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1. Introduction. The Bellman function method has been around
for quite some time in mathematics, but not under that name, and
not in the form in which I present it here. Its ideas are used in the
theory of optimal control of stochastic processes, closely connected
with Bellman’s principle. For a detailed and interesting description
of how the method I present here ties in with stochastic processes, see
[7]. In Harmonic Analysis, the Bellman method probably made its
first appearance in [2], in which Burkholder proves sharp estimates on
martingale transforms. Then Nazarov, Treil and Volberg used it in [6],
and gave it the name “Bellman function method” in honor of its use in
control theory.

In this paper, I will describe how the Bellman function method can be
used to prove bounds on sums indexed by dyadic intervals. I begin with
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a very simple example, then describe a step-by-step procedure. A word
of warning to those who have been led to believe that this method is a
panacea: In the Bellman function method, we find an upper bound on
a dyadic sum by finding the so-called Bellman function corresponding
to this sum. Once we have the Bellman function, the rest follows easily.
However, finding the function can be tricky. While there are some tools
we can use to help us, fundamentally we are forced to guess at the
right function. This can be a time consuming and frustrating process.
That being said, the numerous questions that have been answered with
this method, many of which were open for many years, show that the
method is certainly worth while.

Note. I recommend that after reading this introduction to Bellman
functions, the reader also read [7] and possibly [4]. They are more
advanced than this paper, and cover a wider variety of applications.
[7], which explains the connection of the Bellman function method to
stochastic control theory is written in a very accessible way, even for
the reader with no prior knowledge of stochastic integrals. It works
through many examples, often from both the stochastic control and
the Bellman method points of view. In some examples, the Bellman
function method is used to bound quantities where no sum seems to
be involved, something not touched in this paper. [4] also contains an
introduction to the Bellman method, but then moves quickly into new
estimates of a variety of singular integral operators in scalar and matrix
weighted LP spaces.

1.1. A simple example. The easiest way to get a feeling for how
the method works is to look at an example. We will need some notation
for this example: Let I denote a dyadic interval, i.e., an interval of the
form [k2¢, (k + 1)2°) where k and i are integers. I’s halves, which
are again dyadic intervals, are denoted by I; (left half) and I, (right
half). gr denotes the average of the function g over the interval I, ie

gr =1/ [; 9(x) da.
Imagine that you wanted to prove the following theorem:

Theorem. Let g be a positive function bounded above by 1, and J
any dyadic interval. Then

I
Z (92, — 91,)° il <C.

= |71
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One interesting aspect of this sum is that it is indexed by dyadic
intervals, which have a binary structure. Thus, we can picture the
terms of the sum in the following way:

(gJ, - 9J,»)2

OJ,, ngr)Q% qu gJ,.r)%

/ /

21 21 21
1 1 ngu 99r )" % (anl r) 1

AN

\ —

Now, imagine that we have a tool that starts at the top level of this
tree and bounds the term (g7, — gs.) by C. Then our tool traverses
the tree to the next lower level, adds the terms there to the term we
already have, and again bounds the new sum by C. So now we have
(95, — 92,)% + (1/2) (95, — 95,)* + (1/2)(g4,, — 94,,)® < C. Assume
that we can always traverse from one level to the next lower one, add
the terms on that level, and not increase the bound. That means that
we can bound all partial sums ;7 71200 (91, — gr,)?|1]/|J] by C, and
thus the whole sum is bounded by C. This is exactly how the Bellman
method works. It lets us transition from one level to the next, adding
terms on the way, and never increasing the bound.

Let us see how this is done.

Proof. Let B(xz) = x — 22, © € [0,1]. It is easy to verify that (for
C=1)

1. C > B(z) > 0.
2. B(z) > c(z— —24)? + [B(z-) + B(z4)]/2 for z_,z € [0,1] such
that ¢ = (z_- + z4)/2.

This function B is the tool we are looking for. We refer to it as the
Bellman function of the problem. Here is how we use it: Note that
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all averages of g are between 0 and 1, and that g5 = (1/2)(gs, + 9.)-
Thus we can let z_ = g5, 4+ = g7, and x = gy. Then, by the above
inequalities for B(z),

B(gs,) + B(gs,)

C > Blgs) > clgsn —95.) + 5

(Since [B(gy,) + B(g,,)]/2 is positive, this shows that C' > ¢(g,, —
g7,)%.) Now we will apply the difference inequality again, this time
to B(gs,) and B(gy,), with z_ = g;,, 24 = g5, and z = gj,, and
T_ =gy, T+ = gJ,, and z = g;,, respectively. Then

B(gs,) + B(gs,)
2
2 c 2 c
> c(ng - ng) + 9 (g(Jl)r - g(Jz)l) + 9 (g(Jr)l - g(JT)r‘)

+ B(g(Jl)z) + B(g(-]l)r) + B(g(JT-)z) + B(g(v]r)'r)
4

C Z C(ng - gJT)2 +
2

and so

2 C 2 C 2
C>clgn —91.)" + 5 (900, = 900.)" + 5 (900 = 97).)

Repeat this procedure n times, each time applying the inequality to
the B’s on the right, expressing B(gas) in terms of B(gyy, ), B(gar,.) and
(90, — gm,)*.

We get
2 |

CZC Z (gll_gl'r‘) |,]‘

ICT|1|>2-71J|

1 n+1
X Bea(3)
KcJ
|K|=27""1]J|
The |I]/|J]| stems from the factors 1/2 that we get with each repetition.

Since B(gk) is always positive, we can simply omit the second sum
without changing the inequality, i.e.,
2 ||
C>c Z (91, — 91.) m

IcJ
[1]/]J]>27"
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Thus the partial sums are uniformly bounded. Letting n — oo
establishes

I
C'>> (9, —91,)" |7||a
ICJ
which is what we set out to prove. a

This simple example already captures the essence of the Bellman
function method. We will analyze the steps involved, and discuss how
to find the right Bellman function in the following sections.

