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SOME FIXED POINT THEOREMS OF
LEGGETT-WILLIAMS TYPE

RICHARD AVERY, DOUGLAS ANDERSON AND JOHNNY HENDERSON

ABSTRACT. This paper presents a fixed point theorem of
compression and expansion of functional type through which
straightforward extensions lead to double and triple fixed
point theorems in the spirit of the original fixed point work
of Leggett-Williams. Only portions of the boundaries are
required to be mapped outward or inward.

1. Introduction. The Leggett-Williams triple fixed point theorem
[8] has been a staple in the existence of triple positive solutions to
boundary value problems for two decades. The five functionals fixed
point theorem [2] generalized the Leggett-Williams fixed point theorem
by providing flexibility in choosing a convex functional instead of using
the norm. The key to both of these results is that only a subset of
the elements in the cone in which a(z) = a are mapped outwards
in the sense that a(Tz) > a, where « is a concave positive functional
defined on the cone. The technique that characterizes Leggett-Williams
type fixed point theorems hinges on the boundary of sets and the
interweaving role of fixed point index theory and the properties of
concave and convex functionals which will be illustrated in Lemmas
8 and 9. In the original work of Leggett-Williams the subset can be
thought of as the set of all elements of the cone in which ||z|| < b
and a(z) = a. There were no outward conditions on the operator T’
in the Leggett-Williams fixed point theorem nor the five functionals
fixed point theorem concerning those elements with ||z|| > b and
a(z) = a, and hence these results avoided any invariance-like conditions
with respect to one of the three boundaries that play a significant
role applying index theory. The entire upper and lower boundaries
were mapped inward in both the Leggett-Williams triple fixed point
theorem and the five functionals fixed point theorem. That is, all
of the elements in the cone for which ||z|| = ¢ (and d for the lower
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boundary) were mapped inward in the sense that ||Tz|| < ¢ (and d for
the lower boundary). In this paper we use techniques similar to those of
Leggett-Williams that will require only subsets of all three boundaries
to be mapped inward and outward, respectively. We thus provide
more general results than those obtained in the Leggett-Williams triple
fixed point theorem, the five functionals fixed point theorem and
the topological generalizations of fixed point theorems introduced by
Kwong [7] which all require certain boundaries to be mapped inward
or outward (invariance-like conditions).

2. Preliminaries. In this section we will state the definitions that
are used in the remainder of the paper.

Definition 1. Let E be a real Banach space. A nonempty closed
convex set P C F is called a cone if for all x € P and A > 0, A\x € P
and if z,—z € P then z = 0.

Every cone P C F induces an ordering in E given by « < y if and
only if y —z € P.

Definition 2. An operator is called completely continuous if it is
continuous and maps bounded sets into precompact sets.

Definition 3. A map « is said to be a nonnegative continuous
concave functional on a cone P of a real Banach space F if a« : P —
[0, 00) is continuous and

alte + (1 —t)y) > ta(z) + (1 — t)a(y)

for all z,y € P and t € [0,1]. Similarly we say the map 8 is a
nonnegative continuous convex functional on a cone P of a real Banach
space F if 8 : P — [0, 00) is continuous and

Btz + (1 —t)y) <tB(z) + (1 —1t)B(y)

for all z,y € P and ¢ € [0, 1].
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Let ¢ and § be nonnegative continuous functionals on P; then, for
positive real numbers a and b, we define the following sets:

P(,b) ={z € P:4¢(x) <b}
and

P(¢,0,a,b) ={x € P:a < ¢(z) and 6(z) < b}.

Definition 4. Let D be a subset of a real Banach space E. If
r : E — D is continuous with r(z) = z for all « € D, then D is a
retract of E/, and the map r is a retraction. The convez hull of a subset
D of a real Banach space X is given by

conv (D) = {Z)‘ixi tx; € D, A\ €]0,1], Z)‘i =1, andn € N}.
i=1

i=1

The following theorem is due to Dugundji and its proof can be found
in [4, page 44].

