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ISOMORPHISM BETWEEN MORSE AND
LAGRANGIAN FLOER COHOMOLOGY RINGS

JELENA KATIC, DARKO MILINKOVIC AND TATJANA SIMCEVIC

ABSTRACT. We investigate cup products in Morse and
Floer theory for Lagrangian intersections in cotangent bun-
dle. We prove that these products are natural with respect
to canonical isomorphisms for different Morse functions (or
Hamiltonians, in Floer case) and with respect to Piunikhin-
Salamon-Schwarz isomorphisms between Morse and Floer co-
homologies.

1. Introduction. Let M be a compact manifold and T*M its
cotangent bundle with the standard symplectic form. For a given Morse
function f : M — R, denote by Critg(f) the set of all critical points
p of f of Morse index my(p) equal to k. Denote by CMy(f) the Zy—
vector spaces generated by Critg(f). Let HMy(f) be the homology
groups of C My (f) with respect to the boundary operator

Onr : CMi(f) — CMi1(f), (@)= Y.  n(pa
ms(q)=my(p)—1
where n(p, ¢) is the number (mod 2) of solutions of
1) { @AV =0
v(—00) =p, Y(+o0) =¢.

Morse cohomology HM*(f) groups are defined a standard way, by
taking a cochain complex CM*(f) to be Hom (CM.(f),Zs) and the
coboundary operator §:

(2) (0a, @) := (a, Oar).
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By using an isomorphism
T:CM,(f) — CM,_.(—f)

which is compatible with the boundary operators in homology we
obtain the following isomorphism

(3) op HM, o(—f) = HM*(f).

There are several equivalent definitions of a cup product in Morse
case. We will consider the one that uses the mappings from a tree T’
to M. Let T be a tree with three edges. We identify two edges e,
ez with (—o0,0] (incoming edges) and one es with [0,400) (outgoing
edge). Let f;, for i = 1,2,3 be three Morse functions on M, and let
gi := —fi. Consider the mapping I : T'— M such that, for ; := I|,,
1 =1,2,3, it holds:

W=V ()
(_OO) = Pi, 1= 172
(+00) =p3

(4) Vi
3
where p; are critical points of g; such that mgy, (p1) = n —k, mgy,(p2) =
n —1, mg(p3s) = n — (k+1) (see Figure 1). If we denote by

g = (91,92,93), ¥ = (p1,p2,p2) and by M(p, ) the set of I’s that
satisfy (4), then

M(P, §) = W*(g1,p1) N W*(g2,p2) N W?*(g3,Pp3)

where W*(g,p) (respectively W#*(g,p)) denotes the unstable (respec-
tively stable) manifold of a critical point p of a Morse function g. For
generic choices M(p,g) is a smooth finite-dimensional manifold and
for the above choice of Morse indices it is zero dimensional. Denote by
n(p, §) the cardinality of M (7, §) mod 2. If we set

Y (9) := Zn(ﬁ, §)p1 ® p2 @ p3 € CM,, (1)

p
® CMn—l(QZ) X CMn—(k-H) (93)7

then Wy, is well defined and it actually holds

Y (9) € HMy_x(91) ® HM,_1(g92) ® HM,,_(141)(g3)-
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For [a1] € HM*(f1) = HM™ *(g1) and [a] € HM'(fo) = HM"(g2),
where [-] stands for a cohomological class, i.e., a; € CMF(f;), ay €
CM'(f), we have the contraction

(a1 ® a2, Y (F)) € CMy—(k11)(93)-

Finally, define

[a1] Unr [a2] := [0, ((a1 ® az, ¥ (§)))] € HME(f3).

One can easily show that the cup product does not depend on the
choice of cycles a; and as within the same cohomological classes (see
[11] for the details).

We briefly recall the construction of Floer (co)homology and the
cup product in Floer cohomology. For a smooth compactly supported
Hamiltonian function H; : T*M — R, let CFj(H) denote Floer chain
groups, i.e., Zs- vector space generated by the set of Hamiltonian paths:

z:[0,1] = T*M
&(t) = Xu(x(t))
z(0),z(1) € Oy,
where Oy is a zero section of T*M. The grading here is determined

by Maslov index pg(z) of Hamiltonian path z(t), such that

T € CFk(H) <~— k= NH(x) +

|3

where n = dim M (for a definition of Maslov index see [13, 14] and [10]
for the application in grading in Floer homology). Denote by H Fy,(H)
the homology groups of CF(H) with respect to the boundary operator

