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ON KRONECKER POLYNOMIALS

AHMED AYACHE, OTHMAN ECHI AND MONGI NAIMI

ABSTRACT. Monic polynomials with integer coefficients
having all their roots in the unit disc have been studied by
Kronecker; they are called Kronecker polynomials. Let n > 1
be an integer. By a strong Kronecker polynomial, we mean
a monic polynomial P(X) € Z[X] of degree n — 1 and such
that P(X) divides P(X?) for each t € {1,...,n — 1}. We
say that P(X) is an absolutely Kronecker polynomial if P(X)
divides P(X?) for each positive integer t. We describe a
canonical form of strong (respectively absolute) Kronecker
polynomials. We, also, prove that if n is composite, then each
strong Kronecker polynomial with degree n — 1 is absolutely
Kronecker. If n is prime, then we prove that each strong
Kronecker polynomial P(X) # 1+ X + X2 + ...+ X* ! is
absolutely Kronecker.

0. Introduction. In 1857, Kronecker [4] was interested in monic
polynomials (i.e., with highest coefficient 1) with integer coefficients
having all their roots in the unit disc (Kronecker polynomials). Kro-
necker proved that the non-zero roots of such polynomials are on the
boundary of the unit disc (the unit circle); he also proved that there
are finitely many such polynomials of degree a given positive integer n.

In 2001, Pantelis Damianou [3] described a canonical form of these
polynomials and called them Kronecker polynomials. He proved that
these polynomials have the form P(X) = X*Q(X), where Q(X) is a
finite product of cyclotomic polynomials.

In 2000, Doru Caragea and Viviana Ene proposed the following
“Millennial polynomial problem” [1]: Let S be the set of monic,
irreducible polynomials with degree 2000 and integer coefficients. Find
all P € S such that P(a) divides P(a?) for every natural number a.
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The above problem has been solved in [2]. The authors have described
all monic polynomials P(X) with integer coefficients such that P(X)
divides P(X?); as P(X) = XM T[>7 | ¢:i(X)*", where ¢; is the ith
cyclotomic polynomial, k, = 0 for all but finitely many n and k,, > ko,
for all n.

We introduce the following polynomial concepts.

Definitions 0.1. Let P(X) be a monic polynomial in Z[X].

(1) We say that P(X) is a strong Kronecker polynomial (SK-
polynomial, for short) if P(X) divides P(X?) foreacht € {1,... ,n—1},
where n = 1 4 deg (P). The set of SK-polynomials with degree n — 1
will be denoted by SK|[n].

(2) P(X) is said to be an absolutely Kronecker polynomial (AK -
polynomial, for short) if P(X) divides P(X?) for each t € N\ {0}. The
set of all AK-polynomials of degree n — 1 will be denoted by AKn].

The justification for calling these polynomials Kronecker will become
clear later.

Since the set of Kronecker polynomials of degree a given natural
number n is finite [4], the sets SK[n] and AK|[n] are, also, finite.

Now, we are in a position to state the following problem.

Problem 0.2. For a given integer n > 2, determine explicitly the
sets, SK[n] and AK|[n].

In what follows, we denote by A4, (X) the polynomial
Ap(X) =1+ X+ X*+...+ X" L

We prove, here, that AK[n] = SK|n] \ {A,(X)} if and only if n is
prime and a positive integer n > 2 satisfies AK[n] = SK|[n] if and only
if n is a composite number.

Let ¢;(X) be the ith cyclotomic polynomial and ¢(i) the value of
the Euler totient on i. Our main result is Theorem 3.9 which states
that for an integer & > 2, a monic polynomial P(X) of degree k — 1
which does not vanish on 0 is an AK-polynomial if and only if there
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exist integers ay,aq, ... ,ax—1 > 0 such that P(X) = Hfz_ll(@(X))“i,
with the property that k — 1 = Zf;ll a;¢(i); and a; > a; whenever i

divides j.

1. Prime numbers. One of the aims of this paper is to link
arithmetical properties in Z with polynomial properties in the ring
Z[X].

For an integer k > 2, consider the polynomial Ay (X) :=1+X+---+
X*=1, Then, we prove that k is prime if and only if for each natural
number n a non multiple of k, the polynomial Ag(X) divides Ag(X™)
in the ring Z[X] (cf., Theorem 1.3).

We, also, prove that n, k are relatively prime if and only if the poly-
nomial Ay (X) divides A (X™) in the ring Z[X](cf., Proposition 1.4).

