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STOCHASTIC EXTINCTION AND RUNAWAY GROWTH
IN DISCRETE BIOLOGICAL MODELS

WILLIAM C. TROY

ABSTRACT. The consequences of global warming include
predictions of 300,000 deaths per year, as well as the extinc-
tion of 100-500 species of birds per degree centigrade warming.
Warming effects are also thought to play a role in runaway
growth of other species, e.g., the quagga mussel invasion of
Lake Mead. The mechanisms underlying runaway growth or
extinction are poorly understood. We investigate these mech-
anisms in a discrete population equation which models the
effects of environmental fluctuations of the population growth
rate. The model predicts extinction when E(In(l)), the geo-
metric mean of the population growth rate, decreases below
zero, and runaway growth when E(In(l)) > 0. A major chal-
lenge is to estimate realizations at specific generation num-
bers, n, during runaway growth, or extinction, type events.
Thus, we our main focus is to derive dynamic bounds which
estimate realizations, at each n > 1, during the entire course
of such events. These estimates are illustrated with examples.
In particular, we give new insights into the dynamics of the
present day ongoing Kenyan lion extinction.

1. Background and goals. At the close of the 2009 Copenhagen
Climate Change conference it became increasingly clear that the na-
tions of planet earth cannot agree on a carbon emission policy that is
sufficient to stem the effects of global warming. As a result, there is a
substantial probability of a 4-6 degree (Celsius) global rise in tempera-
ture by the year 2100. The consequence of such a temperature increase
includes the threat of extinction of a multitude of biological species,
including the human race. Already, the 2009 Global Humanitarian Fo-
rum report on the human impact of climate change and global warming
estimates that “300,000 lives are lost each year due to climate change,
and that nine out of ten are related to environmental degradation” [8].
A 2008 study [18] predicts that “Worldwide, every degree centigrade
of warming projects a nonlinear increase of bird extinctions of 100-500
species.” An August, 2009 report by the Kenya Wildlife Service states
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that the country’s lion population decreased from 2750 to 2000 since
2002, that this loss is partially due to climate change, and that the
lions may be extinct in 20 years [16]. Warming effects may also be a
contributing factor in the explosive growth of other species. For exam-
ple, at the 2009 Lake Mead Symposium it was reported that “in one
part of Lake Mead as many as 55,000 quagga mussels per square meter
were found where none had been in January 2007. Warmer conditions,
together with the right mix of food, calcium and dissolved oxygen form
an ideal habitat which allows the mussels to reproduce six times per
year.” [15] The exponential increase of mussels in Lake Mead is a classic
example of runaway Malthusian growth [13]. At this unique moment in
history the global community is also facing a threat from extreme envi-
ronmental fluctuations which could result from a nuclear exchange. A
2010 Scientific American article by Robock and Toon [14] summarizes
the predictions of several mathematical climate models of the climate
response to a nuclear exchange, say, between India and Pakistan. They
demonstrate how a local nuclear exchange, say between India and Pak-
istan, could result in a ‘nuclear winter’ which disrupts the production
of food worldwide. In turn this could cause a serious threat to the
existence of the human race and other species.

In this paper we do not study extinction of a particular species.
Instead, we investigate the dynamics of extinction, or runaway growth,
type events in the general, yet simple, stochastic population model

(].l) Xn+1 == ln+1Xn, X() > 0, ’L Z 0,

where X,, and n are dimensionless variables representing a population
and its generation number, respectively. We assume that the growth
rate constants [,41 are positive, independent, identically distributed
random variables, with common pdf f(I), and that

(1.2) 0<E(l)<oo and Var(l) < oo,
and
(1.3) 0 < E(In(l)) < oo and Var(In(l)) < co.

Thus, equation (1.1) is a model for a population in a randomly varying
environment. Possible sources of environmental fluctuation include
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global warming effects (e.g. drought), volcanic activity, asteroid hits
or the disruption of food supplies due to the effects a nuclear winter
resulting from nuclear war. Realizations of (1.1) have the form

(1.4) X, = <ﬁli>X0.