Op : CFy(H) — CFy(H), Op(z):= Z n(z,y)y
pa(y)=pw(r)—1
where n(x,y) are the numbers of the solutions of an elliptic system
Qu (%~ Xp(u)) =0
(5) u(s,i) € Op, @ € {0,1}
u(—o00,t) = z(t), u(+o0,t) = y(t)
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mod 2. Floer cohomology groups are constructed analogously as in
Morse case, by defining a cochain by CF*(H) := Hom (CF.(H), Z2)
and coboundary operator as in (2). By using the following transforma-
tions:

T — 7, Z(t) :=z(1—1t)

H+—H, fI(p,t) :=—H(p,1-1)

J— T, J(p,t):=J(p,1-1)

one can easily obtain a Poincaré duality map:
(6) oy : HF, ,(H) — HF*(H)

(see [11] for details). The cup product in Floer cohomology is con-
structed by means of “pair of pants” mappings (see Figure 1). More
precisely, let H;, for i = 1,2, 3, be three compactly supported Hamil-
tonians and z; three corresponding Hamiltonian paths with ends in
Opn. Let ¥ be a Riemannian surface with boundary of genus zero with
three semi-strips-ends (surface X is conformally equivalent to a disc
with three marked boundary points). Denote by

Y= ¢i((_0070] x [07 1]) cY¥, =12
B3 := ¢3([0, +00) x [0,1]) € =
20 = E - (21 UEQ U 23),

where ¢; are conformal parameterizations of the corresponding semi-
strips. Denote again by G; := H;, y; 1= i, a = (G1,G2,G3) and
¥ := (y1,Y2,y3). Denote by M(¢, G) the set of maps u : ¥ — T*M,
such that (u; :=uo ¢;):

%Zi +J (% - Xs56:(ui)) =0, 1 =1,2
% +J (% - Xp(s)G3 (Us)) =0
(7) wi(—o00,t) = y;(t), i =1,2, wugz(+oo,t) = ys(t)
u(0X) C Om
5(’u’|20) =0

where p : [0, +00) — R is a smooth function such that

p(S)—{1 =2

0 s<1
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P2

92
g3 p3 /

9

p1
FIGURE 1. Cup products: tree in Morse and “pair-of-pants” in Floer theory.

and p(s) := p(—s). For generic choices, the set M(7, 6) is manifold of
a dimension

d= ( ras(ys) + g) + <H01(y1) - g) + <H02(y2) - g)

For pg, (y1) +n/2=n—k, pa,(y2) +n/2 = n—land pa,(ys) +n/2 =
n— (k+1),ie., d =0, denote by n(7, G) the cardinal number of a set
M(7, ﬁ) mod 2 and define

Up(G) = Zn@a 8)Z/l Qy2 ®ys € HF, 1(G1)

Y

® HF,1(G2) @ HF,,_(141)(G3)-

Again by using the contraction map and the isomorphism op,, we
set, for given a; € HF*(H;) = HF"%(G,) and ay € HF'(Hy) =
HE"(G,):

a1 Up az == op, <<a1 Q® asg, \I/F(a)>> € HMk+l(H3)

(see [11] for more details).

The Piunikhin-Salamon-Schwarz type isomorphism between H M. (f)
and HF,(H) was constructed in [8], following [12] (where it was
originally given, for the case of periodic orbits). It is based on counting
mixed type objects. More precisely, for a given critical point p of a
Morse function f and Hamiltonian path  with ends in Oy, assigned
to Hamiltonian function H, we consider the space of pairs of maps

v:(=00,0] —m M, u:Rx[0,1]] —T"M
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N

FIGURE 2. Mixed object from M(p, f;z, H).

that satisfy

D=V (y(s))

98+ J(5 — Xpumr(w) =0
u(0(R x [0,1])) € Om
Y(=00) =, u(+00,8) = 2()
7(0) = u(~00,1)

(w) = [ Jy 1511 e ds < oo,

&=

where pg : R — R is a smooth function such that

o) ) ={y T2 pt

Let M(p, f;z, H) denote the set of solutions of (8) (see Figure 2).

