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ELLIPTICAL RANGE THEOREMS FOR
GENERALIZED NUMERICAL RANGES
OF QUADRATIC OPERATORS

CHI-KWONG LI, YIU-TUNG POON AND NUNG-SING SZE

ABSTRACT. The classical numerical range of a quadratic
operator is an elliptical disk. This result is extended to
different kinds of generalized numerical ranges. In particular,
it is shown that for a given quadratic operator, the rank-k
numerical range, the essential numerical range, and the g-
numerical range are elliptical disks; the c-numerical range is
a sum of elliptical disks, and the Davis-Wielandt shell is an
ellipsoid with or without interior.

1. Introduction. Let B(#) be the algebra of bounded linear
operators acting on the Hilbert space H. We identify B(H) with M, if
‘H has dimension n. The numerical range of A € B(H) is defined by

W(A) = {(Az,z) : z € H,(z,z) = 1};

see [9, 10]. The numerical range is useful in studying matrices and
operators. One of the basic properties of the numerical range is that
W (A) is always convex; for example, see [9]. In particular, if A € M,
has eigenvalues a; and as, then W(A) is an elliptical disk with a; and
as as foci and /tr (A*A4) — |a1|? — |az|? as the length of minor axis; for
example, see [11]. This is known as the elliptical range theorem from
which one can deduce the convexity of the numerical range of a general
operator.

Motivated by theoretical study and applications, there have been
many generalizations of the numerical range such as the k-numerical
range, the g-numerical range, the c-numerical range, the essential
numerical range, and the Davis-Wielandt shell; for example, see [2,

2010 AMS Mathematics subject classification. Primary 47A12, 15A60.
Keywords and phrases. Quadratic operators, elliptical ranges, generalized nu-

merical ranges, Davis-Wielandt shells.
The first author’s research was supported by a USA NSF grant and an HK RCG

grant.
Received by the editors on November 14, 2007, and in revised form on Septem-

ber 2, 2008.
DOI:10.1216/RMJ-2011-41-3-813 Copyright (©2011 Rocky Mountain Mathematics Consortium

813



814 CHI-KWONG LI, YIU-TUNG POON AND NUNG-SING SZE

7-10, 12, 16, 22] and their references. Recently, researchers have
studied the higher rank numerical range in connection to quantum
error correction; see [4-6, 13, 15] and Section 2. Each of these
generalizations encodes certain specific information of the operator
that leads to interesting applications. To advance the study of these
generalized numerical ranges, it is useful to have concrete descriptions
of the numerical ranges of certain operators. In most cases, it is
relatively easy to solve the problem for self-adjoint or normal operators.
The task is more challenging for general operators.

A non-scalar operator A € B(H) is a quadratic operator if there are
a,b € C such that (A—al)(A—bI) = 0. This class of operators includes
idempotent operators and square-zero operators. The following result
on quadratic operators is known; e.g., see [21].

Theorem 1.1. Let A € B(H) be a non-scalar quadratic operator
satisfying (A — aI)(B — bI) = 0 with a,b € C. Then H has a
decomposition Hy1 © Hi © Ha such that A has an operator matriz of
the form

al, P
|: 0 bIr:| @'YIS,

where v € {a,b}, dimH; = r, dimHs = s, and P : Hy — H; is a
positive semi-definite operator, i.e., (Px,z) > 0 for all x € H;, with the
additional condition that (Pxz,x) # 0 for all nonzero x € Hy if a = b.
The numerical range W (A) is an elliptical disk with foci a,b and minor
azis of length || P|| with all or none of the boundary points depending
on whether there is a unit vector x € Hy such that ||Pz|| = ||P]|.

Note that in the above discussion of P, we have identified the
subspaces H1 ®@ 0@ 0 and 0 ® H; ® 0 with H;.

