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OSCILLATION OF nTH ORDER SUPERLINEAR
DYNAMIC EQUATIONS ON TIME SCALES
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We dedicate this paper to the memory of Lloyd K. Jackson

ABSTRACT. Consider the following nth order superlinear
dynamic equation

22" (1) +p(t)e*(o(1) =0, a>1,

where p € C,.q(T,R™), and T is an isolated time scale, o
is a ratio of odd positive integers. We obtain an analog
of the Kiguradze-Li¢ko-Svec-type oscillation theorem for this
dynamic equation. As an application, we obtain

(i) when n is even, every solution z(k) of the difference
equation
A"x(k) + p(k)z*(k +1) =0,

where p(k) > 0 and a > 1 is oscillatory if and only if
oo
D (ke + 1) p(k) = oc.
k=1
(ii) when n is odd, every solution z(k) of this difference

equation is either oscillatory or limy_, o (k) = 0 if and only
if the above sum is infinite.

1. Introduction. Consider the following nth order superlinear
dynamic equation on a time scale

(1.1) 227 () +p()z®(o(t) =0, a>1,

where p € C,.4(T,R™), T is a time scale, and « is a ratio of odd positive
integers.
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When T = R, the dynamic equation (1.1) is the nth order superlinear
differential equation

(1.2) ™ (t) +p(t)z*(t) =0, o> 1.

For n = 2, when p(t) is nonnegative, Atkinson [3] proved that

(1.3) /00 tp(t) dt = oo,

is a necessary and sufficient condition for the oscillation of (1.2).

For n = 2, when p(t) is allowed to take on negative values, Kiguradze
[10] proved that (1.3) is sufficient for all solutions of the differential
equation (1.2) to be oscillatory. These results have been further
extended by Wong [15].

When T = Ny, the dynamic equation (1.1) is the nth order superlin-
ear difference equation

(1.4) A"z(k) +p(k)z*(k+1)=0, a>1

For n = 2, when p(k) is nonnegative, Hooker and Patula [8] and
Mingarelli [13], respectively, proved that

(1.5) i": kp(k) = oo

is a necessary and sufficient condition for the oscillation of all solutions
of the difference equation (1.4).

For n = 2, when p(k) is allowed to take on negative values, Jia, Erbe
and Peterson [5] proved that (1.5) is sufficient for all solutions of the
difference equation (1.4) to be oscillatory.

In 1963, Licko and Svec (see [12] or [2]) established the following
interesting necessary and sufficient condition for the oscillation of (1.2).

Theorem 1.1. Suppose that p(t) > 0. Then (i) when n is even,
every solution x(t) of the differential equation (1.2) is oscillatory if and
only if foo s"1p(s)ds = oo;
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(ii) when n is odd, every solution z(t) of the differential equation (1.2)
is oscillatory or lim;_, z(t) = 0 if and only if [ s" !p(s)ds = oo

The sufficiency part of Theorem 1.1 for n even was given for the first
time by Kiguradze [11].

In this paper, we consider the oscillation of the nth order superlinear
dynamic equation (1.1) on an isolated time scale where p € C.q(T,R™).
We obtain a Kiguradze-Licko-Svec-type oscillation theorem for equa-
tion (1.1). As an application, we get that

(i) when n is even, every solution z(k) of the difference equation
(1.6) A"z (k) + p(k)z*(k+1) =0,

where p(k) > 0 and « > 1, is oscillatory if and only if
(1.7) > (k+1)"'p(k) = oo,
k=1

(ii) when n is odd, every solution z(k) of the difference equation (1.6)
is either oscillatory or limg_,o, (k) = 0 if and only if (1.7) holds.