Theorem 5. For Banach spaces X and Y, let D C X be closed
and let F': D —'Y be continuous. Then F' has a continuous extension
F:X =Y such that F(X) C conv (F(D)).

Corollary 6. Every closed convex set of a Banach space is a retract
of the Banach space.

The following theorem, which establishes the existence and unique-
ness of the fixed point index, is from [5, pages 82-86]; an elementary
proof can be found in [4, pages 58, 238]. The proof of our main result
in the next section will invoke the properties of the fixed point index.

Theorem 7. Let X be a retract of a real Banach space E. Then, for
every bounded relatively open subset U of X and every completely con-
tinuous operator A : U — X which has no fized points on U (relative
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to X), there exists an integer i(A,U, X) satisfying the following condi-
tions:

(G1) Normality: i(A,U,X) =1 if Az = yo € U for any x € U,

(G2) Additivity: i(A, U, X) = i(A, U1, X) + i(A, Uz, X) whenever Uy
and Uy are disjoint open subsets of U such that A has no fized points
on U — (U UUs);

(G3) Homotopy invariance: i(H(t,-),U, X) is independent of t € [0, 1]
whenever H : [0,1] x U — X is completely continuous and H(t,z) #
for any (t,x) € [0,1] x 0 U;

(G4) Solution: If i(A,U,X) # 0, then A has at least one fized point
mnU.

Moreover, i(A,U, X) is uniquely defined.

3. Main results. Anderson, Avery and Henderson [1] proved an
expansion-compression fixed point theorem of Leggett-Williams type;
embedded in the proof were the following two lemmas which are the
primary means of proving the multiple fixed point theorems of Leggett-
Williams type which follow.

Lemma 8. Suppose P is a cone in a real Banach space E, o is a
nonnegative continuous concave functional on P, B is a nonnegative
continuous convex functional on P and T : P — P is a completely
continuous operator. If there exist nonnegative numbers a and b such
that

(Al) {x € P:a < a(z) and B(z) < b} # &5
(A2) if © € P with B(z) = b and a(z) > a, then B(Tz) < b;
(A3) if z € P with B(z) =b and a(Tx) < a, then B(Tx) < b

and if P(B,b) is bounded then i(T, P(8,b), P) = 1.

Proof. By Corollary 6, P is a retract of the Banach space E since it
is convex and closed.

Claim 1. Tz # z for all x € OP(8,b).
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Let zg € OP(B,b); then B(zp) = b. We want to show that zg is
not a fixed point of T’; so suppose to the contrary that T'(zp) = 2o.
If a(Tz) < a then B(T'z) < b by condition (A3), and if a(z) =
a(Tz) > a then B(Tzp) < b by condition (A2). Hence in either case
we have that Tzy # 29, thus T does not have any fixed points on

OP(5,b).

Let z; € {z € P:a < a(x) and B(z) < b} (see condition (Al)), and
let Hy : [0,1] x P(8,b) — P be defined by H;(t,z) = (1 — t)Tx + tz1.
Clearly, H; is continuous and Hy ([0, 1] x P(8,b)) is relatively compact.

Claim 2. H(t,z) # = for all (t,x) € [0,1] x OP(B,b).

Suppose not; that is, there exists (t1,21) € [0,1] x OU such that
H,(t1,21) = x1. Since x; € OP(B,b) we have that 8(z1) = b. Either
a(Tz1) < a or a(Tzy) > a.

Case 1: a(Tz1) < a. By condition (A3) we have 8(Tx1) < b, which
is a contradiction since

b= ,8(.’131) = ,8((1 — tl)T.Tl + t1z1) S (1 — tl)ﬁ(Tﬂﬁl) +t1,8(21) <b.
Case 2: a(Tz1) > a. We have that a(z;) > a since
a(z1) = a((l —t1)Tzy + t121) > (1 — t1)a(Tzy) + t1a(z1) > a,

and thus by condition (A2) we have S(Tx;) < b, which is the same
contradiction we arrived at in the previous case.