The shapes of different kinds of generalized numerical ranges of
quadratic operators were studied by researchers. For example, the k-
numerical range of a quadratic operator was described as the union of
(infinitely many) circular disks in [3]; the essential numerical range of
a quadratic operator was described in terms of the essential norm of a
related operator, and some partial results on the c-numerical range of
a quadratic operator were obtained in [19].
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In this paper, we give explicit descriptions of different kinds of gen-
eralized numerical ranges of quadratic operators including the rank-k
numerical range, the c-numerical range, the g-numerical range, the es-
sential numerical range, and the Davis-Wielandt shell; see the defini-
tions in Sections 2—4. In particular, we show that these generalized
numerical ranges of quadratic operators are elliptical disks, the sum of
elliptical disks, or ellipsoids with or without the interior. Our results
cover and improve those of other researchers. One can readily use our
results to construct the above generalized numerical ranges analytically
or numerically.

For S C C, we will use int (S), cl(S) and conv (S) to denote
the interior, the closure and the convex hull of S, respectively. For
A € B(H), let N(A) denote the null space of A. Let V be a closed
subspace of ‘H and @ the embedding of V into H. Then B = Q*AQ
is the compression of A onto V. More generally, A has a compression

B if A has an operator matrix {If :} with respect to an orthonormal

basis; alternatively, there is a closed subspace V of H and X : V — H
such that X*X = I, and X*AX = B. Note that, in this case, X (V)
is closed and X*AX is the compression of A on X (V).

2. Rank-%£ numerical ranges and essential numerical ranges.
For a positive integer k, define the rank-k numerical range of A € B(H)
by

A(A)={ e C:PAP = )P

for some rank-k orthogonal projection P}.
This generalized numerical range is motivated by the study of quantum

error correction; see [4, 5, 6].

To describe some basic results of Ag(A), we need the following
notation. Let H € B(H) be a self-adjoint operator. If dim#H = n,
denote by A\ (H) > --- > A\, (H) the eigenvalues of H. If H is infinite
dimensional, define

Am(H) =sup{ A\, (X*"HX) : X" X = I, }.
It is known (see [18]) and not hard to verify that A,,(H) of an infinite
dimensional operator H can be determined as follows. Let

o.(A)=n{c(A+ F): F € B(H) has finite rank}
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be the essential spectrum of A € B(H), and let
Ao (H) =supo.(H),
which also equals the supremum of the set
o(H)\{p € C: H—plI has a non-trivial finite dimensional null space}.

Then S = o(H) N (Aeo(H), o) has only isolated points, and we can
arrange the elements in descending order, say, A\; > A2 > ---, counting
multiplicities, i.e., each element repeats according to the dimension
of its eigenspace. If S is infinite, then A\;(H) = A; for each positive
integer j. If S has m elements, then A\;(H) = A; for j =1,... ,m, and
Aj(H) = Ao (H) for j > m.

Let

Q(A) = [] {reC:Re(e ) <\ (Re(e€A))},
£€[0,27)

where Re (B) = (B + B*)/2 is the real part of B. It was shown in [14]
that
int (Qx(A4)) C Ak(A) C Qx(A) = cl (Ax(A4)).

In particular, Ag(A) = Qr(A) if A € M,,; see also [15].

The rank-k numerical range of a quadratic operator can be an empty
set, a singleton, a line segment or an elliptical disk with all or none of
its boundary. The following theorem gives the precise description of
the set using Theorem 1.1.

Theorem 2.1. Suppose A € B(H) is a quadratic operator with
operator matriz in the form described in Theorem 1.1 and k is a positive
integer not larger than dim H.

(a) If r + s < k, then Ap(A) = @.

(b) If r <k <7 +s, then Ax(A) = {v}.

(c) Suppose k < r. Then Ak(A) = € or Ap(A) = int (&), where
E is the closed elliptical disk with foci a,b and minor azxis of length
A (P); the equality Ar(A) = € holds if and only if P : Hy — Hy has a
compression diag (p1, ... ,pr) with py > -+ > pr, = Mg (P).
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Remark 2.2. In (c) of Theorem 2.1, it is not hard to show that another
equivalent condition for Ag(A) = £ is that

P :H,; — H; has a compression diag (A1 (P), ..., A\x(P)),

and therefore A;(A) is an elliptical disk with foci a, b and minor axis of
length A\p(P) for any £ € {1,... ,k}. Also if Ap(P) = 0, then £ becomes
the line segment joining a and b, i.e., £ = conv {a,b}. In this case,
Ak (A) equals conv {a, b}.

