ap.

It is easy to see that 1), is continuous and satisfies the properties
Ay, ..., A,. We will prove that 1), is strictly convex.

Let s = (s1,.+.,8n-1), w = (w1,... ,w,_1) be two non collinear
elements of A,,. Then, using the Minkowski inequality, we obtain

stw)_ 1
d}"( 2 >_2ﬁ
1

4+ (2 - E(si + wi)>2 + nf(s,- + wi)?] i

i=1

N

1
S 6n(5) + ¥n(w)].

Therefore, 1, is strictly convex for every n = 2,.... Thus, ¢y € ¥,
and ® is strictly convex.
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Let z = (2n)nen € £y and z # 0. Then,

n

9 2
e~ () g 58
1Py, = ( 210 ol s o S e

() o (- )

%[<§|zi|>2+§|zi|2].

From the above we obtain 1/v/2||z||; < 2]l < [l2]l;- Thus, [|-[|, is
equivalent to ||-[|;.

Therefore, the space ¢y is not reflexive and so, this space does not
admit an equivalent uniformly convex norm.

Question: Is it possible to characterize strict convexity, uniform con-
vexity, smoothness, uniform smoothness and uniform non-squareness of
a space £y in terms of the function ?

Definition 3.16. Let v € ¥,. For a sequence of Banach spaces
(Xn)nen we define the 9-direct sum of (X,)nen to be the space

<i@Xn>¢ = {w = (ZTn)neN € 1°_°[ Xn: (|znl) pen € gw}

n=1

equipped with the norm ||z|| = ||(||xn||)n€N||¢

As in Proposition 3.6, we can prove that the w-direct sum of a
sequence of Banach spaces is a Banach space for every ¥ € ¥,.

Fork=2,3,...,let Qr : (X0, B X))y — (XF_, B X,.)y, defined
by Qr(z1,... ,&n,...) = (z1,...,2k). It is clear that ||Qk(x)| <
1Qk+1(z)|| for k = 2,3,... and |jz|| = sup, [|Qk(z)l[. If (en)nen
is a boundedly complete basis of ¢, and = € [[,., X, such that
supy, [|Qx(@)[| < oo, then z € (32771 B Xn)y-

Examples of -direct sums are the f,-direct sum of a sequence of
Banach spaces for ¢ = 9, 1 < p < oo, the Lorenz direct sum of a
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sequence of Banach spaces for ¢ = 9, ;) and the Orlicz direct sum
of a sequence of Banach spaces for ¥y = v,s. Such types of spaces
are considered also in interpolation theory [2, 20]. For ¢ € ¥, and
a sequence of Banach spaces X = (X,,)nen we denote by Ty, x the
function

o (S@v), - [(Son)

,d) *
defined by

(Tp.x(2)(@) = ) @) (an)

for every z = (28)nen € (o D X2y and z = (Tn)nenw €
> @D X,)yp. From Lemma 3.10 we obtain Y., |zk(z,)| <
Sig lzslllzall < 2l [Jz]] and so, [|Ty x(2)|| < ||z]| for every 2z €

(2211 @XZ)W-

Theorem 3.17. Let ¢ € ¥, and X = (X, )nen be a sequence of
Banach spaces. If (en)nen is a shrinking basis of Ly, then the operator
Ty, x is an isometry of (3 orr, @ X)y- onto [(> oo, D Xn)yl*

Proof. Let z = (z})nen € (Xpe, @D X;)y- and € > 0. For every n
there exists an z,, € X,, with ||, || = 1 such that ||z}|| < (14¢)zk(zn)-
Then, for every n € N we have

(e N (a3l [l >

n
_ (anzn)
i=1
2]

—1
(1_ " ti) n

i=1 .
X sup =1
(t1yee stn—1)EAL

n—1 *
25 tallaiall

z*
i

+ ==t
i Ei:l

"/’n(tlv--- 7tn71)

‘w*

A= 0y tll=f 307 |2 |

P (t1,e tn—1)

= sup
(1, stn—1)EAL
w1 (=)0 @)+t (b 120)

<(l+e¢ sup =
( )(t1,...,tn_1) Y (t1,-- tn—1)
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TNA=S""""t:)z1, t122,0e tno12n,0,...
=(1+¢) sup = Zi:iﬁ (ifl R )
(tly---ytn—l)eAn " e

For (t1,...,tp—1) € A, we put 2’ = ((1 _2?2—11 ti)x1, t1a, .. . ty—1%n,
0,...). Since ||z;|| = Lfori=1,...,n, we have ||2'|| = (t1,. - ., tn-1)-
Therefore, [|Qn(2)]| < (1 + ¢)||T(2)]]- So, ||lz|| < |IT(2)||. Thus,
12l = 1T'(2)]|-

Let * € (3.2, @ X»)y]*. For every n € N we put 2% : X,, - R
defined by z (z) = 2*(0,...,0,2,0...) for z € X,,, and z = (z})neN-.
Let w = (||z},[|)nen. As above, we obtain || P, (w)l[,. < [lz*|| for every

n € N. So, w € ly-, because (e, )nen is a boundedly complete basis of
this space. Thus, z € (3_ ., @ X})y~. It is easy to see that T'(z) = z*.