2. Notation. All intervals in this paper will be understood to
be dyadic, i.e. of the form [k2¢,(k + 1)2!), with i,k € Z. The
set of dyadic intervals will be denoted by D. If I € D is one such
interval, then I, I, € D denote the left and right half of I respectively.
Let f; denote 1/[I| [, f(x)dx for I a dyadic interval. Several of my
examples use dyadic Az weights. A dyadic Az weight is a non-negative
function w such that wy'wr = 1/|I] ;1 w(z)de 1/1] [,w(z)de < C
uniformly for all intervals I € D. T will use u(I) = wrw; ' and
|lw||a, = suprep p(I). As is customary, I will refer to ||w||a, as the
Ay norm of w, even though it is not actually a norm. C will denote a
constant, though not necessarily the same one at each occurrence.

3. The general situation. In general, we use the method of
Bellman functions to establish bounds on sums of the form

1
> flur,ug,ur),

I =

where f is a positive function of R3", u; € R™, and we have some
control over ur — (uy, + uy.)/2. The components of uy are typically
averages of functions, or elements of sequences. In the example from
the introduction, f(ur,ur,ur,) = (uz, — ur,)?, and u; has just one
component, namely, uy = 1/[I| [; g.

We can think of the Bellman method as splitting into three compo-
nents:

1. Given a particular sum to bound, specify what properties the
Bellman function needs to satisfy.
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2. Find a function which satisfies the specifications.
3. Use the function to run the Bellman function proof.

The third task is the easiest, as it always follows the same pattern as
in the introduction. We will spend some time discussing tasks 1 and 2.

3.1. What does a Bellman function need to satisfy? A
Bellman function needs to satisfy two inequalities. The first one, the
boundedness condition, is typically simple, and takes the form

0<B@) < X,

where X varies according to the situation and represents the quantity
with which we wish to bound our sum. The variable v represents the
as of yet unspecified variable that the Bellman function depends on.

The second inequality, which we shall refer to as the difference
inequality, takes the form

B(v_) + B(v4)

B() - =1

> f(’U,’U,,’UJr)-

(Recall that our goal is to bound 1/|J| >, ; f(ur,ur,, uz,)|I|.) Later,
when running the Bellman tool, we will plug uy,u;, and uy, in for v,v_
and vy, respectively. As we will see shortly, u;,u;, and w;, cannot
take on any old set of values. Any inequalities for B(v) need only be
satisfied when v,v_,v; represent values that are possible for ur,ur,
and uy,. There are two particular instances of this:

Often, there are relationships between the individual components of
ur. For example, if uy = (fr,(f?)r), then by the Cauchy-Schwarz
inequality, (f7)? < (f?);. Thus, if v = (v, vs), it is enough for our
purposes if B(v) exists only when v? < vy. We look for a Bellman
function B(v) with domain {v = (vy,v) : (v1)? < v2}.

Furthermore, there is always a relationship between u; , us, and uy,..
B(v) will only need to satisfy the difference inequality when v,v_ and
vy satisfy the same conditions. For example, in our introductory ex-
ample, ur = gy and gr = (91, + 91,)/2. Thus the difference inequality,
B(v) > ¢(v_ —v4)?+ (B(v_) + B(v4))/2, need only be true for v_, v
such that v = (v_ +v4)/2.
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To get a feeling for what quantities we will include in v, let us take a
look at the following examples.

3.1.1. Example 1. The following was a crucial lemma in [11]. We
will reconstruct here how this lemma was proven. See the section on
notation for a definition of A,.

Lemma. For w in As,

S

IcJ

1 1
wp —wp
)
wr

wr, — Wy,

w1 < Cllwl[a,w,.
wr

Let us first decide on the variables for the Bellman function. In order
to express the summand, we will need v = (z,y): = to correspond
to wy and y to correspond to w;l. Then wll,wh,w;’l and w;l can
then be expressed as x_, x4, y— and y, respectively. In this example,
f@yz oy ys) = (e —zi)/zl[(y- —ys)/yle.

Since wy and w;l are not independent of each other, we will need to
restrict the domain to reflect that. By the As condition, wIwI_1 < A
for some constant A. In addition, the Cauchy-Schwarz inequality shows
that 1 < 1/|1| [;w' w2 < [1/[1] f;w1/|T] [;w™']!/2.

Thus,

1< wIwI_1 < A.

Correspondingly, the domain for the Bellman function is {(z,y) : 1 <
zy < A}. When we plug in the variables, we also plug in ||w|| 4, for A.

Note that wy = (wy, +wy,)/2, w;' = (w;l1 + w;rl)/2, and so the
difference inequality for B(z,y) must be fulfilled for (z,y), (z_,y_)
and (z4,y+) which satisfy z = (v_ + z4+)/2, and y = (y— + y4+)/2.

The upper bound for the Bellman function is C' Az, since we wish to
bound the sum by C||w| s,ws. (The upper bound is applied only at
the very first step, when the interval is J.)

In summary, B(z,y) must satisfy (for some constants Cy, C>)
1. 0 < B(z,y) < C1Az on {z,y > 0;1 < zy < A}
2.

B(:E,y) -

B(z—,y-) + Bz, y4) o Cy (@ —xs) (Y- —y4)
2 - T Y
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where z = (LE_ +$+)/2 and y = (y— +y+)/27 and (xay)’(x—ay—)v
(z4,y4) are in the domain {z,y > 0;1 < zy < A}.

This completes step 1 of this Bellman function proof. We will discuss
step 2, tools for finding the function, in a later section. Assuming that
we have found such a Bellman function, we can now run step 3 to prove
the lemma. Note that the proof does not depend on the function, only
on its existence.

-1
Proof. Let ¢ = wy,y = wy, v- = wy, T+ = wy,, Y- = w;,

Yy = w;Tl and A = ||wl|4,-

Plug these quantities into the Bellman function, and use the two
inequalities to get

Chllwlla,ws > B(wy, w;?)