Since the random variables /; are independent, it follows from (1.2) and
(1.4) that

(1.5) if E() > 1 then E(X,,) = (E(1))" Xo = 00 as n — oco.

Because of (1.5), one might expect realizations to undergo runaway
growth when E(I) > 1. To understand why this is not necessarily the
case, we need to further develop the expression (1.4). It follows from
(1.3) and the Law of Large Numbers that

n 1/n
) ) — B(In(D)
(1.6) nh_}rlgo <1:[1 l,) e a.s.

We refer to the number E(In(7)) as the ‘geometric mean’ of the random
variable [. Combining (1.4) and (1.6) leads, at least formally, to the
approximation

(1.7) X, = <Hli> Xo ~ Xpexp (nE(In(l))) a.s. asn — oo.

This predicts that realizations become unbounded when E(In(l)) > 0,
and that they decay to zero when E(In(l)) < 0. Lewontin and Cohen
[10] made use of the Central Limit Theorem to put these predictions
on a rigorous mathematical footing, and proved the following:

if 202() < 1 then X, — 0 a.s. as n — oo,

(1.8) if 22() = 1 then X,, fluctuates between large and small
) positive values as n — oo,
if eP(2()) > 1 then X,, — 00 a.s. as n — 00.

It follows from (1.8) that, when the geometric mean E(In(l)) decreases
through the critical value one, the character of realizations instantly
switches from runaway growth to extinction.
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Finally, we observe that the random variable [ can be chosen to satisfy
(1.9) E(In(1)) < 0 <1 < E(l).

When (1.9) holds, (1.5) and (1.8) lead to the seemingly contradictory
conclusion that, as n — 0o, the mean E(X,,) becomes unbounded, yet
every realization ‘goes extinct’ and decays to zero. This counterintu-
itive property is due to the uncertainty in the growth rate [, and clearly
demonstrates that one needs to know both the mean, E(l), and the ge-
ometric mean E(In(l)), of ! in order to make meaningful conclusions
about the asymptotic behavior (i.e. as n — 00) of realizations.

Goals and specific aims. When environmental fluctuations are
sufficient to initiate the extinction of a population, one would like to
be able to predict how long it will take until the collapse is complete.
Thus, our primary goal is to answer the following modeling questions:

I. Can one predict the behavior of realizations during the entire
course of an extinction or runaway growth event? In particular, can
we develop dynamic estimates which predict the range of behavior of
realizations, within any degree of confidence, at each generation number
n > 07

Because of the inherent uncertainty in the growth rate [, there can be
a wide variation in individual realizations, even in parameter regimes
where extinction, or runaway growth, is guaranteed (see Figure 1). To
obtain new insights we cannot use the Central Limit Theorem approach
of Lewontin and Cohen because this approach only gives limiting,
asymptotic results as n — oo, and does not allow for rigorous estimates
of realizations at small, individual n values. Instead, to answer (I),
we need to completely analyze the probability distribution function
(pdf) of the random variable X,, = ([[;—,%;)Xo. For this we must
choose a specific pdf for the growth rate. There is a myriad of possible
choices. As a prototypical example, we assume that the constants [;
are independent, uniform random variables with

(1.10) £) = { 1/b when 0 <[ <b,

0  when !¢ (0,b].

There are two advantages of choosing the uniform random variable:
(i) the values of I; are equally probable at any point in (0,b), and
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(ii) the analysis of X,, is mathematically tractable. It is hoped that
the results we obtain for this choice of f(I) will provide a theoretical
framework for future extensions to the wide range of other possible
pdf’s for the growth rate.

