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MAXIMAL RANKS AND INTEGER POINTS
ON A FAMILY OF ELLIPTIC CURVES II

P.G. WALSH

ABSTRACT. We extend a result of Spearman which pro-

vides a sufficient condition for elliptic curves of the form

y2 = 2% — 2px, with p a prime, to have Mordell-Weil rank 3.

As in Spearman’s work, the condition given here involves the
existence of integer points on these curves.

1. Introduction. In two recent papers [9, 10|, Spearman provided
criteria for elliptic curves of the form y? = z® — dz, with d = p,2p
and p prime, to have maximal rank. Specifically, in the case d = p,
Spearman proved that if p = u* + v* for some integers u,v, then the
rank of y2 = x® — pz is 2, while in the case d = 2p, he proved that
if 2p = (u? + 2v%)* + (u? — 20?)%, for integers u,v, then the rank of
y? = 2 — 2pz is 3. In [11], it was shown that the above condition
for the case d = p can be described in terms of the set of integer
points lying on such curves. The condition given includes all curves
y? = x% — px for which p = u* 4+ v*, but also includes a larger class
of curves. We note however that although the result in [11] applies
to more curves than those in [9], there is no closed form for those p,
such as the polynomial given by Spearman. The purpose of the present
paper is to give an analogous sufficient condition for curves of the form
y? = 23 —2pz to have Mordell-Weil rank 3, where the condition is given
in terms of rational points on these curves. This is more general than
the approach taken in [11], wherein a similar condition was given, but
stated in terms of integer points. We thank the anonymous referee for
this suggestion. We note that, as in [11], there does not appear to be
a closed form for those primes which satisfy the condition given in this

paper.

As noted above, for curves of the form

(1.1) E_,,:y* =1* — 2px,
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with p prime, it is known that the rank of the Mordell-Weil group is
at most 3. This can be proved using the methods in [8, Section X.6].
We begin by some discussion on the rational points lying on these
curves in order to formulate a generalization of Spearman’s condition
guaranteeing that the curve E_o, has maximal rank.

Throughout the paper, p will denote an odd prime. Define Ei'Zp(Q)
to be the set of positive rational points on E_,,, where a rational point
(z,y) is defined to be positive if y > 0. We mention here that if
(z,y) € ET,,(Q), then z = du® for some rational u and squarefree
integer d € {—1,2,—2,p,2p}.

We will also make reference to the curve
Eyg, : y? = 2 + 8pz.

We note that a positive rational point (z,y) on Es, satisfies z = du?
for some integer u, and d € {1,2,p, 2p}.

Theorem 1.1. Assume that there are two positive rational points
Py = (z1,y1), Po = (x2,9y2) on E_qgp, and a positive rational point
Py = (z3,y3) on Esp, with z; = d;u? (1 < i < 3), where each d; is
squarefree, and u; € Q. Assume further that

1. (d17 d2) S {(_17 2)7 (_17 _2)7 (_17]3)7 (27 _2)7 (27p)}7
2. ds € {2,p}.
Then the rank of E_q, is 3.

The conditions of the theorem are satisfied for odd primes p for
which 2p = (u® + 2v?)* + (u? — 20?)* in positive integer u,v. In
particular, Py = (z1,11) = (—(u* + 2v?)%, (u? + 2v?)(u? — 20v%)?) and
Py = (z2,y2) = (—2(2uv)?, duv|u — 4v?|) are positive integer points
on E_,, with (d1,d2) = (—1,-2), and P; = (2(2u?)?, 8u?(3u? + 4v?))
is a positive integer point on Fjg, satisfying d3 = 2. Therefore, the
set of curves for which the main result of [10] applies is included in
Theorem 1.1.

2. Proof. We will compute the rank of E_5, much as in [10] using
the method from [4, Chapter 7]. As in [10], we denote by I" the group
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of rational points on E_p, and define a group map a on I' by o(O0) =1,

a((z,y)) = = (mod Q*?)

for x # 0, and «((0,0)) = —2p.
We similarly define I' and @ for the curve Esgp. We will use the fact,
as pointed out in [4, Chapter 7], that if r is the rank of E_2,(Q), then

la(D)lla(T)]
4

2 —

In particular, we will show that if the conditions of the theorem are
satisfied, then B
la(@)[ =8,  [al)] =4

This will be proved by showing that, when the conditions of the theorem
are satisfied, then

a(F) = {17 -1,2,-2,p, —p, 2p, —21?},

and B
a(l') = {1,2,p, 2p}.