The following corollary is immediate.

Corollary 2.3. Suppose A € B(H) satisfies (A — al)? = 0. Then
Ar(A) is an empty set, a singleton {a}, an open circular disk or a
closed circular disk centered at a.

We need two lemmas to prove Theorem 2.1. First of all, by the
discussion after the definition of A,,(H) for a self-adjoint operator
H € B(H), we have the following observation.

Lemma 2.4. Suppose P is a positive semidefinite operator in B(H1)
with dim (H1) > k. For any € > 0, there exist p1,... ,pk € [0,00) with
Aj(P)—e <p;j < Xj(P) forj=1,...,k, such that P has a compression
of the form diag (p1,... ,Pk)-

Proof. We prove by induction on k. For k = 1, the result follows from
definition. Suppose we have a (k— 1)-dimensional subspace V; and X; :
V1 — H1 such that Xle = Iyl and )\J(P) —e< )\](XTPXl) < )\J(P)
forj =1,...,k—1. Choose a k-dimensional subspace V, and X5 : Vo —
‘H; such that X3 X5 = I, and A\, (P) —e < A\ (X3 PX2) < \g(P). Let
V = X;(V1) + X2(V2) and P the compression of P on V. Then

Ai(P)—e < Aj(P) < Aj(P) for j=1,... k.

Therefore, the result is satisfied by taking the compression of P to the
k-dimensional subspace spanned by the eigenvectors of P corresponding
to A;(P), 1 <j<k. i
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Lemma 2.5. Let A € B(H) be a quadratic operator having the form
described in Theorem 1.1 with the additional assumption that r = oo.
Suppose V; is a k-dimensional subspace of H. Then there is a (4k+£)-
dimensional subspace Va of H containing Vi with £ = min{s, k} such
that the compression of A on Vs has the form

aIZk Pl
|: 0 bl 697-[@7

where P' = diag (p1,... ,p2r) is a compression of P, with py > --- >
por and p; < A(P) for 1 <i < 2k.

Proof. Suppose A has the form described in Theorem 1.1, with respect
to the decomposition H = H; ® H1 ® Hz and dimH; = r = co. Let
K1 and K5 be k-dimensional subspaces of H1 such that 1 & 0® 0 and
0@ K2 @ 0 contain the orthogonal projections of V; on H1 & 0@ 0 and
0P Hi @ 0, respectively. Also let K3 be a ¢-dimensional subspace of
Ho, with £ = min{s, k}, such that 0 ® 0 ® K3 contains the orthogonal
projection of V; on 0 ® 0 @ Ho. Clearly, K1 & K3 ® K3 contains V.
Take a 2k-dimensional subspace K of H; containing K; + Ko and
Vo = KD K P Ks. Then Vs, also contains V;. Let S : Vo < H be
the imbedding of Vs into H. Then S*AS has operator matrix of the
form

aly, X*PX
{ 0 bk ]EB"YI@,

where X is the imbedding of K into ;. Furthermore, we can find a
unitary operator U such that

U*X*PXU = diag (p1, ... ,p2k) With p1 > -+ > pay.

Let T = S(U®U® ;). Then T*T = Iyx 1o and T* AT has the asserted

form. O

Proof of Theorem 2.1. We first consider the finite dimensional
case. Let n = dimH = 2r + s. Assume that P has eigenvalues
81 > +++>8,>0. Then A is unitarily similar to

Al@A2EB"'EBAr@'YIs:
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where
a Sj

AJ_|:0 b:|, j:l,?,...,?’

We note that if @ = b, then s; # 0. Therefore, A; is never a
scalar matrix and Q2(4;) = @. Let £(a,b,£) denote the closed
elliptical disk with foci at @ and b and minor axis of length ¢. It
follows that £(a,b,41) C &E(a,b,l2) for £, < f2. It is known that
A (4;) = E(a,b, sj) e.g., see [11]. For £ € R, we have

M (Re (£44;)) = 3 [Re (¢(a+ b)) +/(Re (e€(a— 1)) + 2 |,

Aggm@%Aﬂ):%[Rqa%a+w)—VkRﬂaqa—m»2+@].

