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AN EQUATION RELATED TO
TWO-SIDED CENTRALIZERS IN PRIME RINGS

MAJA FOSNER AND JOSO VUKMAN

ABSTRACT. The purpose of this paper is to prove the
following result. Let m and n be positive integers, and let
R be a prime ring with char (R) = 0 or m+n + 1 < char (R).
Let T': R — R be an additive mapping satisfying the relation
T(z™t7tl) = g™T(z)z™ for all z € R. In this case T is a
two-sided centralizer.

This research is a continuation of our work [6]. Throughout, R will
represent an associative ring with center Z(R). Given an integer n > 1,
a ring R is said to be n-torsion free, if for z € R, nx = 0 implies z = 0.
Recall that a ring R is prime if for a,b € R, aRb = (0) implies that
either a = 0 or b = 0, and is semiprime in case aRa = (0) implies
a = 0. An additive mapping T : R — R is called a left centralizer in
case T'(zy) = T'(z)y holds for all pairs z,y € R. For a semiprime ring R
all left centralizers are of the form T'(xz) = gz for all z € R, where ¢ is an
element of Martindale right ring of quotients @, of R (see [3, Chapter
2]). In case R has the identity element T': R — R is a left centralizer
if and only if T is of the form T'(z) = az for all z € R and some fixed
element a € R. The definition of a right centralizer should be self-
explanatory. An additive mapping 7T is called a two-sided centralizer in
case T is a left and a right centralizer. In case T : R — R is a two-sided
centralizer, where R is a semiprime ring with extended centroid C, then
there exists an element A € C' such that T'(z) = Az for all z € R (see [3,
Theorem 2.3.2]). An additive mapping 7" : R — R is called a left (right)
Jordan centralizer in case T'(z?) = T(z)z (T (z*) = 2T'(x)) holds for all
x € R. Zalar [14] has proved that any left (right) Jordan centralizer on
a 2-torsion free semiprime ring is a left (right) centralizer. Molndr [8]
has proved that in case we have an additive mapping 7' : A — A, where
A is a semisimple H*-algebra, satisfying the relation T'(z%) = T'(z)xz?
(T'(23) = 22T (z)) for all z € A, then T is a left (right) centralizer. For
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results concerning centralizers on rings and algebras we refer the reader
to [7, 12, 13].

Motivated by the work of Bresar [4], Vukman [11] has proved the
following result.

Theorem 1. Let R be a 2-torsion free semiprime ring, and let
T : R — R be an additive mapping satisfying the relation

(1) T(xyz) = T (y)z
for all pairs x,y € R. In this case T is a two-sided centralizer.

Since any two-sided centralizer on an arbitrary ring satisfies the
relation (1), the result we have just mentioned above characterizes
two-sided centralizers among all additive mappings on 2-torsion free
semiprime rings.

Theorem 1 was the motivation for the result below proved by Vukman
and Fosner [6].

Theorem 2. Let R be a prime ring of characteristic different from
two, and let T : R — R be an additive mapping satisfying the relation

(2) T(z*) = 2T (z)z
for allz € R. Then T is a two-sided centralizer.

It is our aim in this paper to prove the following generalization of
Theorem 2.

Theorem 3. Let m and n be positive integers, and let R be a prime
ring with char (R) =0 or m+n+ 1 < char (R). Let T : R — R be an
additive mapping satisfying the relation

(3) T(z™" ) = 2™ T (z)z"

forallz € R. Then T is a two-sided centralizer.
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For the proof of Theorem 3 we need Theorem 4 below, which is of
independent interest. Our result is obtained as an application of the
theory of functional identities.

The theory of functional identities considers set-theoretic mappings
on rings satisfying some identical relation. When treating such relations
one usually concludes that the form of the mappings involved can be
described, unless the ring is very special. We refer the reader to [5] for
full treatment on the theory of functional identities and its applications.

Let R be a ring, and let X be a subset of R. By C(X) we denote
the set {r € R | [r,X] = 0}. Let m € N, and let E : X™ ! — R,
p: X™ 2 — R be arbitrary mappings. In the case when m = 1 this
should be understood as that E is an element in R and p = 0. Let
1< i< j<m, and define E¢, p, pi* : X™ — R by

El(fm) = E(iL’l, ey Li—1y L1y ,xm),
p”(fm) :pﬂ(fm) = (331, s 5 L1 Tl e s 3 Lj—1y Tj41y- -+ ,ZL‘m),
where Z,,, = (z1,... ,Zm) € X™.