In [5], Nieto has discussed the divisibility of polynomials with integer
coefficients. Let f € Z[X]. Then we denote by ¢(f) the content of f
(i.e., the greatest common divisor of its coefficients).

Let us recall Nieto’s results.

Theorem 1.1. Let f,g € Z[X]. Then g divides f in Z|X] if and only
if c(g) divides c(f) and g(n) divides f(n) for infinitely many n € Z.

As an application of Theorem 1.1, Nieto has proved the following.

Theorem 1.2. Let k > 2 be a fized integer. Then the non constant
irreducible monic polynomials f € Z[X] such that f(n) divides f(n*)
for all integers n are the cyclotomic polynomials with order j coprime
with k.

Direct application of Nieto’s results yields the following.

Theorem 1.3. Let k > 2 be an integer, and let P(X) be one of the
two polynomials ¢r(X) or Ap(X) := 1+ X +--- + XF~1. Then the
following statements are equivalent:

(i) k is prime;

(ii) for each natural number n non multiple of k, the polynomial

P(X) divides P(X™) in the ring Z[X].
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Proof. (i) = (ii). If k is prime, then P(X) = ¢%(X); and the result
follows trivially by combining Theorems 1.1 and 1.2.

(ii) = (i). Suppose that k is not prime. Then there exist two integers
p,q > 2 such that k = pq.

(a) Suppose that P(X) = ¢r(X). Let A be a kth primitive root of
unity. Then AP is a root of ¢ (X) (since P(X) divides P(XP)). But,
as ged(k,p) # 1, AP is not a kth primitive root of unity, contradicting
the definition of ¢x(X).

(b) Suppose that P(X) = Ap(X). Let p := exp(2im/k). Then p? is
a root of Aj. Since, in addition, P(X) divides P(XP), (u?)? is a root
of Aj. This leads to Ax(1) = 0; a contradiction.

Therefore, k is a prime number. ]

The following proposition translates the notion of relatively prime
numbers into a division in the ring Z[X].

Proposition 1.4. Let n,k € N\ {0,1} and P(X) be one of the
two polynomials ¢r,(X) or Ar(X). Then the following statements are
equivalent:

(i) n, k are relatively prime;

(ii) the polynomial P(X) divides P(X™) in the ring Z[X].

Proof. (i) = (ii). If we suppose that P(X) = ¢x(X), then the
implication follows immediately from Nieto’s results (Theorems 1.1 and
1.2).

Now, suppose that P(X) = Ag(X). Let us denote by A :=
exp(2im/k); then Ag(X) = (X — A\)(X — A\?) .- (X — \k1),

To prove that Ag(X) divides Ax(X™), it is sufficient to show that
At =£ 1, for each t € {1,...,k — 1}. Indeed, since ged(n, k) = 1, n
is invertible modulo k; and consequently, tn # 0 (mod k), for each
te{l,...,k—1}. Thus, \'™ # 1.

(ii) = (i). The hypothesis implies that nt Z 0 (mod k), for each
te€{L,... ,k—1}. Hence the map ¢ : Z/kZ\ {0} — Z/kZ\ {0} which
takes & to nx is one-to-one; and thus it is also onto. It follows that n
is invertible modulo k. Therefore, gcd(n, k) =1. O
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2. Strong Kronecker polynomials.

Examples 2.1. Let k € N\ {0,1}.
(1) By Theorem 1.3, k is prime if and only if

Ae(X):=14+X+---+ X" ! € SK[k].

(2) For each integer k > 2, we have AK[k] C SK|[k].

(3) Let m and p be nonzero natural numbers. Then, (X? — 1)™ and
X™ are AK-polynomials.

(4) The product of two AK-polynomials is an AK-polynomial (that
is, AK[k|AK[s] C AK[k+ s — 1]).

(5) In connection with (4), the containment SK[k]SK|[s] C SK[k +
s — 1] does not hold in general. To do so, take P(X) := X + 1 and
Q(X):= X%+ X+1. Then P € SK[2] and Q € SK|[3]; but P(X)Q(X)
does not divide P(X3)Q(X?).

We need some preliminary results which will be used extensively in
the next section.

We begin by some straightforward observations about polynomials.

Observation 2.2. Let k > 3 be an integer and P(X) € C[X] be a
polynomial of degree k — 1. Suppose that there exists an integer t > 2
such that P(X) divides P(X"). Then the following properties hold.

(1) Let A be a nonzero root of P(X). Then ) is a root of unity. In
particular, |A| =1 (so, P(X) is a Kronecker polynomial).
(2) If X is a real root of P(X), then A € {—1,0,1}.