For generic choices M(p, f;z, H) is a smooth manifold of dimension
mys(p) — (pu(z) + n/2), compact in dimension zero. So denote by
n(p, f;x, H) the cardinality mod 2 of the set M(p, f; =, H). The map

(10) ¢ :CMy(f) — CFy(H), pr— > nlpfiz,Ha
pH(x)+n/2=k

is well defined, it is also defined on HMjy(f) and it is an isomorphism.
Its inverse ¢ is defined similarly. More precisely, let M(xz, H;p, f) be

the space of pairs of maps

u:Rx[0,1]] —T*M, ~:[0,+00) — M
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that satisfy

& =-V£(y(s))

G+ J(5F — Xpru(u) =0
w(B(R % [0,1])) C O
u(—00,t) = z(t),y(+00) =
7(0) = u(+o00,1)

fj;f fol ||%||2dtds < 400.

Again, pr(s) := pr(—s) for pgr defined in (9). For generic choices,
M(z, H;p, f) is a smooth manifold of dimension p g (x)+n/2—mg(p),
compact in dimension zero. If n(z,H;p,f) is the cardinal number
mod 2 of the set M(z, H;p, f), then the map ¢ is defined as

(12)  ¢:CFy(H) — CMi(f), @+ Y n(x,H;p, f)p.

mg¢(p)=k

For the proofs of the above results see [8, 12]. The generalization of
the previous construction to more general symplectic manifolds does
not give isomorphisms, but only homomorphisms. It was done by
Albers in [1]. Biran and Cornea gave some extensions of mentioned
construction in [3]. Leclercq used the mixed type objects described
above to construct a product that turns Floer homology into module
over Morse homology ring. This construction and natural isomorphism
between Floer homologies as morphisms of modules are considered
in [9]. Cornea and Lalonde also considered the Lagrangian PSS
homomorphism and its algebraic properties (see [4]).

In this paper we prove that the above PSS isomorphism naturally
intertwines with cup products. We establish PSS isomorphism between
Morse and Floer homologies of M and T*M (defined independently on
Morse function or Hamiltonian) and prove that such an isomorphism
also preserves ring structure induced by cup products.

2. Cup products and PSS isomorphisms. In this section we
prove the naturality of cup products with respect to PSS isomorphism.
This is the content of the third author’s Master thesis [16]. It is stated
in the following
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Theorem 1. Let f;, + = 1,2,3 be three Morse functions on M and
H; three compactly supported Hamiltonian functions on T*M. There
exist isomorphisms

7 HM*(f;) = HF*(H;), i=1,2,3,
induced by Piunikhin-Salamon-Schwarz isomorphisms (10), such that

the diagram

HF*(H,) ® HF'(Hy) —2F HF*(H,)

(13) T1 ®TJ 7—4
HM*(f,) ® HM'(f2) —22— HM*(fy)

commutes.

Proof. Using the Poincaré duality isomorphisms between homology
and cohomology groups (3) and (6) and Piunikhin-Salamon-Schwarz
isomorphisms (10) between HM, (f;) and HF,(H;), we define 7; in the
cochain level such that the following diagram commutes

OH

OF,_.(Gi) —2 OF*(H;)

CMn—*(gi) L) CM*(fz)a

ie.,
(14) T; i— O'HiOQ/JiOU;il.

Here g; and G; are as above. Since %;, oy, and op, induce the
isomorphisms on the (co)homology levels, the same is true for 7.
Counsider the following diagram:

(15)

HAG)® Ha(G2) T2 b by ) @ HY (Hy) — 25— HY(Hs) — 2% H(G)

¢1®¢2[ 7'1®"'2[ "’3[ ’JJ:J
—1

Hulg1)® Hu(g) — 227020 17(f1) 0 HY(f2) — 2 1¥(fy) — 22
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We used the abbreviations H, (H;) for HF,.(H;) and H,(f;) for HM.(f;);
we also assumed that * stands for the corresponding index. Since 7 is
defined such that the left and the right diagrams in (15) commute, and
since the inner diagram in (15) is actually the diagram (13), the proof
of the theorem will be completed if we prove that the outer diagram,
that is,

HF, (G1) ® HF, (G) —*— HF,_(11)(Gs)
(16) P12 1/;3]\
T
HM,_(91) ® HMp_i(92) —— HM,,_(1,41)(93)

commutes. Here

l~f = o-f?,il oUo (Ufl ®Uf2)7 [H = O-H371 oUo (UHI ®UH2) .