Hence,
A (Re (ei§A1)> > ... > )\ (Re (eifA,,))

> Re (e’f'y) > Ag (Re (eiEAT)) > > Ay (Re (e’fAl)).
Then \x(Re (¥ A)) equals

h( %Ak) ik <r,
Re (ef) ifr<k<r+s,
Ao (R (e A,_ k+1)> ifr+s<k<n.

Recall that p € Q(A) if and only if Re (e®x) < A, (Re (e A)) for all
€ €[0,27). We have

Ql(Ak) if k ST,
A(A) = (A) =< {7} ifr<k<r+s,
QZ(An7k+1) =g ifr+s<k<n.

Then the assertion holds when k& > r. If £ < r, then
Ar(A) = Q(A4) = Q1 (Ar) = M (4Ak) = E(a, b, si).

Thus, the result holds for the finite dimensional case.
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Next, suppose H is an infinite dimensional Hilbert space. If r < k,
then Qf(A) = {7} and hence Ax(A) = {y}.

Suppose r > k is finite or A\y(P) = 0. Then P : H; — H; has a
compression diag (A;(P),..., A\g(P)). Let

A=A @ - ® Ay € My,

with A; = [g )‘fép)} for j =1,...,k. Notice that Aisa compression
of A and

Ak (Re (ei§A>> =X (Re (elfg)) for all £ € [0, 2m).

Hence,

Ak(4) € Ax(4) € u(4) = Qn(4) = Ax(A).
Thus, Ay (A) = Ax(A) so that the result holds by the finite dimensional

result.

Suppose 7 is infinite and Ag(P) > 0. We prove that (c) holds with
€ = &(a,b,\p(P)). Let p be an interior point of £. Then there exists
a € > 0 such that p € E(a,b, \p(P) — ¢). By Lemma 2.4, there exist a
k-dimensional subspace V of H and X : V — H; satisfying X*X = I}
and

Me(X*PX) > Ae(P) —e.

_[xo X _ [al, X*PX
Let 2= | ¥ 2| ® L. Then we have 2°AZ = [ *3* ¥, P* | @41, and

1€ E(a,b, \e(P) — ) € Ap(Z*AZ) C Ay(A).

Conversely, suppose p € Ag(A). Then there exist a k-dimensional
subspace V; of H and X : V; — H such that X*X = Iy and
X*AX = uly,. By Lemma 2.5, there is a (4k+¢)-dimensional subspace
Vs, containing V; such that the compression of A on V, has operator
matrix

A, _ |:a12k, Pl

0 bI%] ® Iy € Mage,

where P’ = diag(p1,...,pax) is a 2k-dimensional compression of P,
with p; > -+ > pog and p; < N;(P) for 1 < i < 2k. By the result in
the finite dimensional case, we have

p€ Ap(A) = E(a, b, \o(P")) C E(a, b, \o(P)).
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So, we have shown that
int (£(a, b, \e(P))) € Ax(A4) C E(a,b, \u(P)).

Also, it follows from the above argument that if Ag(A) contains a
boundary point of &£(a,b, A\t(P)), then Ag(P) = A(P') = pg. In
this case, P has a k-dimensional compression diag(pi,...,px) with
pr = A\(P) and Ag(A) = E(a,b, Ax(P)). Conversely, it is clear that
if P has a k-dimensional compression of the above diagonal from,
Ai(A) contains all the boundary point of £(a,b, Ax(P)). The proof
is complete. O

For an infinite dimensional operator A, one can extend the definition
of rank-k numerical range to A (A) defined as the set of scalars A € C
such that PAP = AP for an infinite rank orthogonal projection P on
H, see [14, 17]. Evidently, As(A) consists of those A € C for which
there exists an infinite orthonormal set {z; € H : ¢ > 1} such that
(Ax;, ;) = 0; ;A for all ¢,7 > 1. It is shown in [14] that

Aso(A) = [ Ax(A) = {{W(A+ F): F € B(H) has a finite rank}.
E>1

Recall that A\ (H) is the supremum of the set
o(H)\{p € C: H—pl has a non-trivial finite dimensional null space}.

