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RANDOMLY ORTHOGONAL FACTORIZATIONS
OF BIPARTITE GRAPHS

SIZHONG ZHOU AND JIANCHENG WU

ABSTRACT. Let G = (X,Y, E(G)) be a bipartite graph
with vertex set V(G) X UY and edge set E(G), and
let g, f be two nonnegative integer-valued functions defined
on V(G) such that g(z) < f(z) for each z € V(G). A
(g, f)-factor of G is a spanning subgraph F of G such that
g(z) < dp(x) < f(z) for each z € V(G); a (g, f)-factorization
of G is a partition of E(QG) into edge-disjoint (g, f)-factors. Let
F = {Fi, F»,...,Fn} be a factorization of G, and let H be a
subgraph of G with mr edges. If F;, 1 <1 < m, has exactly r
edges in common with H, we say that F' is r-orthogonal to H.
In this paper it is proved that every bipartite (0, mf —m+1)-
graph has (0, f)-factorizations randomly r-orthogonal to any
given subgraph with mr edges if f(z) > 3r — 2 for any
z € V(G).

1. Introduction. Orthogonal factorizations in graphs are very
useful in combinatorial design, network design, circuit layout and so
on [2]. Graphs considered in this paper will be finite undirected
simple graphs. Let G be a graph with vertex set V(G) and edge
set F(G). The degree of a vertex z is denoted by dg(z). Let g
and f be two nonnegative integer-valued functions defined on V(G)
such that g(z) < f(z) for each z € V(G). Then a (g, f)-factor of G
is a spanning subgraph F of G with g(z) < dp(z) < f(z) for each
x € V(G). In particular, G is called a (g, f)-graph if G itself is a (g, f)-
factor. A subgraph H of G is called an m-subgraph if H has m edges in
total. A (g, f)-factorization F = {Fy, Fs,... ,F;,} of G is a partition
of E(G) into edge-disjoint (g, f)-factors Fy, Fs,... ,F,. If g(x) = a
and f(z) = b for each x € V(G), where a and b are two nonnegative
integers, then a (g, f)-factorization of G is called an [a, b]-factorization
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of G. Let H be an mr-subgraph of a graph G. A (g, f)-factorization
F ={F,F,...,Fy,} is r-orthogonal to H if |E(H) N E(F;)| = r for
1 < i < m. If for any partition {A;, Ao, ... , A} of E(H) with |4;| =r
there is a (g, f)-factorization F' = {Fy, Fy,...,F,;} of G such that
A; C E(F;), 1 < i < m, then we say that G has (g, f)-factorizations
randomly r-orthogonal to H. Other definitions and terminology can
be found in [4].

A graph denoted by G = (X, Y, E(G)) is a bipartite graph with vertex
bipartition (X,Y) and edge set E(G). Alspach et al. [2] posed the
following problem: given a subgraph H, does there exist a factorization
F of G with some fixed type orthogonal to H? Li and Liu [8]
gave a sufficient condition for a graph to have a (g, f)-factorization
orthogonal to any given m-subgraph. Lam et al. [6] studied orthogonal
factorizations of graphs. Anstee and Caccetta [3] discussed orthogonal
matchings. Feng [5] proved that every (0,mf — m + 1)-graph has
a (0, f)-factorization orthogonal to any given m-subgraph. Liu and
Zhu [9] proved that every bipartite (mg +m — 1,mf — m + 1)-graph
has randomly k-orthogonal (g, f)-factorizations. Now we consider
the r-orthogonal factorizations of graphs. The purpose of this paper
is to solve some problems on orthogonal factorizations for bipartite
(0,mf — m + 1)-graphs. It is shown that a bipartite (0, mf —m + 1)-
graph G has (0, f)-factorizations randomly r-orthogonal to any given
mr-subgraph if f(z) > 3r — 2 for any z € V(G).