Set
lf : @ CM*1(91) ® CM*Z (92) — CM*S (93)
*1+kg=n-+x*3
(17) 1 N
Li(p1 @ p2) := > n (P, §)ps
Mgy (p3):mgl (p1)+mgz (p2)*n
and

ln: P CF.,(G1)®CF,(G2) — CF.,(Gs)

*¥1Hka=n-t%*3

lu(y1 ® y2) = Z n(¥, 5))3;3,

pag (ys)+n/2=*1+x2—n

where, as before, n(g, §) and n(y, E’)) are, respectively, the numbers of
solutions of (4) and (7) mod 2. One easily checks that {; and {5 induce
mappings in the homology level, i.e., that it holds i o (Op @ Id +1d ®
Om) =0moly and Iy o (Or ® Id +1d ® Op) = Op o ly where Jy and
Op are boundary operators with respect to the corresponding Morse
functions and Hamiltonians. We will use the same notations for the
mappings obtained from [; and [y in the homology level. From the
definitions of cup products Up; and Ur we see that the equalities

ly=1; lg=Ig
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hold in the homology level. So, to prove that the diagram (16) (hence
(13)) commutes we need to prove that, in the homology level, it holds

(18) lf:'(//'3olHo('¢'1®¢2)-

Since the mappings Iy and Iy are defined on the chain groups C'M and
CF, the equality (18) is equivalent to equality

(19) ’(/130lH0(1ﬁ1®'(/12)—lf:KO(81®Id+Id®82)+630K,

for some mapping

K: P CM.,(51)®CM.,(g2) = CM.,41(gs).

*¥1tHko=n-+*3

The symbols 9, 0> and 95 in (19) denote the Morse boundary operators
(1) for Morse functions fi, fo and f3. We will deduce the equality
(19) from cobordism arguments by introducing the following auxiliary
one-dimensional manifold. For § = (pi,ps,ps) as above (such that
mg, (p1) = n =k, mg,(p2) = n =1, mg,(ps) = n— (k+1)), &, u as
before, denote by Mg(p, g; 8) the set of all (v, 72,73, u) that satisfy:

vii (00,00 = M, i=1,2, v3:[0,+00) > M
u:X—>T"M

%+ J(5d — Xpgm, (ug)) =0, uj i=uo¢j,j =1,2
%“33 —}—J(%i — X,phs(u3)) =0, uz :=uo¢3
O(uls,) =0

7i(0) = ui(—o00,t), i = 1,2, v3(0) = uz(+00,t)
¥i(—00) = pi, 1 =1,2,73(+00) = p3.

Now pg : [0, +00) — [0,1] is a smooth function such that

1, 2<s<R,
0, s<1,s>R+1

PrR(S) = {
and pgr(s) := pr(—s). Denote by

M(R7ﬁ,§; 6) = {(Ra71772a737u) ‘ (71772773au) € MR(ﬁag; 5))} .
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For the above choice of indices the set Mg(p, g; 8) is a zero dimen-
sional manifold (for generic choices of g, 6) and M(R,p, g; ﬁ) is a
manifold of dimension one. Let M(p, g, f) denote the set of solutions
of (1) and /T/l\(p,q, f) denote the same set modulo R-action. The de-
scription of the topological boundary of M\(p, q,f):

(21) o (M(R,5.,5 H)) = BiUByUBs UB,UBs

is obtained by using the standard compactness and gluing arguments.
One inclusion (compactness) in (21) follows from Gromov compactness
and the Arzela-Ascoli theorem (see [7]). The other one (gluing) can
be proved using the standard pre-gluing construction and Banach fixed
point theorem as in the appendix in [2] (see also [6] for a similar case).
The parts B; of the boundary are the following:

By = Mg, (P, 7, a)

BZ = U ﬂ(plv‘]lagl) XM(R7 (qlap25p3)7§; a)
mgy (q1)=mg, (p1)—1

Bs = U M(p2, g2, g2) x M <R7 (p1,42,p3), G 8)
Mgy (qZ)ngz (p2)—1

By = U M (R, (p1,p2,93), 9; 6) x M(gs, p3, f3)

Mgg (qS):mgg (P3)+1

Bs = U M(p1, 91591, G1) X M(p2, 92; Y2, G2)

Yisqi

X M(Zjv 8) X M(y37G3;q3593)

(see Figure 3). In the last equation all ¢;’s are critical points of g;’s and
all y;’s are Hamiltonian path with respect to G;’s. The last union is
taken by all ¢; and y; such that pg,(v;) = mg,(¢;) = mg,(pi). The
first four types of the boundary correspond to the case when R is
bounded, the fifth type Bs appears when R is unbounded. Now define
the mentioned mapping K as