Let I,J C{1,...,m},and foreachi € I,j € J,let E;, F; : X™ 1 —
R be arbitrary mappings. Consider functional identities

(4) S Bl @m)zi+ Y 2 F (Tm) =0,

i€l Jj€J
(Tm € X™)
(5) N Ei@m)zi+ Yz F!(Tm) € C(X)
iel Jj€J
(Tm € X™).

A natural possibility when (4) and (5) are fulfilled is when there exist
mappings pi; : X™ 2= R,i€l,j€ J,i#jand \y: X™ 1 = C(X),
k € TU J, such that
E:(Em) = ijpz;(fm) + Aﬁ(fm)v

jeJ

J#i
©) FjJ (Tm) = — Z pz;(wm)xl - )\;(%n),

i€l j#i
AMe=0 ifk¢InJg
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forall z,, € X™, ¢t € I, j € J. We shall say that every solution of the
form (6) is a standard solution of (4) and (5).

The case when one of the sets I or J is empty is not excluded. The
sum over the empty set of indexes should be simply read as zero. So,
when J = 0, respectively I =0, (4) and (5) reduce to

(7) > Ej(@m)z =0
el

<resp. > 2 Fl(@m) = 0> (Tm € X™),

JjEJ

(8) Y Ei(@n)z € C(X)

iel

<resp. > aiFl(Tn) € C(X)) (Fm € X™).

jeJ
In that case the (only) standard solution is

(9) E;, =0, ie€lI(resp. F; =0, jelJ).

A d-freeness of X will play an important role in this paper. For a
definition of d-freeness we refer the reader to [5]. Under some natural
assumptions one can establish that various subsets (such as ideals, Lie
ideals, the sets of symmetric or skew symmetric elements in a ring with
involution) of certain types of rings are d-free. We refer the reader to
[5] for results of this kind. Let us mention that a prime ring R is a
d-free subset of its maximal right ring of quotients, unless R satisfies
the standard polynomial identity of degree less than 2d.

Let R be a ring, and let

P(T1, 22, Tmgni1) = Z Tr(1)Tr(2) """ Tr(mtntl)
TESmint1

be a fixed multilinear polynomial in noncommutative indeterminates
Z1,T2,. .. ,Tmint+1- Further, let L be a subset of R closed under p,
i.e., p(5m+n+1) € L for all T1,225-++ s Tm4n+1 € L: where Tmtn+l =
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(1,22, .. yZmint+1). We shall consider a mapping T' : L — R
satisfying

(10) T(p(EernJrl))

= Z Tr(1) - xfr(m)T(xrr(erl))xrr(erZ) * Tr(m4n+1)
TESmint1

for all 1,22,... ,Zmi+nt1 € L. Of course, every two-sided centralizer
satisfies (10). Our goal is to show that under certain assumptions these
are in fact the only mappings with this property. In the first step of
the proof we derive a functional identity from (10). Let us mention
that the idea of considering the expression [p(Z,),p(¥,,)] in its proof is
taken from [2].

Theorem 4. Let L be a 2(m + n + 1)-free Lie subring of R closed
under p. If T : L — R is an additive mapping satisfying (10), then
there exist p € C(L) and X\ : L — C(L) such that T'(z) = px + \(x) for
allx € L.

Proof. Let us write K = m + n + 1 for brevity. Note that for any
a € R and Tj, € L* we have

k

[p(fk)aa] = Zp(mla cee 3 Ti—1, [miaa]ami—i-la s ,Ik)-
i=1

Using (10) it follows that

Tlp(zy), al

= Z [Tr(1), @]Tr2) - Ta(m) T (Tr(ma1))Tr(met2) = Tr(k)
TeSk

+ Z Tr())[Tr(2), A)T3)  Tr(m) T (T r(mt1) Ta(ma2) *** Tr(k)
TESk

+e 4 Z Tr(1) Ta(m) T [Zr(ma1)s A Tr(mt2) - - - Tr(k)
TESk

+ 4 Z Try  Tr(m) T (Tr(mt1))Tr(me2) [ Tr(k)s @]
TSk



770 MAJA FOSNER AND JOSO VUKMAN

Hence
(11) T[p(Zk), a]
= Z [Tr) - Zaim) AT (Tr(mt1))Tr(m2) " Tr(k)

TES)

+ Z Tr(1)  Tra(m) T [Tr(m1)s AlTr(my2) " Tr(k)
TESk

+ Z Tr1y  Taim) T (Ta(ma1)) [Trimt2) *** Tr(k)> 0]
TESk

In particular,

Tlp(Tx), p(yy)]