For completeness, (see [6, 7] for elementary results for the time scale
calculus), we recall some basw results for dynamic equations and the
calculus on time scales. Let T be a time scale (i.e., a closed nonempty
subset of R) with sup T = co. The forward jump operator is defined
by

o(t) =inf{s € T :s > t},

and the backward jump operator is defined by
p(t) =sup{s € T:s < t},

where sup @ = inf T, where & denotes the empty set. If o(t) > ¢, we
say t is right-scattered, while if p(t) < t we say t is left-scattered. If
o(t) =t we say t is right-dense, while if p(¢t) = ¢t and ¢ # inf T we say
t is left-dense. The graininess function p for a time scale T is defined
by u(t) = o(t) — t, and for any function f : T — R the notation f7(t)
denotes f(o(t)). We say that z : T — R is differentiable at ¢t € T
provided
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exists when o(t) = ¢ (here by s — t it is understood that s approaches
¢t in the time scale) and when z is continuous at ¢ and o(t) >t

Note that if T = R , then the delta derivative is just the standard
derivative, and when T = Z the delta derivative is just the forward
difference operator. Our results here extend the theorems mentioned
above to isolated time scales (i.e., all points are both left-scattered
and right-scattered), and include, for example, the time scale ¢N° :=
{1,q,4>,...} which is very important in quantum theory [14].

2. Lemmas. The following lemma for the solution of a dynamic
inequality on an unbounded above time scale can be regarded as a
simple extension of [1, Corollary 1.7.14, pages 31-32] (see Ryder and
Wend [14] for its continuous version). The proof is the same as in [1,
Corollary 1.7.14], so we omit it.

Lemma 2.1. Suppose that T = [tg,00)T is a time scale interval
which is unbounded above. Let x(t) be defined on T with x(t) > 0,
A" (t) < 0 and not identically zero, for large t € T. Then, ezactly one
of the following is true:

(I) limy oo 22 (1) =0, 1 < i < — L.

(IT) there is an odd integer j, 1 < j < n-—1 such that lim; oo a:A"__i (t)
=0forl <i<j-1,lime o 2" 2(t) > 0 (finite), limy oo 22" (t)
>0 and lim; 0o 22 (t) =00, 0 <i<n—j—2.

In addition, in Case (I) we know that (—1)i+"_1:cAi_(t) > 0, for
1<i<n-1,t¢€T and in Case (IT), (=1)Hz2""(t) > 0, for
1<i<j, teT.

Lemma 2.2. Suppose that

T = {to,t1,t2,- .- ytgy--- }s

where 0 < tg < t; < - < tp < -+, limg_ oo tx = 00. Then for any
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m > 2, there exists €,,_1 > 0 such that

(2.1)
o(Tm-1) po(Tm-2) o(r2) po(m)
/ / / / AToATlATz-"ATm,Q
trg trg trg trg

/U(Tml) /U(Tmz)
B trg trg

(12)
. / [0(T1) — tho |ATIATY - - ATy 2

tk’U
Z Emfl[U(Tmfl)]m_lu

for Tm_1 > tg,.

Proof. We prove the result by induction. When m = 2, we have

o(r1)
/ Aty = o(11) — tg, > €10(m1),

trg

_ kg
for 7 > ti,, where e; =1 Togr2 > 0.

Suppose that when m = k, (2.1) holds. Then when m = k + 1,
supposing 7, = t; € T, [ > kg, we have

o(te) po(tr-1) o(72)
/ / / [0(T1) — tro |ATIAT - - ATgo_y
tkO t"’O t"’O

o(Tk)
> eny / lo(re_1)F 1 Are_y

129

= Ekfl[tllzoi-i}l (tko+1 - tko) + tllz;—:Z(tkoJrZ - tk0+1) +oee

+ 7 (g — )]
try1
> €k_1 / sF1ds

t"’O

> exlo ()",

for 11, > ty,, where e, = (ex_1)/k(1 — (tr,/tro+2)), which shows that
(2.1) holds for m = k + 1. i
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Lemma 2.3. Suppose that
T = {to,t1,t2,. -« ytky-.. I

where limy,_, o0 ty = 00 and o > 1. Assume that z(t) > 0 and x> (t) > 0
fort > tg,. Then

EogB(s xl-e
(2.2) /tko xa(g((s)))As < a—(tf())'

Proof. Let t = t,,,. We have

@t (tult) ’”Z 2(ti1) - 2(t:)

e(tivn) S (i)

The following lemma is from [7, Theorem 5.37 (i)].