—1 -1
’le _er

1
wy

wy, — wy, B(le,w;ll)ﬁ—B(wJT,w;:)

> Cy 5

wyl|+

wy

Now 1 < wllwl:l < |lwlja, and 1 < wlrwfrl < |lwl|a, again, so we
can use the difference inequality again, this time to the two Bellman
functions on the right hand side.

_1 _
w;" —wy
1
Wy

Crllwllaywy > Co| ZH 2L

wy

1

wy,

Wy, — Wy,

w.,

r,l - er,r

+ O,

wy,

B(sz,nw;l,ll) + B(sz,w w;llr)|
4

B(wy,,,w;!) + Bwy, ., w;’ )

4

+

+

This process can be repeated as often as we want. After n iterations,
we have the following formula:
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-1 -1
wy, —wy, || W, — W, | |
Cillwlla,ws = Co E ‘ ” ‘ 7 wI g
cy I wy
[7]>27"|J]
Letting n — oo, we have the desired result. |

3.1.2. Example 2. We wish to prove

1 wy, —wy, \’
2 (M) < €= Cllulla)

ICJ
where w € As.

We need to express the fact that w € As. Since the defining
characteristic of As weights is that w Iw;I < A for some constant A, we
let x represent wj, y represent w;l, and we require that 1 < zy < A.
The summand is f(z,z—,z+,y,y—,y+) = ((x— — x4 )/x)%. Note that
y is a hidden variable—it was not apparent from the sum that we would
need it. The relationship between = and y is the same as in the previous
example.

In summary, we need to find a function B(z,y) in the domain
{z,y > 0;1 < xy < A}, such that the following two conditions hold:

1. 0 < B(z,y) < C, (C may depend on A.)

2. B(z,y) — [B(z—,y-) + B(2+,y4)]/2 2 ((z- — 24)/7)* whenever

= (@ +23)/2, 5= (y +ys)/2and (g ), (£4,5+), (21) in the
domain.

We will demonstrate the existence of such a function in a later section.
Given a function B(z,y) as described above, substitute w; for x, w;l
for y, and use the inequalities. Then

C > B(wJ,wjl)

wy, —wy, \° N B(wg,w;) + B(wy,,w;})
wy 2

2 2
> (Cn W\ L (Wn T W,
wgy 2 U)Jl

>
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2
1 erl_err
+ _<;>
2 wy,.

B(le,z ) w;l,l,)"i_B(sz,m w;l,lr)"i_B(er,z ) w;rl,l)"i_B(wJ w;ir)

)

v

v
|H
VS
£
g
~
g
N——
~

=
/171227

As before, the last step follows by using the difference inequality n
times and dropping the Bellman function terms, which we can do since
they are positive. Let n — co. We have proven that

1 w w 2
7|Z<—Ilw IT) I <c

IcJ I

3.1.3. Example 3. This example is more difficult, and stems from
[6]. It is the proof of the Carleson embedding theorem using Bellman
function methods.

The dyadic Carleson embedding theorem can be written as
Dm0 [ 6
|71 BN

ICJ

where {{} is a normalized Carleson sequence, i.e., >, pr|I] < |K]
for any dyadic interval K, and u;y > 0. ¢ is a positive function in
L?(dz).

Note. In the Bellman function method, we normally work with
positive functions, and then extend the result, if possible and relevant,
to all functions by linearity or sublinearity. This makes the variables
positive, and thus easier to work with.

Our first step is to decide what variables B will depend on. In
order to express the summand, we need to be able to express pu; and

¢r=1/11[; ¢
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Let « correspond to ¢; = 1/|I| [; ¢. Then since ¢; = (¢1, + ¢1,)/2,
we will use z = (z_ + z4)/2 in the difference equation.

w1y is more tricky. The obvious choice would be to let y correspond
to py;. However, if we did that, we would have no information about
the relation between pr, pr,, and pr,. Furthermore, there would be no
easy way of incorporating the Carleson condition. Thus the authors of
[6] made y correspond to M (I) = 1/|I|Y jc; tx|K|. Then

- MOEME) L~ g

2 1 b
_ 1/|L] EKQIZ NK‘K|+1/|IT|ZKQIT pr | K|
2
=pur > 0.

The Carleson condition is thus described by y < 1 and y— (y— + y4+)/2
> 0.

Note that 1/|J| fJ #?, while not appearing in the sum itself, does
appear in the bound, so we also need a variable corresponding to it.

We call this variable z. Again we choose z = (z_ + 2z4)/2 to mimic the
behavior of 1/|J] [, ¢*.

The Cauchy-Schwartz inequality implies that ((1/]J]) [, ¢)* < 1/]J]
[;(#)?. This imposes the condition z? < z.

The summand is f(x7$77m+7y7y77y+7 2, Z77z+) = (y - (y* + y+)/
2)x?.

In summary: We need to prove the existence of a function B(z,y, )
on the domain {(z,y,2) : z,y,2 > 0;y < 1,22 < 2} such that

1. 0 < B(z,y,2) < C=z.

2. B(z,y,2) = [B(@-,y-, 2= )+ B(z4, ¥+, 24)] /22 (y = (y-+y4) /2)2?
for all (z,y,z2), (z—,y—,z-), (Z4+,Y+,24+) in the domain with y —
(y-+y4)/220,2=(z +2)/2and 2 = (2 +24)/2.

Assume that we have found a B(z, y, z) satisfying these conditions. Let
T = ¢J7 r— = ¢Jza Ty = ¢J,«7 Yy = M(’])7 Yy- = M(Jl)7 Y+ = M(‘]T)7
Z= (¢72)J7 i = (¢2)JH 24 = (¢2)Jr'
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Using the inequalities,

C(¢*)s = B(M(J),(¢%)s,07)
> <M(J) - f) (¢0)?

B(M(Jl)’ (¢2)J17¢Jz) + B(M(JT)7 (¢2)JM ¢J»~)
2
B(M (A1), (%) g1, 8a,) + B(M (), (¢%)4,, ¢4.)