Corollary 3.18. Let ¢p € VU,. If (en)nen i a shrinking and
boundedly complete basis of Ly, then the 1-direct sum of a sequence
of reflexive Banach spaces is a reflexive Banach space.

Proof. Let X = (X, )nen be a sequence of reflexive Banach spaces
and X = (3.7, @ X,,)y. Using Theorem 3.17 and Proposition 3.13,
we get that the operator (Tzﬁv)* o Ty« x+ is an isometry of X onto
X**, where (Tzﬁv)* is the dual operator of de} It is easy to see that
(Tlﬁy)*(Tw*’X*(ac)) =z for every x € X. So, X is reflexive.

4. Uniform convexity and smoothness of i-direct sums.
Below we estimate the modulus of convexity of a finite i-direct sum.
For this we need the following lemma.

Lemma 4.1. Letn > 2, ¢ € ¥, X = {Xy,...,X,} be a finite
family of Banach spaces, and let X be the 1 -direct sum of this family.
Ife(X) <e<2andz = (x1,...,2n), ¥y = (Y1,--- ,Yn) € Bx, such
that ||x;|| = |lys|| fori=1,...,n and ||z — y|| > ¢, then

e+ o] < 2<1—6cn<52606x<8+280>>>

for every e(X) < gy < e.
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Proof. Let ¢(X) < g9 < ¢ < 2 and z = (z1,...,%n), Yy =
(Y1,--- ,Un) € Bx, such that ||z;|| = [|y;|| for every i = 1,...,n and
|z —y|| > e. Weput e; = (e+¢)/2 and

Mlz{lgign:mi#OandMZq}

(e
and
M2 = {]., ,n}\Ml.

Then, we have ||z; + y;|| < 2||@;|| (1 — dx(e1)) for i € M.

We put z = (||z1]],--., [|znl]), w = (w1,...,wy), v = (v1,..., V),
u=(ut,...,u,) € (C",[[|,), where
[ —26x(e1)] ||| ifie My
w; = )
IEA] if i € My
{0 ifi e My
U; = )
{||wi_yi| if i € My
" lo if i € My
fore=1,...,n.
Since ||z; +yil| < ||| + w; for ¢ = 1,...,n, we obtain from
Lemma 2.3
(4.1) e +yll < llz+wll,, -

Using also Lemma 2.3, we get
e <lle =yl <llev+ully, <erllvlly +llully, <er+2[z—wvll,.

Therefore, ||z —vl|,, > (¢ —€1)/2. Since z —w = 26x(e1)(z — v), we
have ||z —wl[, > dx(e1)(e —€1). Thus,

(4.2) |lz+wll, <2(1 = dcn ((¢ —€1)dx(e1)))

-1 (520 (552)))
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From (4.1) and (4.2) we get
ool <2(1 -0 (500 (S52))).

Theorem 4.2. Let ¢ be a strictly convex function in V,, and let
X, X be as in Lemma 4.1. If e(X) < e < 2, then

. 3 — 3¢ 3¢ + 5e € €
(SX(E)Zmln{éCn( 3 06)(( 3 0>> _§7éc’n<;>}

for every e(X) < g9 <e and 7 > ¢/(26cn((g — €0)/46x ((g + 3£0)/4)))-

Proof. Let ¢(X) < g9 < ¢ < 2 and z = (z1,...,%n), Yy =
(y15... ,Yn) € Bx, with ||z — y|| > e.
Fori=1,... ,n we put
Lo il /lyillys i ys # 0
Let 2= (21, .-, 24) € X and w=(la .. [all), v=Cluall- -, 3]}

€ C". From Lemma 2.3 we obtain [z +y[| < [lw+v||,. Since ¢
is strictly convex, (C",|-[|,) is uniformly convex [18]. Therefore,
dcn((e —€0)/46x((e + 320)/4)) > 0. We put 79 = ¢/(20cn((e —€0)/
4(53{((&'4‘350)/4)))

Let 7 > 19. We distinguish two cases.