Our first observation for (1.10) is that the mean and the geometric
mean of [ are

(1.11) E(l) = g,E(In(l)) =In (9) and Bn(®) — 9’
e e

hence (1.7) leads to the formal prediction

n b n
1.12 X, = I | Xo ~ Xo| - .S. — 0.
(1.12) (ll:[l > 0 0 <e> a.s. asn — oo
That is, we expect runaway growth when b/e > 1 and extinction if

b/e < 1. In particular,

b b
(1.13) if 2 < b<ethen D) = = <1 < E(l) = 5
(&

Thus, in this range of the parameter b, we conclude that

b n
(1.14) E(X,) = X0<§> — 00 asn — oo,

yet each realization is predicted to ‘go extinct,’ i.e.,
b n

(1.15) Xn=Xo (—) —0as. asn— oo.
e

Figure 1 illustrates these properties for two different realizations of
(1.4)-(1.10), each with initial condition Xy = 5. When 0 < n < 14 we
let b = 3.95, hence the mean and geometric mean of [ are

b b
(1.16) E(l) = =1825 and B — = — 1.3428
€

and therefore,

(1.17) E(X,) =5(1.835)" and X, =5(1.3428)", 0<n<14.
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FIGURE 1. Two realizations of (1.1) when the growth rate pdf is given by (1.10).
Here Xo = 5, b = 3.65 > beprit = € and runaway growth occurs for 0 < n < 14.
At the critical generation number n* = 15 b is reset to b = 2.05 < b.;¢, and each
realization goes extinct, i.e., X, — 0 as n — oo, in spite of the counterintuitive
fact that the mean satisfies E(X,) = 5(b/2)™ = 5(1.025™) — oo as n — oo. The
observation that the first realization goes extinct much earlier than the second is due
to the wide variability in realizations. This wide variability is due to the uncertainty
in the growth rate [.

Thus, when 0 < n < 14 each realization in Figure 1 is in runaway
growth mode. However, at n = 15 we reset b to b = 2.05 where the
mean and geometric mean have the new values

(1.18) E(l) = g —1.025 and B0 =0 _ o754
e

Since the geometric mean is below one when n > 15, the character
of realizations has switched from runaway growth to extinction, and
our theoretical predictions imply that each realization goes extinct
(with probability 1) as n — oo. Finally, observe that the first
realization in Figure 1 goes extinct, i.e., X, decreases below a level
of sustainability, much earlier than the second. This wide variability in
the rate of extinction of individual realizations is due to uncertainty in
the random growth rate [. The remainder of this paper is devoted to the
development of techniques to accurately predict the rate of extinction
of individual realizations.

2. Theoretical predictions and examples. The predictions in
(1.8) and (1.12) give criteria, in terms of the geometric mean e®(n())]
for runaway growth or extinction of realizations as n — oo. However,
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as Figure 1 shows, when eP("()) < 1 and extinction is guaranteed,

there can be a wide variability in individual realizations. A similar
variability in individual realizations is observed when e®(*()) > 1 and
runaway growth occurs. Thus, if one wants to predict values of a
realization at specific generation numbers n during an extinction or
runaway growth event, then it is not sufficient to merely know the
value of eB(2() Instead, we need to fully investigate properties of
the specific distribution f(I) in order to predict how the uncertainty in
the growth rate [ affects individual realizations. Thus, our goal in this
section is derive dynamic bounds which answer the following questions:

(A) Once an extinction event is initiated, say at generation number
n = 0, can we accurately predict, within a prescribed level of confi-
dence, the values of realizations at each n > 07

(ii) Similarly, once a runaway growth event is initiated, say at gen-
eration number n = 0, can we accurately predict, within a prescribed
level of confidence, the values of realizations at each n > 07

The approach. To answer (A) and (B) we cannot use the Cen-
tral Limit Theorem based method used by Lewontin and Cohen [10]
because

(i) the Central Limit Theorem applies only ‘in the limit as n — oo,’
and

(ii) the Central Limit Theorem approach cannot be readily modified
to give precisely estimate values of individual realizations at small
generation numbers 7.

To understand our approach, which is completely different from the
Central Limit Theorem method, we first note that a standard criterion
for proving extinction is to show that, for arbitrarily chosen L > 0,
realizations satisfy

(2.1) Prob {X,, <L} — 1 as n — 0.