Proof. (1) Since P(X) divides P(X*), we deduce that A" is a root of
P(X) for each n € N. Since P(X) has at most k£ — 1 roots, there exist
n # m in N such that A\*" = X", Hence there is a non zero integer
d()\) such that A% = 1; and consequently, |A| = 1.

(2) Follows immediately from the fact that if A # 0, then |A| =1. O

Observation 2.3. Let P(X) € R[X] be a monic polynomial of odd
degree. Suppose that P(X) divides P(X3); then P(X) vanishes on one
of the following points: —1, 0 and 1.
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Proof. (a) If P is a polynomial of degree 1, then P(X) = X — a, for
some real number a. As a® is also a root of P(X), then a® = a. Thus
a€{-1,0,1}.

(b) If P(X) is a polynomial of degree > 3, then it is well known that
P(X) has at least one real root. Finally, according to Observation 2.2,
P vanishes on 0 or 1 or —1. |

Now, let us shed some light on polynomials P(X) € SK[k], when k
is even.

Theorem 2.4. Let k > 4 be an even natural number and P(X) €
SKIk]. Then P(0) =0 or P(1) =0.

Proof. Suppose that P(0) # 0 and P(1) # 0. Let A € C be a root of
P(X). Then A\, A\2,... ,\*~! are k — 1 pairwise distinct roots of P(X).
As A\? is also a root of P(X), we deduce that

(A2 NI = 2 Ry

Hence, \*=' = )\?, for some 1 < ¢t < k — 1. Thus, we have
|2t — (k — 1) < k — 1. But, since 1 is not a root of P(X) and
A2t=(k=Dl = 1 we get |2t — (k — 1)| = 0; which contradicts the fact
that k is even. O

The case “k is odd” is illustrated by the following result.

Theorem 2.5. Let k > 3 be an odd natural number and P(X) €
SK|k]. Then the following statements are equivalent:

(i) P(0) # 0 and P(1) # 0;
(ii) k is prime and P(X) = Ag(X).
Proof. The implication (ii) = (i) is straightforward.

Conversely, suppose that P(0) # 0 and P(1) #0, and let A € C be a
root of P(X). Then, as in the proof of Theorem 2.4, we have

N R L LD LD Sl

Hence, A\*=2 = A%, for some 1 <t < k — 1.
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The idea consists in proving that ¢t = k — 1. Suppose that ¢ # k — 1;
then 1 < ¢t < k — 2; so that |2t — (k — 2)] < k — 2. But, since
A2t=(k=2)l = 1 and 1 is not a root of P(X), we get [2t — (k — 2)| = 0;
this contradicts the fact that k is odd.

It follows that ¢ = k — 1; and consequently, A\* = 1. Thus,
P(X) = Ak(X).

By hypothesis, we have A, (X) = P(X) € SKIk]; so that k is prime,
by Theorem 1.3. O

Looking at Theorem 2.4 and Theorem 2.5, one may try determining
polynomials P(X) € SK[k] which do not vanish on 1; that is the aim
of the following result.

Theorem 2.6. Let k > 3 be a natural number and P(X) € SK|k]
be such that P(1) # 0. Then the following properties hold.

(i) If k is prime, then P(X) = Ai(X) or P(X) = X*~1.
(ii) If k is not prime, then P(X) = X1,

Proof. Let us write P(X) = X'Q(X), with Q(X) € Z[X] and
Q(0) # 0. Then, clearly, Q(X) € SK[k — i]. Three cases are to be
considered.

Case 1: 4 = 0. In this case, P(X) does not vanish on 0 and 1. Hence
k is prime and P(X) = Ax(X), by Theorem 2.4 and Theorem 2.5.

Case 2: 1 #0 and k — i > 3. We will show that this case cannot
happen. Indeed, since Q(X) € SK[k—i] and Q(X) does not vanish on
0 and 1, we conclude that p := k — 7 is prime and Q(X) = A,(X), by
Theorem 2.4 and Theorem 2.5. Thus P(X) = X* P4,(X). But, since
P(X) divides P(X?), we deduce that A,(X) divides A,(X?). This
yields a contradiction, by Proposition 1.4.

Case 3: i # 0 and k — i < 3. In this case k —i € {1,2}.
(a) Suppose that k —i =1, then P(X) = X* 1.