Lemma 2.4 (Leibniz formula). If f(t,s), f2¢(t,s) are rd-continuous,
then

[/atf(t’ S)As] = fo(®),6) + /t F24(t,5)As.

a

3. Main theorem. Assume that T = {tk}iozo where 0 <ty < t; <
ces < tg e -, with t — 0.

Definition 3.1. We say that T satisfies condition (E) if there exists
Ly > 1 such that
tr — to

<Ly, forall k>1.
tk—1 —to
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Clearly, if T = hNg, b > 0, T = ¢No, ¢ > 1, or T is the set of
harmonic numbers [6, Example 1.45] then T satisfies condition (E) but
it is easy to show that T = {22k,k € Ny}, does not satisfy condition
(E).

Remark 3.2. Condition (F) is a requirement on the asymptotic
behavior of the graininess function and can be reformulated [4] as
follows: The time scale T satisfies condition (F) if and only if for
each fixed ip > 1, there exists L;, > 1 such that

tr — tig <L

for all k& > ig + 1.
tp—1 — ti,

10

We may now prove our main result.

Theorem 3.3. Suppose that T satisfies condition (E) and consider
the integral condition:

(3.1) / ()] () AL = oo

to
(i) Assume n is odd. Then every solution z(t) of (1.1) is either
oscillatory or lim;_,o x(t) = 0 if and only if (3.1) holds.

(ii) Assume n is even. Then every solution z(t) of (1.1) is oscillatory
if and only if (3.1) holds.

Proof. Suppose that (3.1) holds and assume that z(t) is a nonoscil-
latory solution of (1.1). We may assume that x(t) > 0 for ¢ > T". The
case z(t) < 0 can be treated similarly. In view of (1.1),

(32) #2"(t) = —p(t)z*(a(t)) <0, t € [T,00)r.

Throughout this proof we will use the sign conditions on the derivatives
of z(t) given in Lemma 2.1. Since z2" () < 0 and 22" '(t) >
0, xAn_l(t) decreases to a nonnegative limit as ¢ increases to oo.
Integrating (3.2) from ¢ to oo, we get

(3.3) 22" () > /t b p(1)2%(o(1))AT.
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Suppose that case (I) of Lemma 2.1 holds. Integrate (3.3) from v to
u with T' < v < u. We have

u

A7 () ) > [(t = " o) (o(r)) A

t=v

+ /u(o(t) —v)p(t)z*(o(t)) At
> /u(a(t) —v)p(t)z® (o (t))At.

Letting u tend to oo, we get

| (o) — 0)p(t)z*(o () At

Integrating from v; to w; with 7' < v; < w; and using the Leibniz
formula (see Lemma 2.4), we obtain

n—3 n—3

—zA (ul)—i—mA (v1)

> [w=u) [0 - opre (o0l

uy

V=v1

+ / u (o(v) — v1) [ / - p(t)aca(a(t))At] Av
> / :“(a(v) — ) [ / - p(t)xa(a(t))At] Av

uy

- |:/1:(U(’u,) —vl)Au/voop(t)ma(a(t))At} .
. /:1 [/:(v) (o) vl)Au]p(U)xa(U(v))Av
> /:1 [/:(v) (o(u) — vl)Au]p(U)an(U(”))Av'

Letting u; tend to co, we get that

A" (v1) > b a(v)(a(u) —v1)Au|p(v)z*(v)Av.
[
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Similarly, by integrating by parts we have that

—aAT ) > /t 00{ /t " [ /t U(TZ)(U(T)—t)AT} Arz}

x p(r1)a(o(m1)) AT,

o(r1) o(12) G'(T3
/ / / / — t)ATAT3ATy

p(m1)z*(o(1)) ATy

Repeating the above procedure we have

o creoz [ [

) — OATAT,_3 - ATsArop(11)z* (0 (1)) ATy
For simplicity, we denote

g(o(m1),t)
o(71) o (72) o(Tn-3)
::/ [/ / (o(1) —t)ATAT, 3--- AT3 | ATo.
t t t

Let us now suppose n is even. Then from (3.4) we have

(3.5) acA(t) > /too g(o(m), t)p(r)z®(o (1)) ATy

Note that (since z is increasing) z(o(m))/z(o(w)) > 1 for 7 > u and
g(o(u),o(u)) = 0. By (3.5), integrating by parts from Tj to t and using
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Lemma 2.4, we get that

(3.6) /Tt mwA(( ))) Au
E/T/ g(o %ATlAu
=[]