A similar criterion holds for runaway growth. To obtain the most
precise estimates on realizations, our technique is to replace L in (2.1)
with a suitably chosen function of the form XyK"™, where K is a
constant or function of n which satisfies 0 < K < 1, and make use
of specific properties of the distribution f(I) to derive a dynamic upper
bound estimate of the form

(2.2) Prob {X, < XoK"}, n > 0.
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The role of the function XoK™ is to provide a measure of certainty to
the uncertain values of a realization during the course of an extinction
event. In Theorem 2.1 we first assume that e®("()) < 1 so that
extinction must occur and derive an exact expression for the dynamic
bound (2.2). Secondly, we derive an expression which dynamically
estimates runaway growth type events when e®(*(") > 1. Following
the proof of Theorem 2.1, we give an example which demonstrates how
to choose K to give optimal estimates. In a second example, we use
these estimates to obtain new insights into the present day ongoing
Kenyan Lion extinction

Theorem 2.1. Let X,, denote a realization of (1.1) where the
constant l; 11 is the uniform random variable whose pdf is defined by
(1.10).

(i) Extinction. Suppose that 1 < b < e so that e®1*() = p/e < 1
and extinction must occur. If K € (0,1) satisfies

(2.3) 1< % <e,
then
(2.4) Prob{X, < XoK™"}
= ﬁ /nC:(b/K) u" exp(—u) du — 1 as n — oo.

(ii) Growth. If M > 1 and b > Me, then

(2.5) Prob{X, > X, M"}

1 /nln(b/M) . )
= — u"" " exp(—u)du — 1 as n — oo.
I'(n) Jo

Proof of Theorem 2.1. We first prove estimate (2.4). The details for
(2.5) are similar, and are omitted. The first step is to observe that

(2.6) Prob{X, < XqK"} =Prob {In(X,) <In(Xy)+nln(K)}.
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Since X, = ([]\—, l;)Xo, this reduces to

(2.7) Prob{X, < XoK"} = Prob{ iln(lk) <nln(K) }
k=1

Let Y, = > p_; In(lx). Then (2.7) becomes
(2.8) Prob{X, < XoK"} =Prob {Y,, <nln(K)}.

It was shown in [3] that the cdf for Y,, is defined by

1 o0
Prob{Y, <y} = —/ u™ Lexp(—u) du,

—o00 <y <nln(b), n>1.

Combining (2.8) and (2.9) gives
(2.10)

1 o0
Prob{X, < XoK"} = m/l /) u""texp(—u)du, n>1.

This completes the proof of equality in estimate (2.4). It remains to
show that the right side of (2.10) approaches one as n — oo. First,
note that (2.10) is equivalent to

1 néd
(2.11) Prob{X, < XoK"} =1-— W/o u" ! exp(—u) du,

where § = In(b/K) € (0,1). Thus, we need to show that the integral
term on the right side of (2.11) tends to zero as n — oco. For this it is
convenient to prove the equivalent property

(2.12)

1 ns (n+1)8
lim —)/ u" le % du = lim 1'(n + l)/ u"e “du = 0.
0 0

n— 00 F(n n—00

The substitution v = nt gives

(n+1)8 [(n+1)/n]é
(2.13) / ue Udu = n(n+1)€fn/ en(1+In(t)—t) g4
0 0
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Since 0 < [(n+1)/n]é < 1 when n > 1, and since the term 1+In(t) —¢
is increasing when 0 < ¢ < 1, it follows from (2.13) that
(2.14)

(n+1)6
/ wPe—du < p(HD) g nllHn(((n+1)/n}d) ~[(n+1)/n]] (n+ 1)5,
0 n

n > 1.

Since 0 < ¢ < 1, we conclude that

(2.15)  lim {1+1n<(”:1)5> - (”H)a] —1+1In(6) -5 <O0.

n—00 n

Thus, if A = (14 In(é) — §)/2, then

(n+1)0
(2.16) / ute U du < nMHe e ni> 1.
0

It follows from Stirling’s formula that

nn+1/2€—n 1
2.17 lim = .
( ) n—oo I'(n+1) N
Combining (2.16) and (2.17) gives

1 (n+1)é n(n+1/2)e—n
=% du < 1/2 nX
(2.18) I‘(n+1)/0 we aus < Tnt1) >" e =0

as n — oQ.

Finally, we conclude from (2.11), (2.12) and (2.18) that

(2.19) lim Prob{X, < XoK"} =1,

n— oo

and the proof of (2.4) is complete.