2. Preliminary results. Let G be a graph, and let S and T be
two disjoint subsets of V(G). We denote by Eg(S,T) the set of edges
with one end in S and the other in T, and by eg(S,T) the cardinality
of Eg(S,T). For S C V(G) and A C E(G), G — S is the subgraph
obtained from G by deleting the vertices in S together with the edges
to which the vertices in S are incident, and G — A is the subgraph
obtained from G by deleting the edges in A, and G[S] (respectively
G[A]) is the subgraph of G induced by S (respectively A). For a subset
X of V(G), we write f(X) = > cx f(x) for any function f defined on
V(G), and define f(@) = 0. Specially, dg(X) = . x da(z)-

Folkman and Fulkerson obtained the following necessary and suffi-
cient condition for the existence of a (g, f)-factor in a bipartite graph,
see [1, Theorem 6.8].
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Lemma 2.1. Let G = (X,Y,E(G)) be a bipartite graph, and let
g and [ be two integer-valued functions defined on V(G) such that
g(z) < f(z) for each x € V(G). Then G has a (g, f)-factor if and only
ifforallSCX and TCY,

'YIG(SaTagaf) = f(S) —g(T) +dG—S(T) >0

and

Y26(S,T,9,f) = f(T) — g(S) +dc_7(S) > 0.

Note that dg_s(T) = eq(T, X\ S) and dg_7(S) = eq(S, Y \T). Let
E; and E» be two disjoint subsets of E(G) andlet S C X, T CY. Set

EiS:EiﬁEG(S,Y\T), EiT:EiﬂEg(T,X\S) fori=1,2,
and set
as = |Eis|, ar=|Eir|, Bs=|Eas|, PBr=|Ear|

It is easily seen that as < dg_71(95), ar < dg-s(T), Bs < dg—1(S)
and fr < dg-s(T).
Liu and Zhu [9] gave the following necessary and sufficient condi-

tion for a bipartite graph to admit a (g, f)-factor containing E; and
excluding Fs.

Lemma 2.2. Let G = (X,Y, E(QG)) be a bipartite graph, let g and f
be two nonnegative integer-valued functions defined on V(G) such that
g(xz) < f(z) for each x € V(G), and let Ey and E; be two disjoint
subsets of E(G). Then G has a (g, f)-factor F such that E; C E(F)
and EsNE(F) =@ if and only if for all SC X, T CY,

1a(S,T,g,f) > as+ Br

and

72G(57Tagaf) Z (0% 4 +ﬁ5’
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In the following, we always assume that G is a bipartite (0, mf —m+
1)-graph, where m > 1 is an integer. Define

9(z) = max{0, dg(z) — ((m — 1) f(z) = (m = 1) + 1)},

b1 (@) = —da(a) — g(x)

and

By the definitions of g(z), A1 (z) and Ay (z), we have the following
lemma.

Lemma 2.3. For all z € V(G), the following inequalities hold:

(1) If m > 2, then 0 < g(z) < f(z).

(2) I 9(2) = da(w) — ((m—1)f(z) — (m—1)+1), then &y (2) > 1/m.
(3) 22 (z) =z (m —1)/m.

Proof. (1) Note that G is a bipartite (0, mf—m+1)-graph, where m >
2is an integer. Then 0 < mf(z)—m++1 implies that f(z) > (m —1)/m.
Note that f(z) is nonnegative integer-valued function. Then f(x) > 1.

If g(z) = 0, then 0 < g(z) < f(z).
If g(z) = dg(x) — ((m — 1) f(x) — (m — 1) + 1), then

f(@) = g(z) = f(2) — dg(z) + (m - 1) f(z) = (m - 1) +1
=mf(z) —m+2—dg(z)
>mf(z) —m+2—(mf(r)—m+1) =1

Hence, we get that

0 <g(2) < f(=).
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(2) If g(z) = do() — ((m — 1)f(x) — (m — 1) + 1), then

> 2 m (@) ~m +1)
+(m—-1f(z)—(m—-1)+1
=(1-m)f(z)+ (m—1)
S - (@)~ m 1) 41
1

(3) We have

This completes the proof. o

Lemma 2.4. Forany S C X and T C Y, the following equalities
hold:

m—1

16(5,T,0, ) =01 (D)4 82 (8) + ™ Ldo_s(T) + -~ dor(S)

and

-1

16(5,T,0, ) =01 (S)+ 82 (T) + ™ Ldg_1(5) + —das(T).
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Proof. We prove only the first equality. The second can be verified
similarly. According to the definition of v, we have

65, T,9,f) = f(5) —9(T) + de—s(T)
=da(T) —eq(S,T) — g(T) + £(9)

— (Lae() - o) + (1) - Lac(s))

m—1

1
+ dG,S(T) + EdeT(S)

m—1

—a1 (D)4 As (S) + "L s(1) + %dG,T(S).