_ {(u ) /u g(o(m), u)p(Tl)Ale

u:Tl

g 7'1 ATlAU

[ (o) = T)| = g(o ) o w)p(w
+ /u A (a(n),u)p(n)An} Au
2= [(o@ -1 [~ #* el untr)an] au

Note that by definition, we have

A o(r1) po(r2) 0(Tn—4)
g“(U(Tl),u)z—/ / / (0(rn_s)—u)Arn 5 ATsArs

where

o (Tk )
k(T1,u) = / / / o(Tk) — u)ATg - - - AT3ATo.
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/t 7$A(u) Ay

7, ©(0(u))

> [(ow-m)
y /u L s(r wp(r) AT A

= {/TI:(U(vl) —T1)Av; /uoo Ing(ﬁ’u)p(ﬁ)Aﬁ}u_Tl
* /T1 /a(u —Th)Av /u°° In_a(m1,u)p(m) AT Au

a(u 3]
Z / / Tl)A’Ul / In,4(7'1,u)p(7'1)A7'1Au.
T U

By integrating by parts, repeating the above procedure and using (2.1)
of Lemma 2.2, we have

(3'7) t A o(u) po(vn-2)
fosate L UL T
(v2)

/ (o(v 1)—T1)Av1---Avn2]p(u)AU

/ |:/a(u /'U(’Un_z)
U(Tl T1

../U “ (o) —Tl)Avl---Avnz]P(u)Au

T
t
e [ o] p(wae
o(Ty)
Using Lemma 2.3, we have that

[ 2, 2

7, z*(o(u)) - a-—-1 < oo

(3.8)

Then, letting ¢ — oo, from (3.1), (3.7) and (3.8), we obtain a contra-
diction.
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Next let us suppose that n is odd. Then (3.4) reduces to

(3.9) A0 > / " g(o(m), Op(m)a® (o(r)) Ary,

and this implies that z(t) is nonincreasing for t > T'. Let lim; o, z(t) =
L. We shall prove that L = 0. Suppose L > 0. We take T so large that
z(t) > L/2 for t > T'. Integrating (3.9) by parts from T to ¢ yields

t

o(T) — =(t) = [(S -T) /:o g9(o(m1), s)p(1)z (o (71)) Aﬁ}

s=T

-/ To(s) -] [/ g2 (o(m), s)p(nﬂ“(“(ﬁ))m]m

S

> [ow-n[" [ " / "

(Tn—4a)
/ (0(Tn-3) —8) ATp 3+ ATy
-p(r1)z%(o (1)) AT As.

Repeatedly integrating by parts from 7 to ¢ and using (2.1) of
Lemma 2.2 and Lemma 2.4, we get

2(T) z (T) — «(t)

/ |:/(T(Tn1) /O'(TWQ)
T T T

(72)
(3.10) /T lo(r1) = T] Ary -+ ATa_s

v

: p(Tn—l)xa(U(Tn—l)) ATn—l

L\ [*

Z En—1 <5> / [U(Tn—l)]nilp(Tn—l)ATn—l-
o(T)

Letting ¢t — oo, by (3.1) we obtain a contradiction.

Suppose next case (II) of Lemma 2.1 holds. We observe that there
exists a Ty > T such that 2" (t) > 0 for t > Ty, j = 0,1,... ,n—75 — 1.
Proceeding as in case (I), noticing that the j in Lemma 2.1 is odd,
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similar to relation (3.9) in case (I), we have

. o(r1) o(12)
R A A
O'TJ3

/ [0(r) — ] ATA; s --- Arap(r)* (o (r1)) Ary.
t
Integrating from ¢ to u, T5 < t < u, similar to (3.10), we have

20 20 () -0 (W)

/ o(rj-1) /U(TjZ)
/0’ Tz)

’7'1 7t]AT1 ATJ’_2

- p(Tj,1)$a(J(Tj,1)) ATj,l.

n—j

Letting u — oo and noticing lim, . 22"~ (u) > 0, we obtain that

(15-1) o(rj—2)
SRCEV AV AR

o(72)
/ (o(r1) — €] Aty -+~ Aty
t

p(rj-1)z%(0(7j-1)) ATj-1.