= pa(ds)* + 5 :

+

Repeat the inequality n times and drop the Bellman functions to get

c@s > Y, u1(¢1)2||§|,
ICJ
[I/1J1>27"

and let n — oo.

3.2. Step 2: Finding the right function. Now we turn to the
trickiest step in a Bellman function proof, finding the Bellman function.
In some cases it may be possible to prove the existence of B without ever
explicitly finding it. In general, however, we will need to find a specific
function and prove that it satisfies the inequalities. This will usually
involve a fair amount of educated guessing. Bellman functions for
related problems will be similar, so that a good starting point for finding
a Bellman function is to look at previously used Bellman functions.
Sometimes, all that is needed is a small modification. What we will
discuss in this section is how to transform the difference condition into
a differential condition which, while not necessarily easier to solve, is
considerably easier to verify. Once we have a starting guess, we can use
the differential condition to see if it is the right function, and, if not,
get an idea of what modifications are needed.

Let v € R". Assuming for the moment that B is C?, we write

B(v_) + B(v 1
Bw) - 2OIEBOD _ L) - Bw) + B, - B)
and expand B(v_) and B(v4) in power series around v with second
order remainders.
D?B(&1)

B(v_) = B(v) + DB(v)(v= — v) + (v= — v) o1 (v- —v)F,
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and similarly for B(vy). Here £;,& are points on the line segments
between v_ and v, and v4 and v, respectively.

Putting this all together we have

B(v_-) + B(v4)

B(w) - B
=-1/2 |:DB(U)(U —v)+ DB(v)(vy — v)
+ (vo — v)%(v, —v)" + (vy — v)%(zg - v)t]

— o)t

_ DB(U)(U _ %) - % [(v _ v)%(v,

(D?B(&2))

+ (v — ) 51 (vy — v)t] .

Recall that we assumed that v was such that we had information
about v — (v_ +wvy)/2. This is where we need to use it. If v —
(v +wvy)/2 = 0, as in many of the examples we are working with,
the first order terms cancel, and we are left with

B(v_-) + B(v4)
2

1 (D*B(&1))

2!

(D*B(&))
2!

t

(0= — v)" + (vs —v) (vs — ).

Since £; and &3 are not known, we typically seek B with conditions
on the matrix of second derivatives which hold for any possible &; and

€2

Given a candidate for B, it is normally considerably more straight-
forward to estimate the differential expression for any possible £; and
&2 than the difference equation for any v_ and v,. Even in cases where
not all the first order terms cancel, the differential equation is much
easier to work with than the difference inequality.

Note. To formulate the differential condition, we assumed that B
is C2. This is not a real restriction - if there is a B satisfying the



644 JANINE WITTWER

difference condition, we can usually mollify it to get a B in C? which
satisfies the differential condition.

3.2.1. Example 1 continued. We now turn to finding the Bellman
function for our first example.

In Step 1, we determined that what we need is a Bellman function
that satisfies:

1. 0 < B(z,y) < C1Az on {z,y > 0;1 < zy < A}.

2.
(o) - Blomo) 4 Blowate) 5 g (o= —22) o),
S A TR L}

where z = (z_ +21)/2 and y = (y- +y4)/2, and (z,9), (z—,y-),
(x4,y4+) are in the domain {z,y > 0;1 < zy < A}.

In this example, v = (z,y) with z = (z_+24)/2, and y =
(y— +y4+)/2. Thus the first derivative terms in the power series ex-
pansion cancel, and, since z_ —x = (z_ —x)/2, etc., we are left
with

<B(:v,y) _ B(z_,y-) ;‘ B($+,y+)>

_ Yz —woy —ys

2 2 72

y (D2B(&1,¢2) + D?B(£2,G)) (2 —ay y —yi\'
2! 2 ’ 2 )

Thus we need a Bellman function that satisfies

1) - l(”“"— — Ty Y- — y+> (D?*B(&1,61) + D?B(&,(2))

2 2 ’ 2 2!
t
< [ £= —x+,y_ Y+
2 2
1
> Cl(@- —zy)(y- —y+)§ :
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Since we do not know the actual values of (£1,¢1) or (£2,(2), we
need to make sure that the differential condition is satisfied if at all
possible (£1,¢1),(&2,¢2). Wehave 1 <z gy < A, 1<z,y, < A and
1 <azy < A Also, z_ = 2z — x4 < 2z, and similar for z,,y_,y,.
Without loss of generality, z; < £ < z_ and either y; < ( < y_, or
y— < ¢ < y4. In the first case, 1 < z iy <& < z_y_ < A. In the
second case, £¢ < z_y; < 222y < 44 and £¢ > x4 y— > x4y > L
Thus it is always true that 1 < £¢ < 4A, and we will estimate the
matrix of second derivatives in that domain. (A more careful analysis
would show that in fact 1 < £¢ < 24, but we do not need that here.)

Note that 1 can be restated as

(z- —zy,y- —y4) (D*B(&1,61) + D*B(€2,G)) (2- — g, y— —yy)'
(- —z,y- —y4) <C(}y ng> (- -2,y — y+)t‘

(- —z4,y- —y+) <C'(}Ci C’({Q) (- —zry —y4)

>

~

?

where the last line follows from the fact that C/y ~ C/(;, since
y/2<y- <2yandy/2<y; <2y, andsoy/2 < < 2.

Using matrix notation, and splitting the absolute value inequality
into two inequalities, we see that it suffices to find a function such that
the following two matrixes are positive semi-definite on {£,{ > 0;1 <
£¢ <44} :

(2)
_wa _Bwy - CI/C d _sz _Bwy + C’/C
<_Bzy -C¢ —Byy > o <_Bwy +C'/¢ —Byy >

The second derivatives here are evaluated at (¢, ¢).