Example 1. We now show how to choose K to optimally estimate
values of a realization during an extinction event. For this we let
b =2.051in (1.10) and find that the geometric mean satisfies

2.
(2.20) eBn®) — 205 _ g 75y o 1,
(&
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FIGURE 2. (a) Example 1 extinction of a realization (solid curve) of (1.1),
(1.10) when (b, K, Xo) = (2.05,exp(—0.08n),50). The dashed curve is the up-
per bound 50exp(—0.08n) in the prediction Prob{X, < 50exp(—0.08n)} =
1/T'(n) f0°_<;9784n u™ Lexp(—u)du, n > 1. (b) Extinction of a realization of (1.1),
(1.10) when (b, K,Xo) = (2.58,.96,2750). These parameters are from Exam-

ple 2, where we analyze the Kenyan lion extinction. Dashed curve is the up-
per bound XoK™ = 2750(0.96)" in the prediction Prob{X, < 2750(0.96)"} =

1/T(n) fOO;895n u" 1 exp(—u) du for all n > 1.

hence realizations of (1.1) must go extinct (with probability one) as
n — oco. Next, because the right side of (2.4) is independent of X, we
arbitrarily set Xy = 50 and (2.4) reduces to

(2.21) Prob{X, < 50K"}

1
= mint;’fln(z_%/munfl exp(—u)du — 1 asn — oco.
Now suppose that we want at least 85 percent accuracy in the value of
realizations of (1.1) for generation numbers n > 25. For this we find
that the value K = exp(—.08) gives

1 o0
Prob {X,, < 50exp(—.08n)} = —/ u" "t exp(—u) du
(2.22) L'(n) Jo.7o784n

> 0.85 Vn > 25.
It follows from (2.22) that
(2.23)  Prob {Xs5 < 4.1} =0.85 and Prob {X35¢ < 2.1} = 0.872.
Thus, as n increases from n = 25, the values of realizations decrease
with ever improving accuracy. Figure 2 shows the extinction of a

realization when (b, K, Xo) = (2.05, exp(—0.08), 50). The dashed curve
is the dynamic upper bound 50 exp(—0.08n) in (2.22).
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Example 2. The Kenyan lion extinction. A 2009 report by
the Kenya Wildlife Service states that the country’s lion population
decreased from 2750 to 2000 since 2002. This loss is attributed to
climate change, habitat destruction, disease and conflict with humans.
The report projects that the lions may be extinct in 20 years. To
analyze this data we set Xy = 2750 and N=7 in (1.12) and solve
X7 ~2750(b/e)” = 2000. This gives b = 2.58 Following Example 1, we
choose K = 0.96 to give 85 percent accuracy at n = 32, i.e., 25 years
from now. Thus, (2.4) becomes

l oo
Prob { X < (0.96)"Xo} = W/l (2.58/0.96) W exp{—u) du
og(2. .96)n

for all n > 1.

It follows from this that Prob {X32 < 745} = 0.85, hence we predict,
with 85 percent certainty, that less than 745 lions will remain in 25
years. The Kenyan report states that 280 lions were lost between 2004
and 2009, an average of 56 per year. At this rate 600 lions will be left
25 years later in 2034, an estimate which compares favorably with our
prediction. Both estimates are in contrast with the warning that the
lion population may disappear altogether in 20 years. Finally, we note
that if we had chosen 90 percent, or 95 percent accuracy, our estimates
give similar predictions.

3. Discussion and future studies. In this paper we developed
methods to predict the values of realizations of (1.1) during extinct
or runaway growth type events. The results given in Theorem 2.1
were proved under the assumption that the growth rates in (1.1) are
identically distributed, independent, uniform random variables. An
important way to extend these results is to remove the requirement
that the growth rates are identically distributed. Instead it may be
physically more realistic to assume that the the pdf of growth rate [,
is a function of generation number n. In Example 3 we show how to
apply this idea to the evolution of a virus.