Integrating from T3 > T to t and noticing that a:Anijil(Tg) > 0, we
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get that

An]l(t) An]l(

ors- 1> o(ry-2)
e-m [

o(r2)
. / lo(11) — T]AT- - ATj 9

2" >

t

Bl (o(ry-1)) A7y

t 0o o(15-1) o(Tj-2)
w om0
T3 T T T

o(rs)
. / [o(12) — T]ATy - - ATj_9

p(7j—1)x%(0(Tj=1)) ATj—1 AT

fo-mf [

o(rs)
. / [o(m2) — T]ATy - - ATj_
'p(Tj,1)$a(U(ijl))AijlAT.

T=T3

Repeatedly integrating by parts, we get that

n—j—1 o(7j— 1) o(72)
N NOE / / / lo(r1) — Ty Am
T3

cana| [T oo An

j—

t po(r;) po(rj-1) a(r2)
+/ / / / [0’(7’1) —Tg]AT]_
T3 J T3 Ts T3

- ATjap(7)a (0 (75))AT;
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Z/T: /T:(Tj1).../T:(T2)[U(Tl)—T3]Ar1
AT /t°° p(8)2%(0(s)) As.

Similarly, integrating from T3 to ¢, we obtain that

O R ORE S )
t o(15) o(72)
Z/T/T /T lo(m1) — T)Amy
--ATj-/t p(s)x®(o(s))As.

Repeating the above procedure we get after n — j — 3 steps

A t o(Th—3) o(12)
25 (1) 2/ / / [o(r1) — T5] Ay
T3 J T3 Ts

N " ()2 (0(s)) As.

Note that z(o(s))/z(o(7)) > 1 for s > 7. By (2.1) of Lemma 2.2, we
get

(3.11) o
t pA(r t ot po(Tns
Loz 1),
y /U(TZ)[U(TI) C Ty Am - Ara_g

RN RECETN

t 7 ro(Tn-3) o(r2)
2/ / / / [O’(Tl)*Tg]ATl
T3 T3 T3 T3

o Am Moo p(s)As:| Ar

T po(tn-2) ro(Tn-3) o(72)
:|:/ / / / [0’(’7’1)—T3]A7’1
T3 JT3 T3 Ts
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t

ATy g / p(s)As]
T 7=T3

t o(T) o(Th_2) o(12)
+/ / / [U(Tl)—Tg]ATl
T3 JT3 Ts T3
< ATy _op(T)AT

t o(T) o(Th—2) o(72)
> / / / / [o(ry) — T3] Ary
T3 J T3 T T3

- ATy_op(T)AT

>ena [ ol ()

(T3)
Using Lemma 2.3, we have that
t A l-« T
(3.12) / ) AT
1, %(0(T)) a—1

Letting t — oo, from (3.1), (3.11) and (3.12), we get a contradiction.
This completes the proof of the sufficiency.

For the necessity, when n is odd, we shall show that if ftooo [o(t)]" tp(t)
At < 00, then there exists a solution of (1.1) such that

1 N
(3.13) z(o0) = 2 and :BAJ(oo) =0, j7=12,...,n—1.

Since T satisfies condition (E), there exists K > 1 such that o(t) < Kt.
So

0(Tn-3) ,o(Tn—2)n-2
/ / [0(Th—2) — TIATAT, o
t t

o(Tn-3)
< /t [0 (Tu_z) — 0P At_s
S KQ(O'(Tnfg))g.

In general, we have

o(m) po(r2) o(Tn-2)
(3.14) / / . / [0(Th_2) — TIATAT, 2+ - ATy
¢ ¢ ¢

S K2K3 . Kn72(0_(7_1))n71
_ Kn2—3n/2(0_(7_1))n—1_
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From Lemma 2.4 and 3.14, it is easily verified that if the integral
equation

1 oo J(Tl) G'(Tz)
wrs wo-b [
2 t t t

o(Tn—2)
. / [0(The2) — TIATATp_2--- ATy
t

-p(m)x*(o(m1))Amy

has a solution z(¢) which is rd-continuous and uniformly bounded as
x — 00, then it is also a solution of (1.1) with the supplementary condi-
tions (3.13). The existence of a bounded continuous solution of (3.16)
may be established by the Picard method of successive approximation.
That is, we define a sequence of functions

Zm(t), (m=0,1,2,...), t > t,
by

(t)=0

Zo
1 oo po(T) o(72)
=3+ [ [
t t t

o(Th—_2)
. / [0(Th_2) — T|ATAT, 2--- ATy
t

-p(m)an, (o(m))Ar, (m=0,1,...).