To find such a function, it is often helpful to look at Bellman functions
that have been used to prove similar estimates. Hukovikc, Treil and
Volberg used the function B(z,y) = z(—(44/zy) — vy + 4A + 1) to
prove a sharp weighted bound on the dyadic square function ([3]). I
adjusted this function via educated guesses to

—4A  zy
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which satisfies our differential condition as well as the desired upper
bound.

3.2.2. Example 2 continued. In Example 2 we have the same
variables as in Example 1, so the same terms cancel in the power series.
We thus need to find a function that satisfies

1. 0 < B(z,y) < C whenever (z,y) in the domain 1 < zy < A. (C
will depend on A.)

2. —(1/2)((I——$+)/2),((ty——y+)/2))((DzB(§17§2)+D2B(§2,C2))/
N((w——4)/2), (4——94)/2) > ((w_—a1)/o)?.
In matrix notation, this leads us to ask for B which satisfies that

7270/3320
DB(O 0)

be positive semi definite in the domain {1 < xy < 4A4}. (Note that
I wrote c¢/z* rather than 1/z? in the second matrix. This is because,
in the previous equation, derivatives were evaluated in terms of (&, (),
while the right hand side was expressed in terms of . If we wish to
have the same variable on the right hand side, we need to use the fact
that x ~ &;, which introduces the constant.)

Summarizing the above, we see that the B(z, y) that we are searching
for satisfies
1 <7Bszc/mz —Bgy

7Bzy —Puyy

) is positive semi definite in 1 < zy < 4A.

2. 0< B(z,y) <Cinl<zy<A.

We know that the upper bound should involve A, so a good guess
would be to look for functions in the variable u = zy. Say B(z,y) =
g(u). What would g need to satisfy? A calculation shows that

9 c/332 0 7y2g// _ c/:v2 7ug" g/
—D*g — = ) / 2. .
0 0 ug' +g g

This will be positive semi definite if the sub-determinants are positive,
i.e.

1. _yzg”_z% > 0.
2. cg" +2ug”g" + (¢')* > 0.
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The first condition can be written as
u?g” +¢<0.

A natural function to try would be g such that this is 0, i.e., ¢"(u) =
—c/u?, so g(u) = cln(u). We can verify that this function satisfies the
second condition, too, and thus is the function we were looking for.

3.2.3. Example 3 continued. Recall that, to finish Example 3,
we need B(z,y,2) on the domain {(z,y,2) : z,y,2 > 0;y < 1,22 < z}
such that

1. 0 < B(z,y,2) < Cz,

2. B(ZIJ, Y, Z)—[B(m,, Y-, Z,)+B($+, Y+ Z+)]/2Z((y_(y7 + y+)/2))$2
for all y— ((y-++)/2) = 0, @ = (o +4)/2) and z = ((z- + 24 /2),
when (z,y,2), (r—,y—,2-), (z4,y+,2+) are in the domain.

We will again expand in a second degree power series. This time
(2y — y_ — y4+) is non-negative, but not necessarily 0, so the first
derivative terms in y will not cancel each other. The terms in z and z
do. We have

Br_,y_,z_ B
2<B(m,y,z)— (:U Y- 2 )"; ($+,y+,2+)>

_ 0B(z,y, 2)
Ay

— (2= —my- —y,2- — 2)D*B(&, C,m) (@ — 2, y- —y,2- — 2)

— (@4 — 2,94 =y, 24 — 2)D?B(&2, Goy 1) (@4 — 2,44 — Yy 24 — 2)°,

2y —y- —yy)

t

where (&1, ¢1,m1) and (&2, (2, 72) are again points on the lines between
(l'a Y, Z) and (‘T—a Y-, Z—)a (x-l-a Y+, Z-I—)a respeCtiV91Y-

Since we want this to be > 2(y—((y— +vy+)/2))z? = 2y—y_ —y;)z?,
the conditions become

1. 0B/dy > 22,

2. —D?B positive semi definite for (z,y,z) € {z,y,2z > 0;y < ;2 <
212,

3. 0 < B(z,y,2) < cz for (z,y,2) € {z,y,2 > 0;y < 1; < 2'/2}.
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Note that the domain of the Bellman function is convex this time, so we
know that (&;,(;,n;) are in the domain whenever (z,y, 2), (z_,y_, z_),

(T4, y+,24) are.

Again, finding the right Bellman function will most likely require
many educated guesses. A first step might be to try z — 22, since it
has the correct bounds on the domain and is concave. However, it does
not satisfy the first derivative condition. Multiplying the —z2 by —y
would solve that, but would destroy the concavity of the function. So
we might try to divide —2? by y instead, or rather by 1 + y, since
the function could become unbounded otherwise. So our next guess
might be z — (22/(1 +y)). This leads to the function used in [6],

4z — (2%/(1 +y)))-
Note that we needed two differential conditions in this case. This

is because the condition on 0B/dy does not control the entire first
derivative, and is thus not enough to control the remainder.

3.3. The continuous case. Frequently, we look at dyadic op-
erators because they are easier to work with than their continuous
counterparts—but once we’ve bounded the dyadic version, how do we
get back to the continuous operator? In this section, I would like to
give the reader just a hint of how we can sometimes transition from
the dyadic to the continuous world. Example 1 above was a lemma in
[11], where it was used to control the martingale transform, a dyadic
analog of the Hilbert transform. In [9], Petermichl and I transformed
this dyadic lemma into a continuous one in order to control the Hilbert
transform. As you will see below, the proof of the continuous case is
very similar to the dyadic one. We restate the difference condition on
B as a differential condition. The transition from the coarsest level
(corresponding to wy) to the finest levels (corresponding to wy for very
small I’s.) is done by using Green’s theorem.

In our continuous world, our weight function w is defined on the
Taurus, T and extended to the disk by harmonic extension, i.e.,
w(z) = [w(t)P.(t) dm(t), where P,(t) =1 — |z|*/|1 — zt|*.