One can extend the definition of Qx(A4) to

Qoo(4) = [ W(4).

E>1

By Theorem 5.1 in [14] (see also [1, Theorem 4]),
Qoo(A) = ([l (W(A+ F)) : F € B(H) has a finite rank}

is the essential numerical range W.(A) of 4; Qoo(A) = cl (Ax(A4)) if
and only if Ay (A) is non-empty.

By Theorem 2.1, we have the following corollary, which gives a
complete description of A.(A) and the essential numerical range of
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a quadratic operator A. It turns out that each of them can be a
singleton, a line segment or an elliptical disk. As a result, we also get
the description of the essential numerical range of A € B(#) obtained
in [19, Theorem 2.2 and Corollary 2.3].

Corollary 2.6. Suppose A € B(H) is an infinite dimensional
quadratic operator with operator matriz in the form in Theorem 1.1.

(a) If r < 0o, then Ao (A) = {7}.

(d) Suppose r = oo, and & is the closed elliptical disk with focia,b and
minor azis of length Aoo (P). Then Ao (A) = € or Ao (A) = int (E); the
equality Ao (A) = & holds if and only if o(P) N (A (P),00) is infinite
or P — Ao (P)I has an infinite dimensional null space.

Consequently, W.(A) = Qu(A) = cl (A (A)) is a singleton, a line

segment or a closed elliptical disk.

3. Davis-Wielandt shells and g-numerical ranges. The Davis-
Wielandt shell of A is defined by

DW(A) = {((Ax, ), (Az, Az)) : 2 € H, (a,2) = 1};

see [7, 8, 22]. Evidently, the projection of the set DW (A) on the first
co-ordinate is W(A). So, DW(A) captures more information about the
operator A than W(A). For example, in the finite dimensional case,
normality of operators can be completely determined by the geometrical
shape of their Davis-Wielandt shells, namely, A € M, is normal if and
only if DW (A) is a polyhedron in C x R identified with R?>.

Suppose A € B(#H). It is known that if dimH > 3 then DW(A) is
always convex. If A = [g z] € M,, then one of the following holds.

(1) ¢ = 0 and DW(A) = conv {(a,|a|?), (b,]b[*)}, which will be a
singleton if a = b;

(2) ¢ # 0 and DW (A) is an ellipsoid centered at (a + b, |a|® + |b]* +
|c|?)/2, which is a sphere if a = b.

Suppose dim’H > 3. The Davis-Wielandt shell of a quadratic
operator can be a line segment, an ellipsoid with interior, or just

the interior of an ellipsoid. The following theorem gives a precise
description of the set.
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Theorem 3.1. Suppose dimH > 3 and A € B(H) is a quadratic
operator with operator matriz in the form in Theorem 1.1. Let Ay =

[g ”f“] and & be the closed ellipsoid conv DW (Ay). Then DW(A) =

E orint (£). The equality DW(A) = £ holds if and only if there is a
unit vector x € Hy such that |Pz| = || P||.

We start with the following lemma.

Lemma 3.2. Suppose C = [g Z] and D = [g Z] with ¢ > d. Then
conv DW (D) C conv DW (C).

h
(e, |e|* + |g|*) € DW (D). Since W (D) C W(C) and tr D = tr C, there
is a unitary V' € Mj such that V*CV = [;1 ];ll} Since X € Ms and

X' € M, are always unitarily similar, we may assume that |f1]| > |g1]-
Note that

Proof. Suppose U € M, is unitary and U*DU = [Z f} so that

eh — fig1 = det (C) = det (D) = eh — gf.
So, fig1 = fg. Also,
|1l +1g1* = [£1* = lg* =t (C"C) — tr (D*D) = ||* — |d|* > 0,

and hence |fi|> + |91/ > |f|? + |g|>. Then both |f| and |g| must lie
between the interval [|g1], |f1]]. It follows that the point (e, [e|* + |g|?)
is a convex combination of the two points in DW (C'), namely, (e, |e|> +
|g1]?) and (e, |e|? + | f1|?). Thus, DW (D) C conv DW (C). o

Proof of Theorem 3.1. Suppose r > 0 is finite. Then A is unitarily
similar to
A @ DA I,

with A; = [2%P) ] for j = 1,...,r and |P| = A(P) > -

Ar(P) > 0. Note that for any two operators X and Y we have

v

DW(X®Y) = conv (DW(X)UDW(Y)).