= Z [xTr(l) T xﬂ(m)ap(yk)]T(mw(m+1))xw(m+2) C (k)
TeS

+ Z Tr1) Tor(m) LT x (mr1)s PUR)Tr(my2) *  Tr(r)

TESk
+ Z Tr1) Ta(m) T (Trima1)) [Tr(mt2) **  Ta(r)> PT)]
TESK
for all 7,7, € L*. We also have (by (11))

(12)
‘P(mW(m+1)) = T[xrr(erl):p(yk)] = _T[p(yk)axfr(erl)]

+ Z [Tr(m+1), Yo (1) - - - Yo (m)] T Yo (m+1)) Yo (mt2) " Yo(k)
g€Sk

+ Z Yo(1) " Yo (m) T [Tr(m+1) Yo (m+1) Yo (m+2) - - - Yo (k)
o€Sk

+ Z Yo(1) " Yo (m) T (Yo (m+1)) [Tr(mt1)> Yo (m+2) ** * Yo (k)]
o€Sk

for all 7, € L™. Therefore (12) can be written as
T[p(Tk), p(Ys)]
= Z [Za1) ** Tr(m)s PURT (Tr (mt1)) Tr(ma2) " T (k)

+ Z Tr(1)  Tor(m) P(Tr(ma1)) Tr(mt2) - - - Ta(k)

+ ) ey () T (@nmr 1) [Ea(me2) -+ T iy (T3]
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for all Ty,y, € L*. On the other hand, using [p(Zk),p(7,)] =
—[p(Us), p(Tk)], we get from the above identity

Tlp(@r), p(7y)]
= Z [p(fk)v Yo(1) " yo’(m)]T(ya(m-i-l))ycr(m—i-Q) s Yo (k)

o€Sk

+ Z Yo(1) " Yo(m)P Yo (m+1) o (m+2) "~ Yo(k)
o€Sk

+ Z Yo 1) Yo (m) T Yo (m+1) [P(Zk)s Yo (m+2) * * * Yo ()]

o€Sk

for all Zy, 7, € L*, where

Lp’ (yTr(m—l—l) )

= Z [Tr(1) " Tr(m) Yo (mt1) | T (Tr(mt1))Tr(m2) " T (k)
TESk

+ Z Tr(1)* Ta(m) T[T r(ma1)s Yo (m41) | Tr(mt2) - i)
TESE

+ ) ey T T (@ rmr1) [ (mt2) -+ T (s Yo (mer1) |-
TES)

Let s : Z — Z be a mapping defined by s(i) = i — k. For each o € S
the mapping s~los: {k+1,...,2k} — {k+1,...,2k} will be denoted
by @. After comparing above identities and writing x4 ; instead of y;,
i1=1,...,k, we arrive at

0= Z Z ([%(1) T (k) Ta(k41)  Za(e+m)) L (TF(kmt1))
TESK oESK
+ Tak41) " Takrm) P (TF(htmt1))

+ 25041) T (T (ktmt1)) Tr(l) " Tr(k)

—Tr1) T (Tr(me1))Tr(mt2) 'wa(k+m+1)>wa(k+m+2) T (2k)
-2 > ([fcw(l) " Tr(m) Ta (k1) Ta(ak)] T (Tr(mt1))
TESEK 0 €Sk
FTr1y - Tr(m)P(Tr(met1))
+ T541) * Ta(tm) T (TF(htm41) ) To(htm+2) *** Tr(mt1)

—Zr1y Za(m) L (Tr(mt1)) To(ht1) xE(Qk)>m7r(m+2) (k)
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Since L is 2k-free, it follows that the so-obtained functional identity
has only a standard solution. In particular,

0= Z Z ([%(1) S Ta(k)s To(k41) T Ta(km) | L (TF(ktmt1))
TESE 0€ESmy1

+ Tokt1)  Ta(htm) P(TF(ktm+1))
+ Tokt1) * To(htm) T (To(ktm41))Tr(1) - - - T (k)

—Zr1) - Tr(m) T (Tr(mt1)) Tr(m+2) ** * Tr (k) To(kt1) wa(k+m+1)>-

Note that this is also a functional identity. It follows that

(13) Z Z Tr(mt1) " Ta(ktm) L (Tr(kimr1))
TESE 0€ESmy1

o T(‘Tﬂ’(m—i-l))xﬂ’(m—i-Q) < Lo(k+m+1) = 0,
where (i) = ¢ for all § = 1,... ,m. After some steps we arrive at
(14) T(x) =zp + A(z)

for all z € L, where p € R and A : R — C(L). Similarly, by (13) we
can prove

(15) T(z) = gz + p(z)
for all x € L. Comparing (14) and (15) we arrive at
xp — qr € C(L)
for all x € L. Tt follows that p = ¢ € C(L) and A = p. Thereby the
proof is completed. |

We are now in a position to prove Theorem 3.