K: @ OM.,(91)®CM.,(g2) — CM.,41(gs)

*1tka=n-t*3

Kpog= > n(R@ansa)n

Mgy (r)=x1+*x2—n+1
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q2

(91 ®Id (62@1(1 O30 K

:§>v:%>>~

W3 ol o (11 @ P2)

FIGURE 3. Five types of boundary of M(R,p, g; ﬁ) and corresponding mappings.

where n(R, (p,q,g,g'; 8) stands for the cardinal number mod2 of
M(R, (p,q;7), §;

Fi @ OM.(9)®CMey(g2) — CM.y(gs)

*1F+¥2=n+*3

F(p1 @ po) = > R, ((pl,pz,p3),§; ﬁ) P3,

Mgy (P3)=*1+*2—n

). Define also the following mapping;:
(22)

where ng, ((p1,p2,P3), J; 5)) is the cardinal number mod 2 of Mg (p1,
D2,D3), J; 8) Now we see that counting the elements in (M (R, P, g;

)) defines the mappings that we already defined, in the following way
(see Figure 3):

e counting the elements of B; defines the mapping F’;

e counting the elements of By defines the mapping K o (91 ® Id);

e counting the elements of B3 defines the mapping K o (Id ® 05);

e counting the elements of B, defines the mapping 03 ® K;

e counting the elements of Bs defines the mapping ¢5 ol o (1)1 @ 12).

Since the cardinality of (M (R, P, §; 8)) is an even number, we con-
clude that it holds

Yzolgo (W ®vs) — F=Ko( ®ld+1d® &) + 050 K,

so the mappings F' and 3 o lg o (¥ ® 13) are chain homotopic, hence
the same in the homology level.
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The homomorphism F' defined in (22) is independent of the choice of
Hamiltonians G'. Indeed, let Gy, G1 be two triples of Hamiltonians,

x» 0 < A < 1, a homotopy between them, and Fp, Fj-chain
homomorphisms that correspond to Gy, G';. Consider the space

MRO(Aaﬁg; 8)\)
= {(717723737'“7)\) ‘ (717727737“) € MRO (ﬁa.@ 8/\)}

Its dimension is equal to 1 and its boundary is
0 (Mnry(\ 7,55 G ) = M(5,5 Go) ~ M(5,5; G )

+ U M(p1,q1,91) x Mp, ( (1,2, p3), G 8,\)

Mgy (a1 ):mgl (p1)—1

+ U M(ps, 42, 92) x Mp, ()\, (p1,92,P3), G 6)\)

Mgy (g2)=mg, (p2)—1

+ U MRO <)\7 (p17p27Q3)7§; 8)\> X -/T/t\(q3ap3ag3)-

Mgg (q«'i):mg;; (p3)+1
It follows that Fy — Fy = Lo (0; ® Id+1d ® 02) + 03 o L for

L: @ OM,(91)®CM.,(g2) = CM.s11(gs)

*1Fxp=n+4*3

Lp®gq):= > nR, (A, (p,q,7), G 8)\) r

Mgy (r)=+1+%2—n+1

where
NRy ()‘7 (pa q, T)aﬁ; 8)\> = ﬁMRo (Aa (pa q, T),E; 8A> (mOd 2))

i.e., Fy and F} are chain homotopic. Choose now the homotopy between
G and 0 = (0,0,0). We see that the map (22) is chain homotopic to
the map defined by counting the objects of the type (20), such that u
is holomorphic on the whole domain, with the boundary on the zero
section. By Stokes’ formula, this u has to be a constant map, so the
mapping F' (when 8 = 0) is defined by counting Morse trees, i.e., it is
the same mapping as lf. So the proof of Theorem 1 follows. u]
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3. Ring structure isomorphism. In this section we prove that
the above PSS isomorphism establishes the isomorphism between Morse
and Floer cohomological rings (with respect to cup products).

We construct Morse cohomology of M that is independent of a
Morse function by means of the natural isomorphisms between Morse
cohomologies for different Morse functions. Recall that for two Morse
functions f* and f” there exists a canonical isomorphism

T : HM,(f*) — HM,(f")

defined in a following way. Let f®* be a smooth homotopy between f
and fP, i.e., a smooth function defined on M x R such that

«a fa(,) SS_Ta
£ = {fﬂm ST,

for some T' > 0. For a critical point p® of f* and p? of f#, mye(p*) =
m s (p?), denote by n(p®,p”) the number of solutions (mod 2) of

M(p*,p’, 127)
d
= {7 R 01 | = VU ) A) =02 (o) =2 .
Now set

T°8 (p) = > n(p®,p?)p’.
mye (p*)=m 5 (p?)