Case 1. ||w —vl[,, > /7. In this case we obtain
€
o+ vl < o+l <2(1-60n (£)).

Case 2. |w—vl, < /7. It is clear that ||y —z[ = [lw —v][,.
Therefore,

€
le =zl > e =yl =lly =2l 2 e =lly =zl 2 e = lw—-v]l, > e~
J
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Since T > 7, using inequality 2.1, we obtain

€ € €—¢€p €+ 3¢p E—€p
- < — = 26cn < .
T<T0 bc < 4 6X< 4 >>_ 4

Thus, ||z — z|| > (3¢ + £9)/4. So, from Lemma 4.1 we have

o+ 2I| < 2<1 —5Cn<3€;3505;(<352550>)>.

Since [lz + y|| < [l + 2| + w — ol], we get

3¢ — 3¢e9 3¢ + 5eg €
<2(1- n —— .

It is clear that

3¢ — 3¢9 3¢ + 5eg E—¢€p €+ 3¢9 €
n > n —.

The result follows from the two cases.

Theorem 4.2 leads to the following results.

Corollary 4.3. Let ¢, X, X be as in Theorem 4.2. Then,

i) dx(e) > dcn(dcn((e —e0)/40x((e + 3e0)/4))) for every e(X) <
go < e <2, and

ii) e(X) = e(X).

Proof. i) We put 7 = ¢/(dcn((e —€0)/40x((e + 3e0)/4))). It is
clear that 7 > ¢/(dcn((3¢ — 3e0)/80x((3¢ + 5ey)/8))). Thus, using
inequality 2.1 we obtain

€ € 3e — 3¢ep 3e + 5eg €
nl — ) < =< n - —.
d¢ (r> S g, St < 8 5"( 8 )) 27

Therefore, the result follows from Theorem 4.2.

ii) It is clear that e(X) < £(X). Since the space C™ is uniformly
convex, the inequality e(X) > ¢(X) follows from (i).
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In [5, 8] it was proved that if ¢ is strictly convex then the -direct of
a finite family of uniformly convex Banach spaces is uniformly convex,
but these proofs do not give an estimate of the modulus of convexity.
Using Corollary 4.3 this result is improved by giving an estimate of the
modulus of convexity. Also, in [9] it was proved that the t-direct sum
of two non-square Banach spaces is non-square if and only if ¢ #
and 9 # ¥ and the question about finite t-direct sums was posed.
Using Corollary 4.3 we obtain a result about the non-squareness of
finite ¢-direct sums.

Corollary 4.4. Let v be a strictly convex function in ¥,,.

i) The -direct sum X of a finite family of uniformly convex Banach
spaces X 1is uniformly convex and §x(g) > dan(dcn((e/4)0x(e/4))) for
every 0 < e < 2.

ii) The v-direct sum of a finite family of uniformly non-square
Banach spaces is uniformly non-square.

Using the estimate of Theorem 4.2, we obtain an estimate of modulus
of convexity of the i-direct sums of a sequence of Banach spaces.

Theorem 4.5. Let ¢ € ¥, be such that the space £y is uniformly
convez, and let X be the W-direct sum of a sequence of Banach spaces
X = (Xn)nen- If e(X) <e <2, then

. 3 — 3¢ 3¢ + 5e € €
5X(s)2mm{ae¢< . °5X( s °>>—§,%<;>}

for every e(X) < eo < e and 7 > ¢/(20s,,((¢ — €0)/40x((€ + 3c0)/4))).

Proof. Let e(X) < &g <& <2,7 >¢/(20¢,((c — €0)/40x (€ + 3c0) /4))
and z,y € Bx, such that ||z —y|| > €. Then, there exists an
no € N such that |Qn,(z) — Qn(y)|| > € for every n > ng. Let
n > ng. We put &, = (X;)i,. Since dx,(e) > dx(e) for ev-
ery 0 < € < 2 and £(&,) < e(X), we have e(X,) < g and
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T >¢/(20cn((e — €0) /40, ((e + 320)/4))). From Theorem 4.2 we get

1@n(z) + Qn(y)|l
< 2(1 ' min {5cn (35 ;3605% (35—;550>>

§2(1—min{6@¢<35_83605X<3€;5€0>>

€ €
=5 =
= (5)})
for every n > ng. Thus,

. 3¢ — 3¢ 3¢ + 5eg € €
o cmfa (S5 (52) £ (2)

From Theorem 4.5 we obtain the next corollary.