Therefore, we have shown that Hy(¢,z) # z for all (¢,z) € [0,1]
OP(B3,b), and thus by the homotopy invariance property (G3) of
the fixed point index i(T, P(B,b), P) = i(z1,P(8,b), P), and by the
normality property (G1) of the fixed point index (T, P(3,b),P) =
i(21, P(3,b),P) = 1. ©

Lemma 9. Suppose P is a cone in a real Banach space E, o is a
nonnegative continuous concave functional on P, 8 is a nonnegative
continuous convex functional on P and T : P — P is a completely
continuous operator. If there exist nonnegative numbers a and b such
that
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(Ad) {z € P:a < a(z) and B(z) < b} # @
(A5) if x € P with a(z) = a and B(z) < b, then a(T'z) > a;
(A6) if z € P with a(z) = a and 8(Tx) > b, then a(Tz) > a;

and if P(a,a) is bounded then i(T, P(o,a), P) = 0.

Proof. By Corollary 6, P is a retract of the Banach space E since it
is convex and closed.

Claim 1: Tz # z for all x € OP(a,a).

Let wg € 0P(a,a); then a(wy) = a. We want to show that wg is
not a fixed point of T; so suppose to the contrary that T'(wp) = wo.
If B(Twp) > b then a(Twg) > a by condition (A6), and if B(wy) =
B(Twy) < b then a(Twg) > a by condition (A5). Hence in either case
we have that T'wy # wp, thus 7" does not have any fixed points on
OP(a,a).

Let w1 € {x € P:a < a(z) and B(z) < b} (see condition (A4)) and
let Hy : [0,1] x P(o,a) — P be defined by Hs(t,z) = (1 — t)Tx + tw;.
Clearly, H; is continuous and H3([0, 1] X P(c, a)) is relatively compact.

Claim 2: H(t,z) # = for all (t,x) € [0,1] x OP(a,a).
Suppose not; that is, there exists (t2,z2) € [0,1] x 9P (a, a) such that

Hj(t2,x2) = z2. Since x2 € OP(a,a) we have that a(x2) = a. Either
B(Tz3) <bor 3(Tx2) > b.

Case 1: B(T'z3) > b. By condition (A6) we have a(I'z2) > a, which
is a contradiction since

a (1172) = a((l — tg)TCEQ + tg’wl)
—t

=a
> (1 —t)a(Tx2) + taa(wy) > a.
Case 2: B(Tx2) <b. We have that 3(z3) < b since

B(z2) = B((1 — t2)Txs + tawy) < (1 —t2)B(Tx2) + t23(wr) < b,

and thus by condition (A5) we have a(Tz3) > a, which is the same
contradiction we arrived at in the previous case.

Therefore, we have shown that Hs(¢,z) # z for all (¢,z) € [0,1]
OP(a,a) and thus by the homotopy invariance property (G3) of
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the fixed point index (T, P(a,a),P) = i(wy,P(a,a),P), and by
the solution property (G4) of the fixed point index (since w; ¢
P(a,a) the index cannot be nonzero) we have (T, P(a,a),P) =
i(wy, P(a,a), P) =0. O

To simplify the statements of our results we will define what it means
to say that an operator 7" is LW-inward or LW-outward with respect
to functionals and constants in the next definition.

Definition 10. If P is a cone in a real Banach space E, « is a
nonnegative continuous concave functional on P, [ is a nonnegative
continuous convex functional on P, a and b are positive constants and
T : P — P is a completely continuous operator then we say that:

(1) T is LW-inward with respect to I(a,f,a,b) if the conditions of
Lemma 8 are satisfied; and,

(2) T is LW-outward with respect to O(«, 3, a, b) if the conditions of
Lemma 9 are satisfied.

In the next theorem we present a generalization of the expansion-
compression fixed point theorem of Leggett-Williams type as derived
in [1] in the sense that, the concave functionals o and 1) are not required
to be equal, and the convex functionals § and 8 are not required to be
equal.