By Lemma 3.2, DW(A;) C convDW(A;) = £ forall j = 2,...,7.
Moreover, we have DW (vIs) C conv DW(A;) = €£.
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Thus, DW(A) = £. Clearly, there exists a unit vector z € H; such
that ||Pz| = || P]|.

Suppose r = oo. Without loss of generality, we may assume that
=b. Decompose H into Hl @ ’H2 such that A has an operator matrix

al, Q ) .
[ 0 bIHS] with @ =[P 0].
Suppose (p,v) = ((Az, z), || Az||?) € DW(A). Write = u1 + v and
Az = us + v for some ui,us € ’Hl and vy,vy € ’H2 Let S be ‘Ehe
subspace spanned by {ui,us,v1,v2}. Since Au; = au; and A*v; = by;
for j = 1,2, the compression of A onto S has the form

~ 4
A= [alp @ } € M,,,

0 b,
so that (Az,z) = (Az,z) and ||Az|| = ||Az|, where p and q are
the dimension of subspace spanned by {uj,us} and {vi,v2} respec-
tively. Notice that ||Q'|| < ||Q|l = ||P||. Hence, (u,v) € DW(A) C
conv DW (Ay).

On the other hand, for any € > 0, there are unit vectors z € 7/{\2 and
y € H; such that Qz = qy with ¢ > ||P|| — ¢. Using an orthonormal
basis with y 0,0 x € ’f-Zl &) ﬁg as the first two vectors, we see that
the operator matrix of A has the form

A Agg . _la q
|: 0 A22:| Wlth All— |:0 b:| .

Thus, DW (A1) € DW(A). By convexity, conv DW (A1;) C DW(A).

Letting € — 0, we see that DW (A) contains the interior of DW (Ay).
It is easy to determine the boundary behavior of DW (A). O

For ¢ € [0, 1], the g-numerical range of A is

Wo(A) = {(Az,y) : z,y € H, (z,2) = (y,y) = 1, (z,y) = ¢} .

There is a close connection between W, (A) and DW (A), namely,

W) = {au+ V1= v : (u, luf* +|v]*) € DW(A) | ;
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see [12, 20]. By Theorem 3.1, we have the following description of
W,4(A) for a quadratic operator A € B(#). In particular, W,(A) will
always be an open or closed elliptical disk, which may degenerate to a
line segment or a point.

Corollary 3.3. Use the notation in Theorem 3.1. For any q € [0, 1],
either Wy(A) = Wy(Ao) or Wy(A) = int (Wy(Ao)); the equality
W, (A) = W,(Ap) holds if and only if there is a unit vector © € Hi
such that | Px|| = || P||.

4. c-Numerical ranges. For ¢ = (¢1,...,c) with ¢ > -+ > ¢
and k < dimH, the c-numerical range of A is

k
W.(A) = { ch(A:vj,:cj> :{x1,... ,x} C H is an orthonormal set}.
j=1

If (e1,...,c6) = (1,...,1), then W,.(A) reduces to the k-numerical
range; see [9].

Suppose A = [g ‘;] € My and ¢ = (¢1,¢2). Then
We(A) = (1 — c2)W(A) + catr A = W ((c1 — c2)A + (catr A)I3)

is the elliptical disk with foci ac; + bcs and acs + bey, and minor axis
of length |(¢1 — ¢2)d|.

For a self-adjoint operator H € B(#), we have
cl (We(H)) = [m.(H), M(H)],

where
4 k—¢
mC(H) = inf{— ZCJ')\]'(—H) + ch,ijl)\j(H) :0<e < k}
j=1 j=1

and
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For a general operator A € B(H), we have

(1)  cl(W.(A)) = ﬂ {peC:Re (e"u) < M. (Re(e”A))}.

te[0,2m)

For a quadratic operator A € B(H), it is easy to determine
Am(Re (e"A)). Thus, it is not hard to determine W.(A) using (1).
It turns out that cl (W.(A)) can always be expressed as the sum of a
finite number of elliptical disks, namely,

cl (Wo(A)) = W(Ay) + -+ W(A) +d

for some constant d € C and A,,... ,A; € My with t < k.