Corollary 4.6. Let ¢, X, X be as in Theorem 4.5. Then,

i) éx(e) > 5g¢(5g¢((8—80)/46,\_»((8—}—380)/4))) for every £(X) <
go < e <2, and

ii) e(X) = e(X).

As in [6], using Proposition 3.7 it can be proved that the 1 direct
sum of a sequence (X, )neN is strictly convex (respectively uniformly
convex, locally uniformly convex, uniformly convex in every direction)
if and only if £y and X,, n =1,2,... are strictly convex (respectively
uniformly convex, locally uniformly convex, uniformly convex in every
direction). Using Corollary 4.6 the following results concerning the
convexity and smoothness of ¥-directs sums of Banach space sequences,
are proved.

Corollary 4.7. Let ¢ € ¥, be such that the space £y ts uniformly
CONveL.

i) The -direct sum X of a uniformly convex sequence of Banach
spaces X is uniformly conver and dx(g) > de,,(d¢,((c/4)0x(/4))) for
every 0 <e < 2.
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il) The -direct sum of a uniformly non-square sequence of Banach
spaces is uniformly non-square.

Corollary 4.8. Let ¢ € ¥, be such that the space £y ts uniformly
smooth. Then the -direct sum of a uniformly smooth sequence of
Banach spaces is uniformly smooth.

Proof. Because a uniformly smooth space is reflexive, from Proposi-
tion 3.7 we obtain that (en),en is a shrinking and boundedly complete
basis of £,,. Using Proposition 2.7, Theorem 3.17 and Corollary 4.7, we
obtain the result.

Using Corollaries 4.7 and 4.8 we obtain the following results, which
concern convexity and smoothness properties of £,, Lorentz and Orlicz
direct sums of Banach spaces.

Corollary 4.9. Let 1 < p < oo.

i) The ¢,-direct sum X of a uniformly convezr sequence of Banach
spaces X is uniformly convex and 0x(g) > de,(0¢,((e/4)0x(c/4))) for
every 0 <e < 2.

ii) The {p-direct sum of a uniformly smooth sequence of Banach
spaces is uniformly smooth.

iii) The £,-direct sum of a uniformly non-square sequence of Banach
spaces s uniformly non-square.

Corollary 4.10. Let 1 < p < 00 and w = (W )neN € o \ {1, with
l=w 2wy >--->0.

I) If the Lorentz space d(w,p) is uniformly convez, then
a) the Yy, py-direct sum X of a uniformly conver sequence of Banach
spaces X is uniformly convex and 6x (€) > Sa(w,p) (Oa(w,p)(€/4)0x (£/4))
for every 0 < e <2, and

b) the Yy p)-direct sum of a uniformly non-square sequence of Banach
spaces is uniformly non-square.

IT) If the Lorentz space d(w,p) is uniformly smooth, then the 1y, p)-
direct sum of a uniformly smooth sequence of Banach spaces is uni-
formly smooth.
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Corollary 4.11. Let M be an Orlicz function with M (1) = 1.
I) If hps is uniformly convez, then

a) the Ypr-direct sum X of a uniformly conver sequence of Banach
spaces X is uniformly convex and dx (&) > d¢,,(0¢,,((e/4)0x(g/4))) for
every 0 <e <2, and

b) the Ypr-direct sum of a uniformly non-square sequence of Banach
spaces is uniformly non-square.

IT) If hypy is uniformly smooth, then the 1y -direct sum of a uniformly
smooth sequence of Banach spaces is uniformly smooth.

Remark. As the referee of this paper pointed out Mitani and Saito
[13] introduced spaces ¢y and {y o in a different way. In that paper
the norm structure of these spaces is studied. The results of Section 3
of the present paper complete this structure using the unconditional
basis (en)nen of the space £y. In [13] there is no mention of this
basis. Using this basis Proposition 2.5 in [13] is clear. In [13] a
function ¢ € ¥, is called regular if £, = £y . From Proposition 3.7
of the present paper we obtain that ¢ is regular if and only if the
basis (en)nen Of £y is boundedly complete. Also, Proposition 2.8
in [13] is related to Theorem 3.15 of the present paper. Regarding
the geometrical properties of these spaces, properties concerning strict
convexity and uniform convexity were proved in [13] and the problems
of characterizing strict convexity (respectively uniform convexity) of
Ly (respectively ¢y o) in terms of ¢ were posed. In [13] there is no
reference to i-direct sums of Banach spaces.

Acknowledgments. I am very grateful to the referee for some very
interesting suggestions and comments which improved the final version
of this paper.
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