(b) If we suppose that k —i = 2, then P(X) = X*2Q(X). Hence
Q(X) = X — )\, where A\ € Z. Since A\? is a root of P(X), we get
A2 € {0,A\}. Tt follows that A € {0,1}; which contradicts the fact that
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Q(0) # 0 and P(1) # 0. Therefore, the eventuality “k — i = 2” cannot
happen.

As a conclusion, one may write:
(i) If k is prime, then P(X) € {Ax(X), X*~1};
(ii) If k is not prime, then P(X) = X*~1. o

Recall that the reciprocal P*(X) of a polynomial P(X) of degree n is
defined by P*(X) := X"P(1/X). A polynomial is called self-reciprocal
if it coincides with its reciprocal. The polynomial P(X) is said to be
anti-reciprocal if P(X) = —P*(X).

Before providing further information about SK-polynomials (for & >
3), let us state two technical lemmata. The following one may be well
known; but for the sake of completeness, we include its proof.

Lemma 2.7. Let k > 3 be an integer and P(X) € R[X] a monic
polynomial of degree k — 1. Suppose that all roots of P(X) are on the
unit circle. Then the following properties hold:

(a) P(0)2 =1 and P(X) is either self-reciprocal or anti-reciprocal.
(b) If P(0) = (=1)*, then P(—1) = 0.

Proof. (1) (a). Let A1, Az,...,Ax—1 be in C such that P(X) =
[T (X = A). Since P(X) € R[X], we have P(X) = [[_ (X — X))

On the one hand, we have

Pr(x) = [T -2 = [[(-30- [ %) = PO)P(X)

and on the other hand, P*(X) =1+ ag_2X + -+ + apX*~1, where a;
is the coefficient of X' in P(X). Thus, P(0)? = 1, and consequently,
P(X) is either self-reciprocal or anti-reciprocal.

(b) As P*(X) = P(0)P(X) (according to (a)), we have (—1)*~1P(-1)
= (-=1)*P(—1). This leads to P(—1) = 0. O

Combining the previous lemma and Observation 2.2, we easily get
the following.



ON KRONECKER POLYNOMIALS 715

Lemma 2.8. Let k > 3 be an integer and P(X) :=ap+a1 X +---+
a2 X 2+ X*=1 a monic polynomial in R[X] with degree k — 1 such
that ap # 0. Suppose that there exists an integer t > 2 such that P(X)
divides P(X*). Then P(X) is either self-reciprocal or anti-reciprocal.

The following result follows, trivially, from Theorem 2.6, Lemmas 2.7
and 2.8.

Theorem 2.9. Let k > 3 be an integer and P(X) an SK -polynomial
with degree k — 1. Then the following properties hold.

(1) If P(0) = 0 and P(X) # X*~1, then P(1) = 0.

(2) P(0) € {-1,0,1}.

(3) If P(0) # 0, then P(X) is either self-reciprocal or anti-reciprocal.

(4) If P(0) = (—1)k, then P(—1) = P(1) = 0.

Remark 2.10. According to the above result, if P(X) = a; X+ -+ +
X*=1is an SK—polynomial such that k > ¢ + 3, then a; € {0,1,—1}
(since (P(X)/X*) € SK[k —i]).

3. Absolutely Kronecker polynomials. We begin by a remark
about AK-polynomials.

Remark 3.1. Let k > 2 be an integer and P(X) € AK|[k|. Then P(X)
vanishes on 0 or 1.

Indeed the result holds for each polynomial P(X) € SK|[k], such that
P(X) divides P(X*): Suppose that 0 and 1 are not roots of P. Let
A € C\{0, 1} bearoot of P(X). Then A, A2, ... , A are k distinct roots
of P(X), a contradiction (since P(X) is of degree k — 1). Therefore, 0
or 1 is a root of P(X).

Notation 3.2. Let A be a root of a polynomial P(X); we denote by
mp(x)(A) the multiplicity of X relatively to P.

The following lemma is needed.
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Lemma 3.3. If A is a nonzero root of some P € SKIk|, then there
exists an i € {1,2,... ,k} such that \' = 1.

Proof. By Observation 2.2 (1), the order of A in the multiplicative
group C* is finite; let p be this order. Suppose that p > k; then A,
A2,...,AF"Lare k — 1 distinct roots of P; and consequently, P(0) # 0
and P(1) # 0. Hence, P(X) = Ai(X), by Theorems 2.4 and 2.5. Thus
AF = 1, contradicting the fact that the order of A is > k.

It follows that there exists an i € {1,2,...,k} such that \* = 1. a

Proposition 3.4. Let P(X) € SKIk] be such that P(X) # Ax(X).
If X is a nonzero root of P(X), then mp(x)(A') > mp(x)(A), for each
integer t.