To simplify the statement of our results, we will impose the following
assumption on the vector ¢ = (cy, ... ,ck):

(2) €1 > > ¢ with cpypq =0,
where
dmH =0c0o>k=2pordimH =k € {2p,2p+1}.

Note that it is easy to reduce the general case to the study of the special
vector ¢ with assumption (2). In the infinite dimensional case, this can

be achieved by adding zeros to the vector ¢ = (ci,... ,ck). In the finite
dimensional case, we can first assume that & = dim H by adding zeros
to the vector ¢, and then replace ¢ with ¢ = ¢ — ¢p41(1,...,1). One

can then use the fact that W.(A) = Wo(A) +cpy1tr A to determine the
shape of W,(A4). Note also that the advantage of this assumption on ¢
is that the supremum in the definition of M.(H) is always attained at
{=p.

Theorem 4.1. Let A € B(H) be a quadratic operator with operator
matriz in the form described in Theorem 1.1. Suppose ¢ = (c1,. .. ,ck)
satisfies (2) and t = min{p,r}. For j=1,...,t, let

(P
Bj = (¢j = ck—j+1) [g Jg )] + ck—jy1(a+b)I2.
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Then W.(A) = & or int (£), where
k—t
E=W(B)+ - +W(B)+7 > ¢
j=t+1

The equality W.(A) = & holds if and only if P : Hy — Hi has a
compression diag (A1(P), .., A\(P)).

Proof. Suppose dim’H = n is finite. So we have £ = n and r < p.
Notice that A is unitarily similar to

A1®"'@Ar®7lsa

where A; = g )\jgp)] for j =1,...,r. By the argument in the proof
of Theorem 2.1, we have
)\1 (Re (e’fAj)) lf] S r,
2 (Re (e 4)) = { Re(e®y) ifr<j<r+s,

A2 (Re (eiEAn_j+1)) ifr+s<j<n.

Under assumption (2) and k& = n, we have

n

M, (Re (e4)) =) c;); (Re(e4)).

j=1
On the other hand,
Re (eiy) Z ¢j = Z cjAj (Re (e’fA))
j=r+1 j=r+1
and
Z M(ijcnﬂurl) (Re (eigAj))
j=1

N Z [ejA1 (Re (€%4)) + enjiaa (Re (€ 4;))]

= Z Cj)\j (Re (elgA)) -+ Z cj)\j (Re (e’gA)) .

ji=1 j=n—r+1
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Thus, M, (Re (e A)) equals
Z M e jin) (Re (eigAJ')) +Re (eigv) Z G-
j=1 j=r+1
By (1) and the above equation, the two compact convex sets
We(A) and W(chcn)(Al) +oeet W(Crycnfr-{—l)(A"') + Z Cj
j=r+1
always share the same support line in each direction. Thus, the two

sets are the same. Since W/, Aj)=W(Bj) forj=1,...,r, it
follows that

Cn—r+j)(
We(A) =W(By) +---+W(B:)+7 > ¢
j=r+1

Next, suppose dim# is infinite. Suppose r is finite or \,(P) =
0. Let ¢ = min{p,r}. Then P : H; — #; has a compression
diag (A1(P),... ,A\¢(P)). Take

Z:A1®---®At®’ﬂk72t€Mk

b
Am(Re (¢€ A)) for each £ € [0,27) and m = 1,... ,p. Thus,

with 4; = [g )‘j(P)} for j = 1,...,t. Then we have A\, (Re (¢ A)) =

M,(Re (¢’ A)) = M,(Re (¥ A))
for all £ € [0,27) and so W,(A) = W,(A). The result follows from the
finite dimensional case.