Theorem 11. Suppose P is a cone in a real Banach space E, o and
¥ are monnegative continuous concave functionals on P, § and B are
nonnegative continuous conver functionals on P, and T : P — P is a
completely continuous operator. If there exist nonnegative numbers a,
b, ¢ and d such that

(D1) T is LW -inward with respect to I(a,d,a,b);
(D2) T is LW -outward with respect to O(%, 3, ¢,d);
and if
(H1) P(6,b) C P(¢,c), then T has a fized point x* in P(8,1,b, c);
(H2) m C P(6,b) then T has a fized point z* in P(1,6,c¢,b).
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Proof. We will prove the expansion result (H1), as the proof of the
compression result (H2) is nearly identical. To prove the existence of
a fixed point for our operator T in P(4,,b,¢), it is enough for us to
show that (T, P(6,%,b,c), P) # 0.

Since T is LW-inward with respect to I(a, 6, a, b), we have (T, P(4,b),
P) =1, and since T is LW-outward with respect to O(¢, 8,¢,d), we
have (T, P(a, ¢),p) = 0.

T has no fixed points in P(¢,c) — (P(8,b) U P(4,v,b,¢)), and the sets
P(4,b) and P(4,,b, c) are nonempty, disjoint, open subsets of P(v, c);
since P(d,b) C P(v,c) we have that {z € P : b < §(z) and ¥(z) <
c} # &. Therefore, by the additivity property (G2) of the fixed point

index

i(T, P(,c), P) = i(T, P(6,b), P) 4 i(T, P(8,%,b,c), P).

Consequently, we have (T, P(§,9,b,c), P) = —1, and thus by the
solution property (G4) of the fixed point index, the operator T' has
a fixed point z* € P(§,¢,b,c). O

The following theorem is a double fixed point theorem of Leggett-
Williams type.

Theorem 12. Suppose P is a cone in a real Banach space E, «,
and ¢ are nonnegative continuous concave functionals on P, §, B and
0 are nonnegative continuous convex functionals on P, and T : P — P
is a completely continuous operator. If there exist nonnegative numbers
ay, ag, ag, by, ba, and bg such that

(T1) T is LW-outward with respect to O(a, 6, ay,by);
(T2) T is LW -inward with respect to 1(1), 8, aa,be);
(T3) T is LW-outward with respect to O(#, 0, as, bs);

with P(a,a1) C P(B,b2) and P(B,b2) C P(¢,as3), then T has at least
two fized points x* and x** such that z* € P(a,f,a1,b2) and ** €

P(ﬂ7¢ab25a3)'

Proof. Asin the proof of Theorem 11, we have that i(T, P(«, ay), P) =
0, i(T, P(B,b2), P) = 1 and i(T, P(¢, a3), P) = 0. Thus using the addi-
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tivity property (G2) of the fixed point index we have
i(T, P(a, B,0a1,b2), P) = 1 and i(T, P(B, ¢, b2,a3), P) = —1.

Hence by the solution property (G4) of the fixed point index, T" has at
least two fixed points z* and z** such that z* € P(a, 8, a1,b2) and z** €

P(B,(ﬁ,bz,dg). O

And now, we present a triple fixed point theorem of Leggett-Williams
type.

Theorem 13. Suppose P is a cone in a real Banach space E, «,
and ¢ are nonnegative continuous concave functionals on P, §, 5 and
0 are nonnegative continuous convex functionals on P, and T : P — P
18 a completely continuous operator. If there exist nonnegative numbers
ai, az, asg, by, by, and bs such that

(T1) T is LW-inward with respect to I(e, 9, az,by);
(T2) T is LW-outward with respect to O(v, 3, az, b2);
(T3) T is LW-inward with respect to I(¢,0,as, bs);

with P(8,b1) C P(¢,a2) and P(v,a2) C P(0,bs), then T has at least
three fized points z*,z** and z*** such that z* € P(6,by), =** €
P(8,%,b1,a2) and *** € P(4,0,as,b3).