The mapping T*? is well defined also in the homology level and it is an
isomorphism (see [15] for a detailed proof of these facts). Now define

Taﬁ =08 o TP oo'fafl : HM*(fa) i>-HZW*(.]&B)

The Morse cohomology HM*(M) is defined as an inverse limit of Morse
cohomology groups HM*(f) with respect to above isomorphisms 7%,
More precisely, consider the product of groups

Hu ()= [[ EMMG),
e Morse
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and define HM*(M) as
k L « 5] ——k TaB (o _ 1B
HM*(M) ._{(...,ak,...,bk...)eHM (M) | T (ak)_bk}.

The above-defined cup product turns the Morse cohomology into ring.
To see this, we need to prove that the cup product is independent of
the choice of equivalence classes, where the equivalence relation is given
by

{ag} ~ (b} = T (a) = b for all a®, b,

i.e., we need to check that two different pairs of equivalent elements
give rise to two equivalent elements. Obviously, it is enough to show
that the diagram

HM*(£8) @ HM'(£f) —22— HM*+ ()
(23) ia%%;ﬁ i"ﬂ
HM*(ff) @ HM'(f5) —2=— HM*(f5)
commutes. Here i.aﬂ are the corresponding isomorphisms between

HM*(f) and HM*(fZ’B) Since we defined the isomorphisms i-aﬂ via
the maps Tiaﬂ and oy,, we consider the following diagram

o Qo g
HAo?)® H(o?) —— B (1P) 0 H* () —2— H*(/ )—>H*(f )

Borah TaBgab 8 8
TP eTy [ QTS I T I Ty [
-1

o'fa®o'fa o

Hug8)®Hu(g8) —— H ()@ H'(f§) —=— H'(f§) ——— HJ{f$).
We used the same notations and abbreviations as in the previous

section, except that here we deal only with Morse homology (so all H’s
stand for HM). Obviously it is enough to prove the commutativity of

I
HMp—i(g7) ® HMp_1(g5) —— HM,,_ (k1) (95)
(24) Tf*"@T;’*I T;ﬂ

o (67 iCX (e7
HM;p—1(97) ® HMp—i1(95) —— HM,,_(1.41)(95)
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where, recall

la =0p3 1 oUao (0 ®oyz),
llg—O'f OU,B (UfF(X)O'fzﬁ).

It follows from the definitions of mappings involved that:
ia:la = lfa, iB:lB Z:lfﬁ

where [fo and ;s are the mappings defined in the previous section (see
(17)). In order to show that it holds

lpo (177 0 15°) =157 o1,

it is enough to show (since all the maps are defined also in the
chain level) that, for some K : ) CM,,(91) ® CM,,(g2) —

¥k =nt*3
CM.,,+1(g3) it holds

(25) lo TS 'olgo (17 @ 15°) + K
0(0h ®@Id+1d® 09)+ 030 K =0.

For a fixed T > 0, denote by g?f : M — R smooth functions that

satisfy:
< T —
gt = gl o=t
() s>-T,fori=1,2,
= B0 st
> 93() s>T+1.

For p® a critical point of g%, denote by p® := (p§,ps,ps), ¢ =

(g?? g?g, ggg ) and consider the following manifolds:

(26) Mz (5, 527)
vi i (—00,0] = M, fori=1,2, v3:[0,4+00) > M

d’}/ - aﬁ
= (71772773) dS vg ( ( ))

’Yi(_ ) :pz?" for i = 1,2,’}/3(—}—00) :pg
71(0) = 72(0) = 3(0)
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and

(27) M(Taﬁaa.&gﬁ) = {(T571a72573) | (’71772773) € MT(ﬁa,g*gﬁ)}

For mga(pf) = n —k, mgg(p5) = n —1 mge(p§) = n — (k +1) the
manifold M (p%, §*?) is zero-dimensional and M (T, p%, §>”) is one-
dimensional. Moreover, its topological, zero-dimensional boundary can

be identified with

8 (M(T, 5™, §%)) = By U By U B3 U By U Bs,

where
(28)
Bl = MTo(ﬁavg(sxﬂ)
By = U M(pS,a, 95) x M (T, (a5, p3,0%), §2°)
mga (ay)=mge (pf)—1
By = U M(p,45,95) x M (T, (0%, 45, p%), §2°)
mge (qzo‘):mgéx (pg)—1
By = U M (T, (3,3, 45),3°) x Mg, 05, ¢5)
mg3°‘ (‘Z:?):mgg‘ (P§)+1
Bs = J M@, 1, 9%) x M(p5,p5,95%) x M(5°, )

x M(p5, 05, 957).