Proof. Let p be the order of \. It is sufficient to prove the result for
t €4{1,2,...,p}. Note that this result is trivial if t =1 or A = 1. We
may, thus, suppose that ¢t % 1 and A # 1. Also, we have already seen
that p < k (see Lemma 3.3).

In fact, in our case, we have p < k; indeed, if p = k, then
M\ A% L. AP~ L are distinct roots of P(X), hence P(X) = Ax(X), a con-
tradiction. We may suppose that 2 <t < p < k—1. Set m; = mp(x)(A)
and m; = mp(x)(A'); then we have P(X) = (X —\)™ (X —X))™Q(X),
where Q(\) # 0 and Q(\*) # 0. Thus P(X?') = (X! — \)™ (X" —
AH™Q(X?). As P(X) divides P(X?), then (X — XA)™ divides (Xt —
X - A)mQ(XY) = (X — A (X — )™ H(X)Q(XY), where
H(X)=X"1 4+ X2\ + ...+ XX*=2 + \t~1, But each of the follow-
ing polynomials (X?® — \)™, Q(X!) and H(X) does not vanish at .
Therefore, (X —A)™* divides (X —\)™t, and consequently, m; < my. O

Remarks 3.5. (1) If k is a prime number and P(X) = Ay(X), then
P(X) € SKIk]. Let X be a root of P(X). Then o(A\) = k and any other
root \(1 < ¢ < k—1) has order k; moreover, mp(x)(A") = mpx)(A) =
1, for each t € {1,2,... ,k —1}.

(2) The inequality mp(x)(A*) > mp(x)(\) in Proposition 3.4 may
be an equality. Indeed, if A is a root of P(X) of order p and t €
{1,2,...,p—1} is such that o(\) = o(At) = p, then {\,\%,... JAP71} =
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{5 (A2, ..., (AY)P71}. Thus, according to Proposition 3.4, we have
mpx)(AY) > mpxy(A) and mpx)(A) > mpx)(A’). Therefore,
mP(X)O‘t) =mp(x)(A)-

Proposition 3.6. Let P(X) € SKIk] be such that P(X) # Ax(X).
If X is a nonzero root of P(X) of order p, then for each n > 1, the
following properties hold.

(i) A is a root of P(X™).

(ii) mp(xn)(A) = mp(x)(A") where r is the remainder of the Euclid-

ian division of n by p.

Proof. We consider two cases.

Case 1. Suppose that p = 1. In this case, A = 1 and P(X) has
the following form P(X) = (X — 1)°Q(X), where s = mp(x)(1) and
Q(1) #0. As P(X™) = (X™ —1)*Q(X™) and Q(1") = Q(1) # 0, then
mp(xn) (1) = mp(x)(1).

Case 2. Let us suppose that o(A) = p > 2. As in the proof of
Proposition 3.4, we have o(\) = p < k—1 and A, \?,... , \? are distinct
roots of P(X). Set m; = mp(x)(A") for each t € {1,2,...,p}; then
P(X) has the following form

P(X) = (X = N)™(X =A™ (X = A)™Q(X),
where Q(A\!) # 0 for each t € {1,2,...,p}. Writing the Euclidian
division of n by p, we get n = gp + r, where r is an integer such that
0<r<p. Thus \" = \" € {\,\%,...\} and
P(Xn) — (Xn o )\)ml(Xn o )\Z)mz .. (Xn o )\r)mr
S (X = AP Q(XT™)
_ (Xn _ )\)ml(Xn _ )\Q)mz (Xn _ )\n)mr
(X QX
= (X = N)"™R(X),

where
R(X) — Q(Xn)(anl + X’I’L*Q}\ et X}\n—z + )\nfl)mr
p
[T —anm.

t=1
t#£r
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(A" =A™ = QAT (nA" )™

-

R(\) = Q") (nA" =)™

t=1
t#r
P
[T =) #o,
t#£r
t=1
we have mP(Xn)(A) =My = Mp(X) (AT) ]

The following results clarify the links between the two sets SK[n] and
AK]|n].

Theorem 3.7. Let k > 3 be an integer.
(i) If k is prime, then AK[k] = SK[k] \ {Ax(X)}.
(i) If k is composite, then AK[k] = SK|k].