Proof. The complete linearization of (3) gives us (10).

First suppose that R is not a PI ring (satisfying the standard poly-
nomial identity of degree less than 4k = 4(m + n + 1)). According to
Theorem 4 there exist p € C' and A : R — C' such that

T(x) = pz + A(z)
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for all # € R. Using this with (10) we see that

Ap(Tr)) = Z Tr(1)  Tr(m) MTr(ma1))Tr(m2) *** Tr(k)
TESk

for all z1,z9,...,z; € R. Since R is not a PI ring it follows that
A(R) =0 and so A = 0. Thus T is a two-sided centralizer, as desired.

Assume now that R is a PI ring. It is well-known that in this case
R has a nonzero center (see [10]). Let ¢ be a nonzero central element.
Pick any z € R, and set ©y = x93 = -+ = xp_1 = cr and z = z in
(10). We arrive at

T(klF=12%) = (n + m)!le™ 1 (2™ T (cz)z"n

+cx™T(z)x" + 2™ T (cx)z™m).

On the other hand, setting 1 = 2 = --- = xx_1 = c and x} = zF in
(10) we obtain

T(klE=12R) = (n + m)le™ =1 (T (2%) + zFT(c)m + T'(c)z*n).
Comparing the so-obtained relations we get
(16) 0= (n+m)z™T(cx)z" — nT(c)z" — ma*T(c).
In the case when z = ¢ we have
(17) T(c*) = cT(c).
After the complete linearization of (16) and putting z; = z and
To = --- = x} = c in the so obtained identity we get

(n + m)!c* " (—maT(c) — nT(c)x + (n + m)T(cx)) = 0.

This yields
(18) mzT (c) + nT(c)x = (n+ m)T(cx)
for all x € R. Now setting 1 = z and 3 = -+ = z;, = ¢ in (10) we
obtain

T(cF'z) = T ()
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for all € R. Using (18) we get

(19) nT(c)z + maT(c) = (n+ m)cT(x)
for all z € R. Thus

(20) cT(z) = T(cx)

for all z € R. Using (19) and (20) we arrive at

(n +m)T(zy)c = n(T(c)x)y + mayT(c)
= —maT(c)y + (n +m)T(z)cy + mzyT(c)

(21)
for all z,y € R. Multiplying (21) on the left by z € R we get
(22) (n+m)zT(zy)c = —mzzT(c)y + (n + m)zT(x)cy + mzxyT(c).
But, on the other hand, putting zz instead of z in (21), we obtain
(23) (n+m)T(zzy)c = —mzzT(c)y + (n + m)T(zx)cy + mzxyT(c).
Comparing (22) and (23) we get
o(T(zay) — 2T (xy)) = (T (22)y — 2T ()y)

for all z,y,z € R. Since R is prime it follows that
(24) T(zzy) = T(2z)y — 2T (z)y + 2T (zy)
for all z,y, z € R. In particular,

T(z™t ) = T(a™ )™ — 2™ T (z)z"™ + 2™ T (z™ )
for all z € R. Thus

2(n+m)z™T(z)z"c
= (n+m)T(z™z"c+ (n+m)z™T (2" )c
= ma™ T (c)z™ + nT(c)z™ !

+ ma™ T (¢) + nz™T(c)z"
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by (19). On the other hand, we have
2(n +m)z™T(z)z"c = 2ma™ T (c)z" + 2ne™T (c)z" L.
Comparing the so-obtained identities we arrive at
nT(c)z™ " L ma™ T (c) = ma™ T (c)z"™ + na™T(c)z™H,

for all z € R. A complete linearization of this identity gives us (putting
Ty =Ty =&, T3 =+ + = Tyin41 = € in the obtained relation)

([T(c), 2], 2] =0

for all x € R. Using Posner’s theorem [9] it follows that [T'(c),z] =0
for all z € R. From (19) we get T(x)c = T(c)x = zT(c) for all x € R.
Consequently, by (24) we get

T(zcy) = T(zc)y — 2T (c)y + 2T (cy),

which implies T'(zy) = T(2)y = 2T(y) for all z,y € R. Thus T is a
two-sided centralizer. Thereby the proof is completed. a
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