From (3.14) we can prove by induction that if ¢ is so large that

oo o(m1) o(12) o(Trn—2)
/ / / . / [0(Th—2) — T] ATAT,_2
t t t t

- ATyp(T1) ATy
ool [ o(r)pm) A
t

IN
=

?

IN
DN | =

then 0 < z,,(t) < 1. For simplicity, we set

o(r1) po(r2) o(Tn—2)
G(m,t) = / / e / [0(The2) — TIATAT,_2 - ATo.
t t t
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‘We have
(3.16)

Tmsa(t) — T (£) = / " G, Op(r) B (0(70)) — (o () AT,
By the mean value theorem,
2% 11 (o) — 25 (0(r1))| = A€ oms1(0(r1)) — @m0 (r)],
where 2,,(0(r1)) < € < Tn11(0(r1)) o8 i1 (0(r1)) < € < @nlo(m)):
So we get that
2% 11(0(r)) = 22 (0 ()] < al@m1(0(r1)) = 2m(0(r1))]-

Therefore from (3.16), we have
|Zmi2(t) —Tm41(t)] < amg>t<|$m+1(ﬁ)*xm(ﬁ)|/ G(r1,t)p(r1) ATy
T1Z t

From this we deduce the convergence of the sequence z,,(t), (m =
0,1,...) for t so large that, by (3.14),

o / G, Op(r)An < K™ =3/2 / (o(r1))"1p(r)Am < B < 1.
t t

This proves the existence of a nonoscillatory solution of (1.1) for
sufficiently large ¢, which establishes our result.

When n is even, we shall show that if ftzo [o(t)]" p(t)At < oo, then
there exists a solution of (1.1) such that

(3.17) z(0)=1, 2% (00)=0, j=1,2,---,n—1.

From Lemma 2.4 and (3.14), it is easily verified that if the integral
equation

(3.18)

oo po(t1) po(r2) o(Tn—2)
2(t) =1 / / / / [0(7_2) — T|ATAT,
t t t t

- Arop(m1)z®(0(11)) ATy
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has a solution z(t) which is rd-continuous and uniformly bounded as
x — 00, then it is also a solution of (1.1) with the supplementary condi-
tions (3.17). The existence of a bounded continuous solution of (3.18)
may be established by the Picard method of successive approximation.

The rest of the proof is the same as the case with n odd. This
completes the proof of the theorem. ]

Remark 3.4. We observe that in the sufficiency part of Theorem 3.3
we did not use the fact that T satisfies condition (E). Therefore, it is
seen that for any time scale T, (3.1) implies oscillation if n is even and
if n is odd every solution is either oscillatory or approaches zero as n
goes to oo.

4. Examples. When T = Ny, equation (1.1) becomes
(4.1) Atz(k) +p(k)z“(k+1) =0.

By Theorem 3.3, we get the following example.

Example 4.1. The following hold: (i) When n is odd, every
solution x(t) of the difference equation (4.1) is either oscillatory or
lim;_, o z(t) = 0 if and only if

(4.2) ikﬂ”l (k) = .
k=1

holds.

(ii) When n is even, every solution z(¢) of the difference equation
(4.1) is oscillatory if and only if (4.2) holds.

As another simple illustration of Theorem 3.3 we get the following
example:

Example 4.2. Let T = ¢N°, ¢ > 1, and consider the dynamic
equation

B

(43) IAn (t) + m

2(o(t)) =0, B> 0.
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Note that (4.3) is of the form (3.1) with

.7 B
p(t) = tn(log, )7
It is easy to see that
oo oo l
[ e at=pa- ety <
q j=1

which diverges when v < 1 and converges when v > 1. Hence from
Theorem 3.3 we get that if v <1 and if n is even, then all solutions of
(4.3) are oscillatory, and if n is odd, then every solution z(t) of (4.3) is
either oscillatory or satisfies

tlingo z(t) = 0.

On the other hand, if v > 1, then for all positive integers n (4.3) has a
nonoscillatory solution.

Many other interesting examples can be similarly given.
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