Proof. Let P(X) € SK[k] \ {Ax(X)}. We will prove that P(X)
divides P(X™) for each integer n > 1. By definition, P(X) divides
P(X™) for each integer n such that 1 <n < k—1. Let us suppose that
n > k. To show that P(X) divides P(X™), it suffices to show that each
root A of P(X) is also a root of P(X™) and mp(xn)(A) > mpx)(N).
Two cases have to be considered:

Case 1. Suppose that A = 0. Then P(X) = X°*Q(X), where
s = mp(x)(0) and Q(0) # 0. As P(X") = X™*Q(X"), then 0 is a
root of P(Xn) and mp(Xn)(O) = NnMp(x) (0) > mp(X)(O)

Case 2. Suppose that A # 0 and o()\) = p. Then, according to
Proposition 3.6, X is a root of P(X™) and mp(xn)(A) = mpx)(AY)
for some ¢t € {0,1,...,p — 1}. Now, by Proposition 3.4, we have
Mp(x) ()\t) > mp(x) ()\) It follows that mp(Xn)(A) > mp(x) ()\) O

Corollary 3.8. Let P(X) be a polynomial such that P(X) =
X*Q(X) with Q0) #0,s>1 and k > 2+ s. Then P(X) € SK[k] if
and only if Q(X) € AK[k — s].
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Proof. Set m = k — s. Then, by Remark 2.10, Q(X) € SK][m].
According to Theorem 3.7, to prove that Q(X) € AK[m)], it suffices to
show that Q(X) # A, (X). Suppose that Q(X) = A,,(X). Since
m < k — 1, P(X) divides P(X™), so P(X™) = P(X)F(X) for
some polynomial F(X) € Z[X]. As P(X) = X°A4,,(X), we get
XM 5 A (X™) = Ap(X)F(X). Thus A,,(X) divides 4,,(X™), a
contradiction with Proposition 1.4. ]

Now, we are in a position to state our main result. First, let us
remark that, according to Theorem 3.7 and Corollary 3.8, in order to
know polynomials P(X) € SK]Ik] it is enough to detect polynomials
P(X) € AK|[k] such that P(0) # 0.

Theorem 3.9. Let k > 2 be an integer and AK°[k] the set of
polynomials P(X) € AKIk] such that P(0) # 0. Then the following
statements are equivalent:

(1) P € AK[K];

(2) there exist integers ai,as, ... ,ap—1 > 0 such that

k—1
P(X) = [J(¢:(x))™,

=1
with k—1 = Zf’;ll a;p(1); and if i divides j, then a; > o.

Proof. (1) = (2). Let P € AK°[k]. Then, according to Propo-
sition 1.4, P # Ai(X). Let X be a root of P. Then A is of or-
der I € {1,2,...,k — 1} (since P # Ai(X)). Now, if p is a root
of the lth cyclotomic polynomial ¢;(X), then u is also a root of P
and mp(x)(u) = mpx)(A) (by Remark 3.5 (2)). Hence, denoting
a; := mp(x)(A), we see that (¢;(X))* divides P(X).

For each i € {1,2,... ,k — 1}, let a; be the integer defined by:
(a) a; = 0, if there is no root of P of order i;

(b) if P has a root of order i, then we let a; be the multiplicity of
that root relative to P (the multiplicity depends only on the order of
the root; Remark 3.5 (2)).
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Under the above notations, we have proved that Hfz_ll (pi( X))
divides P(X); and since the two polynomials are monic, it suffices to
show that P(X) divides Hf;ll (¢i(X))™ to get the equality. Indeed, let
A be a root of P with multiplicity m. Let [ denotes the order of A, then
(X — )™ divides (¢;(X))™, proving that P(X) divides the polynomial
[Ty (9i(X))™.

Note that the previous equality is a direct consequence of Lemma 3.3,
Proposition 3.4 and the canonical form of Kronecker polynomials pro-
vided by Damianou in [3]; but, here we have proved it using our own
results to make the paper as self contained as possible.

To end the current implication, we prove that, if7,j € {1,2,... ,k—1}
such that ¢ divides j, then o; > a;.

Indeed, there exists an integer s such that j = is. Clearly, a; may
be assumed a nonzero integer. In this case, there exists a root A of
P such that o(A\) = j and mp(x)(\) = «;. Hence, A\° is a root
of P of order i; so that mp(x)(A®) = ;. But, by Proposition 3.4,
mp(x)(A°) > mp(x)(A) = aj; this gives immediately a; > ay.

(2) = (1). Let P(X) = [[F7'(¢:(X))*, with the property that
k-1 = Z;:ll a;p(t); and if ¢ divides j, then o; > a;. We have,
clearly, P(0) # 0. Let us prove that P(X) € AK°[k]; that is P(X)
divides P(X™) for each integer n > 1. It suffices to show that for
each root A of P, X is also a root of the polynomial P(X™) and
mpxn)(A) = mp(x)(A).