We consider w to be an Ao weight if

sup w(2) ™! (2) = Q5" ()

is finite.
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wy

Note that since the harmonic extension is an average of the values on
the boundary, w(z) is an average just like our wy in the dyadic case.
When z is the center of the disk, the average is over the whole taurus,
(corresponding to averaging over a very large dyadic interval I), while
if is z close to the boundary, the average is more localized, (wy over a
very small interval). In that light, you can see that the above definition
of continuous A is analog to our discrete one.

To provide some more intuition for why we can link dyadic averages
to harmonic extensions, I would like to point out that the collection
of dyadic averages of w can be thought of as a discrete extension of
w to the upper half plane: Divide the upper half plane into squares
as in the picture below. Each dyadic interval I is associated with a
square of size I x I which starts at height |I| above it. I have only
drawn three sizes of squares—picture increasingly small squares below
my lowest row, becoming infinitely small as they approach the z axis,
and increasingly large squares above my highest row. We think of the
extension of w being the function that is assigned the value w; on the
square associated with the interval I.
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You can see that this extension is not so far off from forming a discrete
harmonic extension of w to the upper half plane, in that the values of
the extension are averages of the closest boundary values. Also, as we
approach a particular point on the boundary, the values of the extension
approach the value of w at that point.

Keeping in mind that the upper half plane is just a Mobius transform
away from the disk, you can see that the harmonic extension of w on
the taurus really has a lot in common with our dyadic averages.

The analogue to Example 1 in the continuous case is:

Lemma 3.1. Ifw € A,

(€ ol
b i@ ie) g ) = 0l

where S,(§) = (£ — 2)/(1 — ), a Mdbius transform.

The derivatives in the integral are to be understood using the notation

f(z) =0f/0z = (fy —ify)/2. We also will use 0f/0z = (f, +ify)/2.
Note that with this notation Af = 4(8%f/920%).

For comparisons’s sake, here is the result from Example 1 again:
Lemma. If w in Az, then

S

ICJ

-1 -1
wpT—wp

Yn — Wi, wilI] < Cllwl| azwy.
w

I

I

To start with, think of the log1/|S,(£)|dA(£) as simply a volume
element belonging to the measure. It is the price we pay for working
on the disk. Similarly, the 1/|J| and |I] in the dyadic sum can be
thought of as a kind of measure. What is left are the terms in w and w.
They correspond as follows:

w(l) <= wy
w(z) <= wy
W'(§) <= wy, —wr,
w () = wI_,l fwl_rl
Q = [wllae.
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Thus, the above two lemmas are really a continuous and dyadic analog
of each other.

Therefore, we can hope to use the same Bellman function as we used
for Example 1 for the continuous case. I have largely copied the proof
from [9] below, and I'll intersperse explanatory remarks in parenthesis.
So here is the proof of Lemma 3.1.

Let

_ Q_my
B(m,y)-x(my 4Q+4Q+l>.

(This is the same equation as we used in Example 1. Recall that we
have
1<zy<Q = 0<B(z,y) < cQu

and also that the two matrixes

0 C'/)
dsz:(C,/C 0>

are positive semidefinite, so
Ow Ow=1\ , 1 Ow/0z
a (&’ 0z >d Blw,w™) <3w1/32

S |(Ow Ow! 0 C'Jw™t Ow/0z )
~— 1\ 0z 0z C'w™t 0 ow™1)0z ) |

Let us also consider the function b: C — R

(By elementary but tedious calculations,

[ Ow OwTtY Ow/0z
—Ab(z) = _<5’ 0z ) B <8w18z>)’

which, using the above inequality and some algebra, is
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Thus,
0 < b(2) < cQuw(z)

and
w(2)'[lw™" ()]

w(z)w™1(z)

Now we can run the continuous Bellman process

|w (€)' [lw™ ()]
p w(w(¢)

—Ab(z) > Cw(z)

w(£)log dA(£)

1
|52(6)]

<c /D —Ab(£) log dA(¢)

L
|52 (8)]

(using the second condition on b(z))

. /D —Ab(Sz(f))log%dA(f):c<b(z)— /T bdm)

(using Green’s theorem)

< cQuw(z)
(by the first condition on b(z)).
This ends the proof of Lemma 3.1.

Note how we, just as in the discrete case, can drop the second integral
merely because we are subtracting something positive. Remember
that for z on the boundary, b(z) is equivalent to B(wr,w;') for
infinitesimally small I.

Note. This is just one example of the many uses of the Bellman
function method in the continuous case, and only shows the tip of the
iceberg. There are many different ways in which the method has been
used, including using extensions other than harmonic ones (e.g., heat
extensions, see, for example, [8]).

4. The converse. In previous sections we saw that the existence
of a Bellman function implies the desired bound on the corresponding
sum. A converse is also true. Under reasonably general conditions,
we can show that whenever we have a bounded dyadic sum, there is a
corresponding Bellman function.
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Again, this is best demonstrated by an example.

It is well known that the dyadic square function

1/2
Saf = [Z (fr. —fll)le]

IeD

is bounded in L2. Thus,

Y Un— f1) 1 < If N2

I1eD

for f € L?, or, equivalently (use fX),

1 ) 1 [,
(%) O Un = fu < o [ 1

7] 2= 71/,
for any dyadic interval J, f € L2.

If we were to prove this bound using the method of Bellman functions,
we would search for a function B(z,y) on the domain {z,y > 0,22 < y}
such that

1. 0< B(z,y) <y

2. B(z,y) — [B(z_,y-) + B(z4,y4)]/2 > (z— — z4)* whenever
z=(r_+24)/2,and y = (y— +y4)/2.

Here z corresponds to 1/|I] [; f and y corresponds to 1/|I| [, f2.

Finding this Bellman function would prove the result for non-negative
L? functions. We would extend to all L? functions by sublinearity of

Sf. However, our goal here is not to prove (x). Rather, we will assume
that equation (*) holds, and prove from there that such a B(z,y) exists.