This completes the proof. a

Let SC X and T CY, and
So={z[z €S, f(z) =1}, S =5\5,
Ty = {z|z € T, g(z) = 0}, T, =T\ Tp.
Hence, we get that

S =5yUSy, SoNS, =g,
T=Ty,UT, ToNT, =@,
as = ag, +ag,, ar = ar, + oy,

Br = Bry, + By, Bs = Bs, + Bs;-

Lemma 2.5. Let By and Ey be two disjoint subsets of E(G).
(1) If
N6 (81, 11,9, f) = f(S1) = 9(T1) + dg—s, (T1) = as, + By,
then
na(S,T,g,f) = f(S) = 9(T) + da—s(T) =z as + PBr-
(2) If
Y26 (51,11, 9, f) = f(T1) — 9(S1) + da -1, (S1) > ar, + Bs,,
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then
72G(SaTvga f) = f(T) 79(‘9) +dG—T(S) > ar +ﬂs

Proof. We prove only the first result. The second can be verified
similarly.

Note that dg_s(To) — 9(To) = dg-s(To) > ar,, and 0 < dg(z) <
mf(z) —m + 1, so that for all z € Sy, dg(z) =0 or dg(z) = 1. This
implies

1So| = dc(So0) = dg-1(So) + ec (S0, T) > as, + ec(So, T1)-
It 7IG(SlaTlagaf) Z ag, +/8T1a then
,YIG(Sa Tagaf) = f(S) + dG—S(T) - g(T)
£(S1) + 1So] + da—s(T1) + dg—-s(To) — 9(T1)
f(S1) + as, + ea(So, Th) + da—s(T1) + Br, — 9(T1)
f(S1) + as, +de—s,(T1) + Br, — 9(T1)
Y

> as, + B, + as, + B,
= as + Br.
This completes the proof. a

Lemma 2.6 [5]. Let G be a (0,mf — m + 1)-graph. Let f be an
integer-valued function defined on V(G) such that f(x) > 0, and let H
be an m-subgraph of G. Then G has a (0, f)-factorization orthogonal
to H.

3. Main result and proof. In this section, we are going to state
our main theorem and present a proof of it.

Let G be a bipartite graph, let H be an mr-subgraph of G, and let
E; be an arbitrary subset of E(H) with |Ey| = r. Put E2 = E(H)\ E.
Then |E3| = (m — 1)r. For any two subsets S C X and 7' C Y, let
FE;s, E;p for i = 1,2, ag, ar, Bs and Br be defined as in Section 2. It
follows instantly from the definitions that

as<r, ar<r, Bs<(m—1)rand Br < (m-—1)r.
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Define g(z) as before. The proof of theorem relies heavily on the
following lemma.

Lemma 3.1. Let G = (X,Y, E(G)) be a bipartite (0,mf —m + 1)-
graph with m > 2 and f(z) > 3r — 2 with r > 2. Then G admits a
(9, f)-factor Fy such that E; C E(Fy) and E; N E(Fy) = @.

Proof. By Lemma 2.2, it suffices to show that, for any two subsets
SCXand T CY, we have

’YIG(SaTagaf) Z ags +ﬁT
and

72G(57T797f) Z aT +ﬁ5’

Alternately, by Lemma 2.5, it suffices to show that for Sy and T; (define
Sy and T as before), we have

’ylG(SlaTlaga f) > ag, +/6T1

and
v2¢(S1,T1,9, f) > ar, + Bs,-

We prove only the first inequality. The second can be justified
similarly. Now let us distinguish among four cases.

Case 1. If §; = 9, T1 = &, then ag, =0 and Bp, = 0.
According to Lemma 2.4, we obtain
T16(51, 11,9, f) =01 (Th)+ A2 (S1)

m—1 1
da—s, (T1)+EdG7T1(S1) =0=ag, + fBr,.