Proof. Nearly identical to the proof of Theorem 12, we have that
z(T,P(é, bl)ap) =1, i(T,P(’(ﬂ,CLg),P) =0, and Z(T,P(e,bg),P) =1L

Thus using the additivity property (G2) of the fixed point index we
have

i(T, P(6,b1), P) =1,
i(T’P((sawablaaﬂ)vP) =-1

and

i(T7P(¢707a23b3)3P) =L
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And so by the solution property (G4) of the fixed point index, T has
at least three fixed points z*, z** and z*** such that z* € P(4,b;),
x** € P(6,%,b1,a2) and z*** € P(¢,0, as, b3). O

4. Application. In this section we will illustrate the key techniques
for verifying the existence of a positive solution for a right focal
boundary value problem using our main result. Right focal boundary
value problems have received substantial study for many years. For an
early paper, we mention the classical paper by Jackson [6], and for more
recent studies, we cite [1, 3], to name just a couple. For our purposes in
this paper, under the expansion condition (H1) we apply the properties
of a Green’s function, bound the nonlinearity by constants over some
intervals, and use concavity to deal with a singularity. To proceed,
consider the second-order nonlinear right focal boundary value problem

(1) 2"(t) + f(z(t)) =0, te€(0,1),

(2) z(0) = 0 =2'(1),

where f : R — [0, 00) is continuous. If z is a fixed point of the operator
T defined by

Ta(t) = /0 G(t, s)f(w(s)) ds,

where
G(t,s) = min{t, s}, (¢,s) €[0,1] x [0,1]

is the Green’s function for the operator L defined by

with right-focal boundary conditions
2(0) =0 = 2'(1),
then it is well known that x is a solution of the boundary value problem

(1), (2). Throughout this section of the paper we will use the facts
that G(t, s) is nonnegative, and for each fixed s € [0,1], the Green’s
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function is nondecreasing in ¢, as well as a concavity property of the
Green’s function is given by

. G(y,s)
(3) 5161%1711] G(w,s)

>4
w
Define the cone P C E = C[0,1] by
P := {z € E: z is nonnegative, nondecreasing, concave, and z(0) = 0},

and for z € P and v € (0,1), define the concave functional o, on P by

a,(z) == tlg[l]ij?l] z(t) = z(v)

and the convex functional 8 on P by

B(z) := tren[(zi)i] z(t) = z(1).

Thus if x € P and v € (0,1), then by the concavity of x we have
z(v) > vz(1) since

z(v) —2(0) _ 2(1) —z(0)
v—20 - 1-0

Therefore, for all z € P, we have
(4) vB(z) < o ().

In the following theorem, we demonstrate how to apply the expansive
condition of Theorem 11 to prove the existence of at least one positive
solution to (1), (2).

Theorem 14. If r,pu € (0,1) are fized, b and d are positive real
numbers with b < du, and f : (0,d] — [0,00) is a continuous function
such that

(a) f(w) is decreasing for w € (0,br] with f(br) > f(w) for w €
[bT,b],

(b) [y sf(bs)ds < [2b— f(br)(1 —72)]/2, and
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(c) /(1 — p) < fldp) < f(w) for w € [du, d],
then the focal problem (1), (2) has at least one positive solution z* €
P(B,0,b,dp).

Proof. If we let a = br and ¢ = du, then we have that a = br <
b <dp=c<dsince b < pd. For z € P(3,a,,b,c), 1ft€( 1),
then by the properties of the Green’s function (T'z)”(t) = —f(z ( )
and Tz(0) = 0 = (Tz)'(1). By the Arzela-Ascoli theorem it is a
standard exercise to show that 7" is a completely continuous operator
using the properties of G and f and for each z € P(8, o, b,¢), Tx € P.

Therefore we have that T': P(3,a,,b,c) — P is continuous. Thus by
Dugundji’s theorem, there is a continuous extension, which we will
again denote by 7T, such that T': P — P; a proof can be found in
[4]. We will now verify that properties (a), (b) and (c) imply that T
is LW-inward with respect to I(a-,3,a,b) and T is LW-outward with
respect to O(ay, 3, ¢, d).