For positive ,y such that 22 < y, let

B(z,y) = sup LS (= )20

{reL2:20,fr=2,(s2)=v} 11 {5

Claim. B(z,y) is well defined on the domain {z,y > 0,22 < y} and
satisfies
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1. 0 < B(z,y) <y,
2. B(.’I?,y) - [B(:v,,y,)+B(m+,y+)]/2 Z (LI), - w+)2 whenever
z=(z_+z4)/2 and y = (y— +y4)/2.

on this domain.

Proof. We need to show that, for fixed positive xg,yo with z3 < yo,
theset {f € L2, f > 0: f; = zo, (f%)s = yo} is not empty to guarantee
that the supremum is well defined.

Assume for a moment that J = [0, 1). Let f(t) = wo(a+ 1)t*X[0,1)(t)
for a fixed constant a. A calculation shows that fol f(®)dt = =z
and fol f2(t)dt = z3(a+1)?/(2a +1). Since for a € (—(1/2),0],
(a + 1)2/(2a + 1) takes all values in [1,00), we can choose « such that
z3(a+1)2/(2a+ 1) = yo. (Recall that yo > x3.) Then for that «,
f(t) is non-negative, in L?, and satisfies fol f = xo, fol f% = yo. Thus
the supremum is well defined if J = [0,1). If J is any other interval,
we simply rescale the above example. If J = [k2/, (k + 1)27), then
F(@&) =17(((t — k27)/27)| will have the desired averages on J.

Next, we prove the inequalities. Clearly, B(z,y) is positive. By
assumption (),

B(z,y) <y.

Thus it remains to prove that B(z,y) also satisfies the difference
inequality.

Note that B(z,y) is actually independent of the choice of J: Let
J =[k27,(k+1)27), and I = [s2%, (s+1)2%). We can rescale any f € L*
with averages f; =z, (f2); =y to f(t) = f(2/(((t — k27)/27) + s2%) to
get a function with exactly the same averages on I and children as f
had on J and its children. Thus the supremum does not change with
J. In what follows, we will set J = [0,1) to simplify the presentation.

Let z = (z_+4+24)/2, and y = (y_ +y+)/2 be given. Fix
e > 0. By the definition of a supremum, since B(z_,y_ ) =
2 .
SUD{ fer2:£50,fs—a_,(f2),=y_} L/ || 2o1c 7 (fr, — f1,.)" | 1], there exists a
u(t) that almost attains the supremum, i.e., u 1) = z—, (v?)j0,1) = ¥,
and

B(:L‘,,y,) - Z (ult - U’Ir)z |I| <e.
1€,y
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Similarly, there exists a v(t) such that vy 1) = 24, (v*)[0,1) = ¥4, and

B(zi,ys)— Y, (v, — v,)? I <e.
IC[o,1)

We will define a new function f(¢) on [0,1) by simply concatenating
u and v.

Let f(t) = u(2t)Xo,1)(t) + v(2t — 1)X[0,1)(t)-

Note that
K
S U= Y (g )
1C0,1/2) KC[0,1)
and K|
o (=)= ) (v — v, ) 5
1ci/2,) KC[0,1)

Furthermore, fol f= 01/2 u(2t) + f11/2 v(2t — 1) = (up,) +vp0,1))/2 =

(- +x4)/2 = z, and similarly, fol f? = y. Thus f satisfies all the
properties to be included in the supremum that defines B(z,y).

B(z,y) = sup > (b, —hp)? |
{heLZ:hZO,fol h:z,fol h2=y} 1C[0,1)

2 Z (fr. = fr.)*|

1c(o,1)
= > (fu— )M+ D (fn— 1)
IC[0,1/2) IC[1/2,1)
1
+ (fio1/2) = frjen))’ = 3 > (ur, —u)?|I|
Co)
1
t3 > (vn =)’ + (@ —zy)?
1cfo,1)
1 1 ,
2 5(Blz—,y-) +e) + 5(Blz4,y+) +¢) + (z- —z4)".
So B B
Blayy) - POV B@) 5 (e
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Since ¢ was arbitrary, we may let it go to 0. Thus the inequality is
proven. o

Thus, given the bounded sum, we were able to produce a Bellman
function corresponding to it. The above argument can be used in many
cases. The fundamental requirements are that we able to combine v
and u into a new function, a requirement that is normally satisfied.
So in most situations, a Bellman function exists if, and only if, the
corresponding result is true.

In the next section, we will use this if and only if nature of Bellman
functions to disprove an operator bound.

4.1. Using Bellman functions to disprove a bound. In this
section we will use the Bellman function method to disprove a bound.
We will proceed by proving that if the estimate were true, a Bellman
function with certain properties would need to exist. We then prove
that no such function exists.

It is known that the dyadic square function Sgf = [> ;.p(f1. —
f1,)*x1]*/? is bounded in L?(w), where w is an Ay weight (for example,
[2, 12].) It is natural to ask if a mixed type square function, formed
using both dz and w, might be bounded in L?(w). The answer follows
quite easily from Bellman function techniques.

Define f,, = 1/( [, w(x)dzx) [, f(z)w(z).

Theorem 4.1. Fiz 1 < A < co. Let

516 = [ 3 (51 fun) i)

IeD

Then

sup IS (w™"X0,1)) [l £2(w) = o0
{wedsiwllap <Allwg) | ll2)=1}

Thus, the mixed square function is not bounded in L*(w).
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Proof. Let
9 1/2
Tf(y): [Z(fll_fwll) Xf(y):| .
IeD

(Here the first term is averaged over I; instead of I,..)

) 1/2
T = | X (51— o+ 1= Fun) 20| < S00) + S50

IeD
Since Sy f is positive, it is enough to show that 7 f is unbounded.

Apply T to f = w_lX[oJ). Since Hw_IX[OJ)HLz(w) = (f[o,l) w_1)1/2,
we will estimate

sup 1Tw™ X (0,122 ()
{wedzi||w]a, <4, [ w-1=1}

from below.