The last union is taken by all p? such that mga (pf) = m e (7). Al

g’s are critical points of ¢g*’s and all p’iB’s are critical points of g; ’s.
The spaces that figure in (28) are defined in (1), (4), (26) and (27).
The first four types of the boundary correspond to the case when T
is bounded, the fifth type Bs happens when 7' is unbounded. If we
define mapping K by counting the objects from M (T,p%, §*%), when
the latter is zero-dimensional, and the mapping Fr, by counting the

elements from M, (5%, §*?) (in dimension zero), then we conclude that

e counting the elements of B; defines the mapping Fr;
e counting the elements of By defines the mapping K o (91 ® Id);
e counting the elements of B; defines the mapping K o (Id ® 0s);
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e counting the elements of B4 defines the mapping 05 ® K;

e counting the elements of Bs defines the mapping T;‘Bi1 olgo (Tf‘ﬁ ®
T2P).
By taking the homotopy gx, A € [0, 1] between §& and §* and by using
the similar cobordism arguments as we used by now, one can show that
the mappings Fr, and [, are the same in the homology level. Hence
we proved (25) which implies that the cup product is well defined on
Morse cohomology HM*(M). Since HM*(f) is a ring with respect
to cup product, and since all the properties of U remain true for the
equivalence classes, HM™*(M) also becomes a ring.

The natural homomorphism between two Floer homologies for two
different Hamiltonians is defined as following. Fix T' > 0. Let H®(t, z)
be a smooth function such that H®8(t,z) = H(t,z) for s < —T and
H2P(t,x) = HP(t,z) for s > T. The isomorphism

S . HF,(H*) — HF,(H"), SoP(z%) = Zn(m“,mﬂ)mﬂ

zB

is defined using the numbers n(z%, ) of the solutions of the system

82 4+ (3 — Xpye(w) = 0

u(s,7) € Opn, 7 € {0,1}

’U,(—OO,t) = wa(t)a u(+oo,t) = mﬂ(t)’
where ¢ and z? are Hamiltonian (with respect to the functions H®
and HP) paths with ends in Oys. The definition of Floer cohomology
HF*(T*M) is completely analogous to the definition of HM™*(M). The

cup product defined by use of “pair-of-pants” can also be defined for
the equivalence classes in HF*(T*M), i.e., the diagram

HF*(H}) ® HF'(H}) —— HF*"(HY)
52°@sg? [ §;’{
HF*(HY) @ HF'(H) —2*— HF**'(HS)

commutes, where gf‘ﬁ : HF*(HY) — HF*(H{) are natural isomor-

phisms between Floer cohomology groups, defined as gf‘ F= Tgs ©
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S’f‘ﬂ o UH;x’l. The proof is the same as in the Morse case. Now we are
able to state the following

Theorem 2. Piunikin-Salamon-Schwarz isomorphism defined above
induces the isomorphism of rings

T:(HM*(M),Uy) — (HF*(T*M),UF) .
Proof. The commutativity of the diagram

HF,(H*) —5"* . HF,(HP)

114 1#4
HM. (%) —2 HM, (f°)

that was proved in [8] immediately implies (due to the definitions of T
and T, S) the commutativity of

HF*(H*) —5" . HF*(HP)

(29) TOW TEI

HM® (f) —— HM" (f%)

which means that 7 defined in (14) induces the homomorphism 7 de-
fined on HM*(M) with the values in HF*(T*M). The inverse isomor-
phism ¢ defined in (12) induces the isomorphism in the cohomology,
denote it by J. More precisely, § := o oo 0;11. In the same way as
before, ¢ induces the homomorphism S : HF*(T*M) - HM*(M). It
follows from ¢ o ¢ = Id that § o 7 = Id, so we have

SoT(la]) = S([r(a)]) = [6(r(a))] = [a],
and, in the same way, 7 oS = Id. Thus 7 and S are indeed

isomorphisms.