Let A be a root of P; then there exists an ¢ € {1,2,... ,k — 1} such
that ¢;(A) = 0. Hence mp(x)(A\) = a; > 1 and o(A) = 4. Thus
A" e {1, A%, ... , A1} so to prove that A is a root of P(X™), it is
sufficient to show that 1, X, X\2,...,A*"! are roots of P.

Indeed, let t € {1,2,... ,i — 1}, then o(A\!) := d is a divisor of i. By
hypothesis, ag > ;. Hence ag # 0. But since ¢4(A\!) = 0, we get
P(\Y) =0.

Now, let us show that mp(xn)(A) > ;. Let d = o(A"); then d divides
i. But, on the one hand, we have ¢4(A\™") = 0 and on the other hand

we have ag > «;, showing that the multiplicity of A relative to the
polynomial P(X") = H;:ll(qﬁi(X"))o‘i is greater than ag > o. o



ON KRONECKER POLYNOMIALS 721

4. Numerical examples. This section is devoted to some numer-
ical examples illustrating some of theoretical results of the previous
sections.

Let n be an integer such that n > 2. We denote by SK|n| the set
of all strong Kronecker polynomials of degree n — 1, the cardinality of
SK|n] will be denoted by SK(n). We, also, denote by AK|n| the set
of all absolutely Kronecker polynomials of degree n — 1; the cardinality
of AK[n] will be denoted by AK(n). The set of all polynomials
P(X) € AK]|n] such that P(0) # 0 will be denoted by AK°[n]; and
AK?(n) will denote its cardinality.

As a direct consequence of our theoretical study of strong (respec-
tively absolutely) Kronecker polynomials we have the following prop-
erties:

(1) SK[n] = AK|[n], if n is composite.
(2) SK[n] = AK[n]U{A,(X)}, if n is an odd prime.
(3) AK[n] = U} X*AK [n — 4], where

XAKln —i] .= {X'f: f € AK°ln —i]} and AK"[1] = {1}.

(4) SK(n) = AK(n), if n is composite; and SK(n) = AK(n) +1, if n

is an odd prime number.

(5) SK[2|={X +a:a€Z}and AK[2] = {X, X — 1}.

(6) AK(n) = 3012y AKO(n — i) = 1L, AKC(i).

In the following data the polynomial P(X) = [[77]' (¢:(X))* with
degree n — 1 will be denoted by (a1, ag,...,an_1).

If we would like to check by hand the polynomials in question, the
following list of cyclotomic polynomials will be useful:

(1) ¢2(X) =X -1,
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(1) dr(X) =X+ X5+ X1+ X3+ X2+ X + 1,
(8) ¢s(X) = X' +1,
(9) po(X) = Xb + X3 + 1,
(10) ¢10(X) = X* — X* + X2~ X +1.
TABLE 1. Elements of AK%[n] for n € {2,3,4,5,6}.
n 2 3 4 5 6
@ | @1 ] @o1) | (1,1,0,1) [ (1,0,0,0,1)
(2,0) | (2,1,0) | (1,1,1,0) | (2,1,0,1,0)
Elements of AK®[n] (3,0,0) | (2,0,1,0) | (2,1,1,0,0)
(2,2,0,0) | (3,0,1,0,0)
(3,1,0,0) | (3,2,0,0,0)
(4,0,0,0) | (4,1,0,0,0)
(5,0,0,0,0)
TABLE 2. Elements of AK°[7] and AK°[8].
n 7 8
(1,1,0,0,1,0) | (1,0,1,0,1,0,0)
(1,1,1,0,0,1) | (2,1,0,0,1,0,0)
(1,1,1,1,0,0) | (2,1,1,0,0,1,0)
(2,0,0,0,1,0) | (2,1,1,1,0,0,0)
(2,0,2,0,0,0) | (2,1,2,0,0,0,0)
(2,2,0,1,0,0) | (3,0,0,0,1,0,0)
(2,2,1,0,0,0) | (3,0,2,0,0,0,0)
(3,1,0,1,0,0) | (3,2,0,1,0,0,0)
Elements of AK®[n] | (3,1,1,0,0,0) | (3,2,1,0,0,0,0)
(3,3,0,0,0,0) | (4,1,0,1,0,0,0)
(4,0,1,0,0,0) | (4,1,1,0,0,0,0)
(4,2,0,0,0,0) | (4,3,0,0,0,0,0)
(5,1,0,0,0,0) | (5,0,1,0,0,0,0)
(6,0,0,0,0,0 | (5,2,0,0,0,0,0)
(6,1,0,0,0,0,0)
(7,0,0,0,0,0,0)
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TABLE 3. Elements of AK°[9] and AK°[10].