The lethal mutagenesis mechanism for virus extinction. On
January 5, 2010, the New York Times (page D4) published an article
by Zimmer [19] which describes a new experimental approach, called
‘lethal mutagenesis,” which may cause a virus to go extinct. The basic
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FIGURE 3. Two realizations of (1.1) when the growth rate pdf is given by (1.10).
Here Xo = 5, b = 3.65 > b.rit = e and runaway growth occurs for 0 < n < 14.
At the critical generation number n* = 15, b is reset to b = 2.05 < b.,;+ and each
realization goes extinct, i.e., X;, — 0 as n — oo, in spite of the counterintuitive
fact that the mean satisfies E(X,) = 5(b/2)™ = 5(1.025™) — oo as n — oo. The
observation that the first realization goes extinct much earlier than the second is due
to the wide variability in realizations. This wide variability is due to the uncertainty
in the growth rate [.

idea behind this approach is that if a virus is forced to radically increase
its rate of mutation, then the number of ‘good offspring’ necessary for
propagation of the virus will decrease. In turn, it is thought that this
will force the growth rate of the virus population to decrease below a
level of sustainability, and that the virus will go extinct [1, 2]. Our goal
is to incorporate these ideas into (1.1), and investigate the resultant
behavior of realizations. For this, we assume that uncertainty in the
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growth rate is governed by a probability distribution which is dependent
on the generation number n. As a first step, we extend (1.10) and
assume that [,, in (1.1) is a uniform random variable whose pdf is

1/b, when 0 <1< b,,

(3.1) fu(l) = {0 when [ ¢ (0, b,],

where b,, is a function of n. It follows from (3.1) that the mean growth
rate is
bn

(3.2) E(l,) = 50 M > 1.

Thus, the mean growth rate is now allowed to vary with n, as required
by the hypothesis of lethal mutagenesis. Below, we investigate the
behavior of realizations of (1.1)—(3.1) for two fundamentally different
choices of b,,. The outcome of these scenarios is illustrated in Figure 3.

Scenario I. In accordance with the present theory of lethal muta-
genesis, we assume that the mutation rate is sufficient to cause the
mean growth rate E(l,,) = b, /2 to decrease to a level below which the
population cannot sustain itself. Thus, in accordance with theoretical
predictions of the previous sections, we assume that, as the generation
number n increases, the parameter b,, decreases from a level above the
critical value e where runaway growth is predicted, to a level below e.
For simplicity, we assume that b,, satisfies (Figure 3, first row)

(3.3) b,(l) = (e+ 0.6 tanh(15 — n)), n > 1.
For this choice of b,, we find that

b, _ e—0.6
. n) = = >
(4 B =2z

~ 1.059 foralln > 1.

Thus, because the [,, are assumed to be independent, the mean of X,
satisfies

(3.5) E(X,) = (ﬁE(lJ) Xo > (1.059)" Xy — 00  as n — 0.

Thus, as we described in Section 1, one might be tempted to predict
that realizations of (1.1) will be unbounded, and runaway growth must
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occur. However, as Figure 3 (first row, second column) shows, this is
not what happens.

Scenario II. In accordance with the present theory of lethal mu-
tagenesis, we assume that the mutation rate is sufficiently large that
the mean growth rate decreases as generation number n increases. In
particular, we assume that b,, decreases from a level above the critical
value e where runaway growth is predicted to a level below e where the
geometric mean will have an effect. For simplicity we assume that b,
satisfies

(3.6) ba(l) = { (e + 0.6 tanh(15 — n))0 when [ < n < 44,

(e + 0.6 tanh(0.5(n — 45)))0  when n > 45.

(1) Sachs [17 points out that (see p. 36) “since 1970 the population
has risen from 3.7 billion to 6.9 billion, and continues to 9 increase at a
rate of 85 million per year. In some regions food production per person
has declined, e.g., in sub-Sahara Africa. In India the doubling of the
population has absorbed all of the increase in grain production.” Also
on p. 36 —“Forecast of 7 billion around 2012, and 9 billion by 2046.” We
must produce more food, but simultaneously stabilize pop growth.”

Include the virus application from nyt. Alternative approaches. Lud-
wig employs Bayesian techniques and also catastrophe theory ideas, to
analyze extinction probabilities in ecological models [11, 12].
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