Now the commutativity of the diagram (13) proved in Theorem 1 and
(23) imply
T (la] Uss [0]) = T ([a Unr B]) =
= [r(a) Ur T( )]
=T (la]) Ur T ([b]),

so the proof of the Theorem follows. a

[r(a Uns b)]
= [r(a)] Ur [r ()]
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Remark 1. One of the generalizations of the previous constructions
are multiple products, i.e., products with more than one entrance. In
the Morse case, we consider the tree 7" with m 4+ 1 edges, one interior
and m + 1 exterior vertices (see Figure 4) and identify the edges e;,

for i = 1,...,m with (—o00,0] (incoming edges) and the edge e;,+1
with [0, +00) (outgoing edge). Let f;, for i = 1,...,m + 1 be Morse
functions on M, and let g; := —f;. Denote by o' = (p1,p2,... ,Pm+1)

and by § = (91,92, .- ,gm+1)- Consider the set M(p, §) of all mappings
I:T — M such that, for v; :=I|.,, i =1,...m + 1, it holds:

@ ==V(g) ()
vi(—0) =p;, i=1,...m
’Ym+1(+oo) = Pm+1

(see Figure 4). Up to generic choices, M(p,g) is a smooth manifold
of dimension d := dim M(p,§) = my, ., (Pmy1) — mp(P1) — ... —
my, (pbm) and, for d = 0 (ie. for p; € CM*(f)), i = 1...,m,
Pmi1 € CMFt-thm(f 1)) denote by n(p,g) the cardinality of
M(P, §) mod 2. Define

V()= n(B§)p1 @ .. ®Ppm @ Py €
i
CMp 1, (91) ® - . ® CMp_y,,(92) @ CMy_ (k44 k) (Imt)-

For a; € CMF*(f;) 2 CM"™*(g;),i = 1,... ,m, by using the contrac-
tion map,

(a1 ® ... ® am, ¥n(F)) € OMp_(iy 4. k) (Im+1)

define

Om(a1 ®...Q am)
i [Omn(@1 9 . @, War ()] € HM 4o (f40),

As before, one can easily check that Op; does not depend on the choice
of the cycles a; in the same cohomology classes, hence that it is defined
on the cohomology level.
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p m

Pm+1 / Ym Ym+1 /

Im+1
p2

p1

FIGURE 4. Multiple products in Morse and Floer theory.

The multiple products in Floer homology are defined similarly, using
the numbers of solutions of

G+ T (% Xpye, (i) =0, i=1,...,m

’u,i(—OO,t) = yl(t)7 i = 17 cee M

gt (% - Xp(s)Gm+1(Um+1)) =0
Um+1(+00,t) - ym—i-l(t)

A(ulz,) =0

where G;, y; are as before and ¥ is a Riemannian surface of genus zero
with m + 1 semi-strips-ends (see Figure 4). By repeating the previous
construction we obtain

Op :HF™(H))®...®@ HF*"(H,,) — HF" - Fn(H, ).

As before, from the analysis of the boundary of a one-dimensional
manifold of type (26) (but with m +1 instead of three exterior vertices,
i.e., Hamiltonian paths) it follows that the operators O are well defined
as the operators

Oy : HM® (M) ® -+ @ HM*™ (M) — HM™ Ttk (1)
Op : HFF(T*M) ® - -- ® HF*(T*M) — HF* - Fhm (T* M),
So from the commutativity of (29) and of the diagram

HFM(H) ® -+ @ HFF(H,,) —25— HF* - 4hm (7, )

Tl®---®7—m]‘ Tm+1]‘

HM"™ (f1) ® ... @ HM*m (f,,) —22 o gMPtthm (£ )
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(this commutativity follows from the same arguments as is Section 2)
we derive the following

Theorem 3. The PSS isomorphism T : HM*(M) — HF*(T*M)
defined in Theorem 2 is an isomorphism that preserves the products O,
i.e.:

T(Om(a1 @+ @am)) = Op(T(a1) ©--- @ T (am))

fora; € HM*(M).

Remark 2. The result of Theorem 3 can be generalized to the case
of Floer homology for Lagrangian submanifold L of the symplectic
manifold (P,w), when w|,,(p,Ly = 0. Indeed, this assumption provides
that no bubbles appear in the limit of a sequence of (perturbed)
holomorphic maps, so the compactness arguments rest the same as
in the case of cotangent bundle.
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