+

Case 2. If §; = @, T1 # O, then ag, =0.
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In view of the definition of 77, it is easy to see that g(z) > 1 for all
x € T1. Note that g(z) = max{0,dg(z) — ((m—1)f(z) — (m—-1)+1)}.
For all z € T}, we have

(m—-1f(z)—(m—-1)+2
(m—1)Br—2)—m+3=3mr —3r—3m+5

for all z € T;.
From Lemma 2.3, Lemma 2.4 and (1), we get that

m—1 m—1

16 (S1,T1,9, f) > dg(Tv) >

da(z), zeTy
m

-1
m—(3mr—3m—3r+5)
m

:(mfl)r+m77:l(2mrf3mf37“+5)
~1
:(mfl)r+m7((2mf3)r73m+5)
~1
Z(mfl)r+m7(4m7673m+5)
(m —1)?

(m—1Dr+

> (m—1)r>Br =as, +Brn.
Case 3. If 51 # @, 71 = &, then B, = 0. Thus, we have

,YIG(SlaTlaga f) = dG—S1 (Tl) - g(Tl) + f(Sl)
= f(51) = (3r —2)[54]
>3r—2>r>as =as, +0n-

Case 4. 51 # @, T1 # @. Note that dg_1, (51) > ag,. By Lemma
2.3, Lemma 2.4 and (1), we get that
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-1
Ta6(S1, 11,9, F) 201 (Th)+ 2 (51)+m

1
da—s, (Tl)‘i‘EdG—Tl (S1)

m

-1
——dc-s, (1)

1 m—1
> —|Ti|+ — S|+
m m
1
—dg_1,(S
+ —dg-1,(51)

1 m—1 1
—|T; ERRE— o (T —dg_
m\ 1+ — (dg—s,( 1)+|51|)+mdc 1, (S1)

1 1
— Ty |+ —dg-1,(S1) +
m m

m—1

v

dg(z), zeTy

-1 1 1
m—(3mr —3r—-3m+5)+ —dg-1,(51) + —
m m m

=(m—-1)r+ (m=Dr + %dc:f:rl (S1)

(m—1)(2mr —3m —4r +5) +1
m

Y

m—1

ZBT1+

(m—1)(2(2m —4) —3m+5)+1
(m —qL)(m -3)+1

as, + —Qg,
m

+

=ags, +Br, +

> ag, + B, (since m > 2 is an integer).
For S and 77, we always have
71651, 11,9, f) > as, + By,

and this completes the proof. u]
Now we are ready to prove the theorem.

Theorem 1. Let G be a bipartite (0,mf — m + 1)-graph, let f be
an integer-valued function defined on V(G) such that f(xz) > 3r — 2
for all z € V(G), and let H be an mr-subgraph of G. Then G has
(0, f)-factorizations randomly r-orthogonal to H.
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Proof. According to Lemma 2.6, the theorem is trivial for r = 1.
In the following, we consider r > 2. Let {4, As,... ,An} be any
partition of E(H) with |4;] = r, 1 < i < m. We prove that there is a
(0, f)-factorization F = {Fy, Fy,...,F,,} of G such that A; C E(F;)
for all 1 < ¢ < m. We apply induction on m. The assertion is trivial
for m = 1. Supposing the statement holds for m — 1, let us proceed to
the induction step.

Let B2 = E(H) \ A;. By Lemma 3.1, G has a (g, f)-factor F} such
that A; C E(Fy) and E;NE(Fy) = @. Clearly, F} is also a (0, f)-factor
of G. Set G’ = G — E(F1). It follows from the definition of g(x) that

0 < der(x) = da(z) — dF, (z) < dg(z) — g(z)

< dg(z) = lda(z) = (m = 1) f(z) = (m = 1) + 1)]

= (m— )f(@) — (m—1)+1.
Hence, G’ is a bipartite (0,(m — 1)f — (m — 1) + 1)-graph. Let
H' = G[E,]. Then the induction hypothesis guarantees the existence
of a (0, f)-factorization F' = {F5,...,F,} in G’ which satisfies A; C
E(F;), 2 < i < m. Hence, G has (0, f)-factorizations which are
randomly r-orthogonal to H. This completes the proof. u]

Remark 3.1. Obviously, the lower bound 0 in Theorem 1 is sharp
in any sense. The upper bound mf — m + 1 is necessary in the proof
of Lemma 3.1. In this sense, the result of Theorem 1 is best possible.
In the proof of Theorem 1, it is required that f(z) > 3r — 2 for all
z € V(G). We do not know whether the condition f(z) > 3r — 2 can
be improved.
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