Claim 1: T is LW-inward with respect to I(a., 8, a,b).
For any L € (2b/(2 — 7),2b) the function zy, defined by

xr(t) E/O LG(t,s)ds = @

€{reP:a<a(zr)and (z) < b},

since (2
Q. (mL)—xL(T)zy >br=a

and L
,B(mL) = :EL(].) = 5 < b.

Therefore, we have that
{r € P:a< a,;(z) and B(z) < b} # &,
and if z € P(8,b), then
2]l = B(z) < b.

Thus P(8,b) is bounded as well.
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Subclaim 1.1: B(T'z) < b for all x € P with 8(z) = b and a,(x) > a.
Let x € P with 8(z) = b and a,(z) > a. By the concavity of z, for

s € [0, 7] we have
x(s) > <@> s > bs,

T

and for all s € [r,1], we have
br < z(s) <b.

Hence by properties (a) and (b), it follows that
8(Ta) = [ 6Ls) fla(@)ds = [ s plats)) ds
= [ stands+ [ s pate)as

1

g/OT sf(bs)ds—kf(br)/T s ds

< 2b—f(bg)(l—Tz) L f(bT)(21—72) b

Subclaim 1.2: If z € P and o, (Txz) < a, then §(Tx) < b. Let x € P
with a,(Tz) < a. Thus by the properties of G(¢,s) given in (3),

B(rz) = | L G(L9) Fla(s)) ds
<(2) [ ats et as

1
= <—>aT(T:c) < (E> =b.
T T
Therefore, we have verified that 7" is LW-inward with respect to
I(ar, B, a,b).
Claim 2: T is LW-outward with respect to O(c, 5, ¢, d).

For any J € (2d/(2 — p), 2d), the function z; defined by

f”J(t)E/O JG(t,s)ds = @

e{zr e P:c<ay(x) and B(z) < d},
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since
Jp(2—p)

5 >du=c

au(zr) =z,(p) =

and 7
,B(xJ)Z:ISJ(l): 5 <d.

Therefore we have that
{r e P:c<ayu(z) and B(z) < d} # O,

and P(ay,c) is a bounded subset of the cone P, since if z € P(ay,¢),
then by (4) we have that

uB(z) < aulz) <c,

and so

_ () c_
[zl = B(z) < LS,

Subclaim 2.1: o, (T'z) > c for all z € P with o, (z) = c and S(z) < d.
Let € P with a,(z) = c and 3(z) < d. Then for s € [, 1] we have

dp=c<z(s) <d.

Hence by property (c),

> (%)u(l —p) =c

Subclaim 2.2: o, (Tz) > c for all z € P with a,(z) = c and
B(Tx) > d. Let x € P with 8(T'z) > d. Thus by (4) we have

ay,(Tz) > pb(Tz) > pd =c.
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Therefore we have verified that T is LW-outward with respect to
O(ayu,B,¢,d).
For any M € (2b,2¢) the function zp; defined by

1 p—
o) = [ MGt s)ds = L E=0 € ps,abie)
0
since
Mp2—p) _ 2cp(2 —p)
au(zm) =zm(p) = 5 < 5 <c
and

Blam) = za(1) = % > b,

Consequently we have that {x € P : b < f(z) and o, (z) < c} # @,
and if z € P(8,b), then

au(z) <pz)<b<ec.

Thus P(3,b) C P(ay,c). Therefore, (H1) of Theorem 11 has been
satisfied; thus the operator T has at least one fixed point z* €
P(B,u,b,c), which is a desired solution of (1), (2). o

As noted above, because of the concavity of solutions, the proof of
Theorem 14 remains valid for certain singularities in the nonlinearity.
That was also the case involving only one singularity in the nonlinearity
in the papers [1, 3]; yet in this setting, Theorem 14 actually allows for
multiple singularities as presented in this example.

Example. Let

1

T=g5,  p=09999,b=1andd=9.9999.

Then the boundary value problem
1 pu—
Vz(r —10)2

with right focal boundary conditions

2 + 0,

z(0) =0 = 2'(1),
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has at least one positive solution z*, which can be verified by Theo-
rem 14, with

1<a*(1) and 2*(0.9999) < (0.9999)(9.9999).
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