) 1 S nly?
Tw tx To(w) = (—/ W - > /w
| [o,1)||L2( ) = Z 1| Jp, fllw I

Ilg[ovl)
1)
= Z wIl - — w + w
LCo,1) Wi L Ir
1)
Z Z ’LUIZ — E ’U]]l|Il|.
1,C[0,1) !

So our task becomes to estimate

oo 1Y
sup Z (wlll_w—ll> wy, |-

1
{willwll42<A, [ w='=1} 1,C[0,1)

We will switch from a sum over only left sided intervals, I; C [0, 1),
to a sum over all intervals I C [0,1). To do that, first notice that

2
_ 1
sup E <w1l1 - E) wr, |1
)

1
{willwlla, <A, [T w-1=1} ,C[0,1

1y
= sup Z <w1r1—E> wr, |1,

1
{wil|wlla, SA,fO w—1=1} 1,CJ[0,1]
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since for every w(t) in the set we are taking the supremum over, w(1—t)
is also in the set. The sum of these two is at least as large as

oo 1)
sup Z (wjlw—1> wr|I].

1
{willwlla, <A, [ w=t=1} 1C[0,1]

Thus

2
L1
sup > (wzll - E) wr, |1

1
{willwllay <A, [ w1=1} 1,C[0,1] :

1 _ 2
> > sup Z (wrt = e(1/wr)) wrl1].
{wz”w”Az SAvfo 'wil:l} Ig[O,l}

To prove that this is unbounded, we use the following lemma, from
which the theorem follows as a special case:

Lemma 4.2. Fizt A>1. Let Ry = {(z,y) : 1 < zy < A;z,y > 0}
and D(z,y) = {w € Az such that |lw|a, < A, [, yw =2, [, 4 wl =

y}

Say f(z,y) > 0 for all (x,y) € Ra. Then for all (z,y) € R4 such
that f(z,y) >0,
B(Qﬁ,y) = Sup Z f(’ll)[,w;l)|I| = 0.
D(z,y) I1C[0,1]

The theorem follows from the lemma for f(z,y) = (y — (1/z))%z by
considering B(z, 1) for any = # 1, since f(x,y) =0 on (z,1/z) only. O

Proof of Lemma 4.2. This proof will proceed very similarly to the
previous section where we showed that a converse of the Bellman
method holds. First we will show that the supremum is well defined,
and then we will show that that B(z,y) satisfies a difference inequality
wherever it is finite. This will lead to a contradiction.

For B(z,y) to be well defined, the supremum needs to be taken over

a non-empty set. We need to show that for any such (z,y) there is a

w € Ay such that wy = x, w;l =y.
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Let w(t) = ct®*. It is well known, and can be verified by a simple
calculation, that for @ € (—1,1) w(¢) is an Ay weight. Assume for a
moment that J = [0,1). Then wy = ¢/(1+a), w;' =1/c(l—a). A
calculation shows that for « = /1 — (1/zy) and ¢ = z(a + 1), we have
the required weight. The case for general J follows by scaling, which
does not change averages: If J = [k27, (k + 1)27), w((t — k27)/27) is
the required weight. Thus the supremum is never taken over an empty
set, and is well defined.

Now we will prove that B(z,y) satisfies the usual type of difference
inequality.

Fix (z,y),(x-,y-),(z+,y+) € Ra with ¢ = (z_ +24)/2 and y =
(y— + y+)/2. We will show that B(z,y) satisfies the following difference
inequality whenever B(z_,y_), B(z4,y4+) < oot

B(:L',,y,) + B(m+7y+)
2

B(z,y) — > f(z,y).

If B(x—,y_) < oo, there is a u(t) € D(z_,y_) which essentially
achieves the supremum for B(z_,y_), i.e.,

B(l‘—ay—) - Z f(ulaul_l)|‘[| S g,
1Cp.1

and similarly, there is a v(t) € D(z4,y4) such that
B(zy,yi) — Y, flonvihI| <e.

1C0)
Let
w(t) = U(Qt)X[oJ/z) + ’U(l — 2t)X[1/2,1), te [0, 1),
and extend it to R by
w(t) = w|(fractionalpart (¢)|), ¢ ¢ [0,1).

Let us verify that w in D(z, y).

(1 5 )
w=—-|-— u(2t) + — v(l — 2t
/[0,1] 2 <1/2 0,1/2) (21) 1/2 Ji 2,0 ( )

_ Tyt

2 v

and similarly, I[O,l) wl=y.
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If I C[0,1/2) , wyw;* = uyu~'; < A, (where J is a larger dyadic
interval) and when I C [1/2,1), wyw; ' = vyv~; < A. When |I| > 1,
I = [k,m) some integers k,m. Since the graph of w repeats itself
m — k times on that interval, wy = 1/(m — k)(m — k) f[0,1) w = x, and

similarly wI_1 = y. So we have wIwI_1 = zy < A. Thus for all dyadic
I, wywy" < A. Thus ||w|| a2 < A, and w € D(z,y).

Now we will prove the difference inequality.

Note that

> fwnwpi= Y faxug) 5> 5 (B —e)

IC[0,1/2) KC[o,1)

and

K 1
> flwpwihiI = Y fUK,UK)|2—‘Z§(B($+,y+)*E)-

IC[1/2,1) KC[0,1)
Thus,

S° flwnwi ] = flwp,wih)

1C[o,1]
+ Y flwunw ')+ Y fwnw )
1C[0,1/2] IC[1/2,1]
B(z_,y-) + B(z4,y
Zf(l',y)+ ( )2 (+ Jr)i

And so, letting ¢ — 0, the difference inequality is proven.

We can derive a contradiction immediately: If B(z,y) < oo, let
r_=z,xy =2,y =Y,y+ = y. Then all the Bellman functions in the
difference inequality cancel each other, leaving us with f(z,y) < 0 But
f(z,y) > 0. Therefore B(z,y) must be oo. This proves the lemma. O
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