9

10

Elements of AK®[n]

(1,1,0,0,0,0,1,0)
(1,1,0,1,0,0,0,1)
(1,1,0,1,1,0,0,0)
(1,1,1,0,1,0,0,0)
(1,1,1,1,0,1,0,0)
(2,0,0,0,0,0,1,0)
(2,0,1,0,1,0,0,0)
(2,2,0,0,1,0,0,0)
(2,2,0,2,0,0,0,0)
(2,2,1,0,0,1,0,0)
(2,2,1,1,0,0,0,0)
(2,2,2,0,0,0,0,0)
(3,1,0,0,1,0,0,0)
(3,1,1,0,0,1,0,0)
(3,1,1,1,0,0,0,0)
(3,1,2,0,0,0,0,0)
(3,3,0,1,0,0,0,0)
(3,3,1,0,0,0,0,0)
(4,0,0,0,1,0,0,0)
(4,0,2,0,0,0,0,0)
(4,2,0,1,0,0,0,0)
(4,2,1,0,0,0,0,0)
(4,4,0,0,0,0,0,0)
(5,1,0,1,0,0,0,0)
(5,1,1,0,0,0,0,0)
(5,3,0,0,0,0,0,0)
(6,0,1,0,0,0,0,0)
(6,2,0,0,0,0,0,0)
(7,1,0,0,0,0,0,0)
(8,0,0,0,0,0,0,0)

(1,0,1,0,0,0,0,0,1)
(1,0,1,0,0,0,1,0,0)
(2,1,0,0,0,0,1,0,0)
(2,1,0,1,0,0,0,1,0)
(2,1,0,1,1,0,0,0,0)
(2,1,1,0,1,0,0,0,0)
(2,1,1,1,0,1,0,0,0)
(2,1,2,0,0,1,0,0,0)
(2,1,2,1,0,0,0,0,0)
(3,0,0,0,0,0,1,0,0)
(3,0,1,0,1,0,0,0,0)
(3,0,3,0,0,0,0,0,0)
(3,2,0,0,1,0,0,0,0)
(3,2,0,2,0,0,0,0,0)
(3,2,1,0,0,1,0,0,0)
(3,2,1,1,0,0,0,0,0)
(3,2,2,0,0,0,0,0,0)
(4,1,0,0,1,0,0,0,0)
(4,1,1,0,0,1,0,0,0)
(4,1,1,1,0,0,0,0,0)
(4,1,2,0,0,0,0,0,0)
(4,3,0,1,0,0,0,0,0)
(4,3,1,0,0,0,0,0,0)
(5,0,0,0,1,0,0,0,0)
(5,0,2,0,0,0,0,0,0)
(5,2,0,1,0,0,0,0,0)
(5,2,1,0,0,0,0,0,0)
(5,4,0,0,0,0,0,0,0)
(6,1,0,1,0,0,0,0,0)
(6,1,1,0,0,0,0,0,0)
(6,3,0,0,0,0,0,0,0)
(7,0,1,0,0,0,0,0,0)
(7,2,0,0,0,0,0,0,0)
(8,1,0,0,0,0,0,0,0)
(9,0,0,0,0,0,0,0,0)

723
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The following data gives the values of the counting functions AK(n),
AK®(n) and SK(n) for 3 < n < 20.

n | SK(n) | AK(n) | AKO(n)
3 4 2
4 7 3
5 14 13 6
6 20 20 7
7 35 34 14
8 50 50 16
9 80 80 30
10 115 115 35
11 177 176 61
12 243 243 67
13 362 361 118
14 494 494 133
15 705 705 211
16 944 944 239
17| 1330 1329 385
18 | 1750 1750 421
19 | 2414 2413 663
20 | 3145 3145 732

We close this paper by stating some problems.

Problem 4.1. Determine the generating functions of AK(n),
AKC(n) and SK(n), that is, the functions:

iAICO(n)x", iAK(n)m", iSlC(n):L‘".
n=1 n=1 n=3

Problem 4.2. Determine the asymptotic behavior of the counting

functions AK(n), AK(n) and SK(n).
Problem 4.3. Find an algorithm determining the set AK°[n).
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