Suppose r is infinite and A,(P) > 0. For pg > --- > pp, > 0, let

a [ a K
g(/j’la'-' HU’;D) = W(C1,Ck) [0 b1:| +”'+W(prckfp+1) [0 bp:| )

Notice that E(A1(P),...Ap(P)) = W(By) + -+ + W(B,).
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By Lemma 2.4, there exist a k-dimensional subspace V of ‘H and
X :V — H; satisfying X*X = I, and X*PX = diag (Aq,...,Ap) with
A(P)—e <X <Aj(P)forj=1,...,p. Let Z = [’g;} ® I,. Then

Z*AZ is unitary similar to

a A a Ap
5 e[t Y]

Note that W.(B) C W.(A) if B is a compression of A. Applying the
result for finite r = p, we have

EL,- .. \y) = Wa(Z*AZ) C W,(A).

As Aj = X;(P) and hence g )‘bj — g )‘jép) when € — 0, we see that

all the interior points of E(A1(P),... ,A,(P)) lie in W.(4).

Conversely, suppose p € W,(A). Then there exist a k-dimensional
subspace V; of H and X : V; — H such that X*X = I; and
p € W (X*AX). By Lemma 2.5, there are a (4k + ¢)-dimensional
subspace Vs, containing V; and Y : Vo, — H such that Y*Y = Iy, and
Y*AY has operator matrix

|:aI2k Pl

0 bIQk] DIy € Mg,

where if P’ = diag (p1, ... ,p2r) is a 2k-dimensional compression of P,
with p; > -+ > po and p; < A\;(P) for 1 < ¢ < 2k. Since X*AX is a
compression of Y*AY', we have y € W, (X*AX) C W.(Y*AY). By the
finite dimensional result, we have

p €W (Y*AY) = EAL(P), ..., 2p(P)) CENL(P),... , A\p(P)).
So, we have shown that
int (E(A1(P),..., Ap(P))) S We(A) CEM(P),... , Ap(P)).
Also, it follows from the above argument that if W.(A) contains

a boundary point of (A (P),...,\p(P)), then X;(P) = X\(P') =
p; for all 4 = 1,...,p. Then P has a k-dimensional compression
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diag (A1 (P),... ,Ap(P)). Conversely, it is clear that if P has a k-
dimensional compression of the above diagonal from, Ay (A) contains all
the boundary points of £(A1(P),...,A\p(P)). The proof is complete. O

In Theorem 4.1, if A\,,,(P) = 0 for some m < ¢, then W(B,,) +--- +
W (B:) becomes a line segment joining

t k—m-+1 t k—m-+1
a E cj+b E c; and b E cj+a E cj-
j=m j=k—t+1 j=m j=k—t+1

Thus, W,(A) is a sum of m — 1 nondegenerate elliptical disks with one
line segment. Therefore, we have the following corollary.

Corollary 4.2. Let ¢ = (c1,...,cx) and A € B(H) satisfy the
hypotheses of Theorem 4.1.

(a) If 0(A) is a singleton, i.e., a = b, then W.(A) is a circular disk
with radius Z;.n:"i{p’T}(cj — Ch—r1j)Nj(P).

(b) If o(A) = {a,b} has two distinct elements, then W (A) is the
sum of elliptical disks such that all boundary points are differentiable.
If A\, (P) = 0 for some m < min{p,r}, then there are ezactly two flat
portions on the boundary. Otherwise, there is no flat portion on the
boundary.

Our results on the c-numerical ranges cover and refine those in [19,
Section 2.3]. Specializing the results to the k-numerical range, we have
the following corollary covering the results in [3], where the authors
proved that Wy(A) is a union of infinitely many circular disks. Here,
we show that Wy (A) is the sum of at most k elliptical disks with at
most one point.

Corollary 4.3. Suppose A is a quadratic operator with operator
matriz in the form described in Theorem 1.1. Let t = min{k,r} and

A = {a )\j(P)} 7

|
—

o ot
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The equality Wi(A) = & holds if and only if P : Hy — Hy has a
compression diag (A1 (P),..., \(P)).

(b) If k > r + s, then W (A) equals

W(AL) + -+ W(A2pqs—k) + (k=7 —s)(a +b) + s7v.
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