We note that a squarefree factor d of —2p (respectively 8p) is in a(T")
(respectively @(T')) if the quartic equation dX* + (—2p/d)Y* = Z2
(respectively dX* + (8p/d)Y* = Z?) is solvable in nonzero integers
X,Y, Z with ged (X, (—2p/d)) = 1 (respectively ged (X, (8p/d)) = 1).
For the curve E_j,, we will deal with the case (dq,d2) = (—1,2), as
the remaining cases can be proved in exactly the same manner. For
simplicity of exposition, we further assume that the assumed given
points on the curves in question have integral coordinates. Thus, by

assumption, we have that x; = —u% and o = 2u§ for some nonzero
integers uy, uz. The equation y? = 2% — 2pz = z(2? — 2p) implies that
there are integers v; and v, for which uf —2p = —v# and 4uj —2p = 2v3.

These two equations can be rewritten as

4 2 4 2
2p —uj = vy, 2uy —p = v3.

We remark that ged (uz, p) = 1. We first note that by the definition of
the map «, we always have 1, —2p € a(I'), and the above two equations
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imply that 2,2p € a(I'). Since a(T) is a subgroup of Q*?2, we get that
—1,—2,p, —p must also lie in a(T'), giving the desired result. In all
other cases stated in the theorem, one similarly finds that |«(T")| = 8.

For the curve Ejg,, we will deal with the case that d3 = p, as the case
d3 = 2 was essentially proved in [10]. In this case, z3 = pu?® for some
integer u, and from the equation y? = z3+8pz = z(x?+8p), there must
be a positive integer v for which p?u* 4+ 8p = pv?. Dividing through by
p gives pu + 8 = v2. It is clear that u is odd, and so p € @(T). Since
1 and 2p are always in this subgroup of Q*2, we find that 2 is also in
this group, and hence that [@(T)| = 4, as claimed.

3. The integer points on E_,,. In [11], a complete description
of E_,x(Z) was given, which enabled the formulation in [12] of a
generalization of Spearman’s theorem in [9]. The purpose here is to
give a precise description of the possible elements of E'_"zp(Z), along
with the connection to family of quartic Diophantine equations, and
the solutions thereof.

If (x,y) is a positive integer point on E_j,, then the equation
y? = 2% — 2px = x(x? — 2p) implies that z = du? and 2% — 2p = dv? for
some squarefree integer d and positive integers u,v. Combining these
two equations yields d?u* — 2p = dv?; hence, d is a divisor of 2p, and
it follows that

(3.1) du* — (2p/d) = v*.

We examine each case separately.

1. d = 1. In this case (3.1) can be rewritten as 2p = u* — v?, which
is evidently not possible modulo 8.

2. d = —1. In this case (3.1) can be rewritten as 2p = u? + v
and as 2p has at most one representation as a sum of squares, we see
that there are at most two solutions in positive integers (u,v) to this
equation, and that |u| < (2p)/4.

3. d = 2. In this case (3.1) can be rewritten as v — 2u* = —p.
This type of quartic equation is the subject of current work by Akhtari
and the author [3]. It follows from the methods therein that, apart
from a set of at most 98 exceptional solutions in positive integers,
all solutions in positive integers u,v to the equation v — 2u* = —p
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satisfy u < 8-10%p33/4, In practice, we never expect, nor have we ever
seen, one example of an exceptional solution. As the bound we prove
for nonexceptional solutions is comparatively small with those which
arise from transcendence methods, we expect that integer solutions to
v? — 2u* = —p can be found quite readily if they do exist.

4. d = —2. In this case (3.1) can be rewritten as p = v? + 2u*, which
can have at most two solutions for the same reasoning as case 2 above,
and moreover, that [u| < (p/2)'/4.

5. d = p. In this case (3.1) can be rewritten as pu® — v? = 2,
which by the main result of [1] (in particular, see [2]) has at most two
solutions in positive integers uw,v. According to the remarks in [1],
we conjecture that there is at most one solution in positive integers
(u,v) to pu — v? = 2, and furthermore, if such a solution exists, then
(X,Y) = (u?,v) is the fundamental solution to pX? — Y? = 2.

6. d = —p. In this case (3.1) can be rewritten as pu* + v? = 2, which
evidently has no integer solutions.

7. d = 2p. In this case (3.1) can be rewritten as v? — 2pu* = —1, and
by the theorem of Chen and Voutier in [5], there is at most one solution
in positive integers. Furthermore, if a solution (u,v) does exist, then
(X,Y) = (v,u?) is the fundamental solution to X? — 2pY? = —1.

8. d = —2p. In this case (3.1) can be rewritten as v? + 2pu* = 1,
which evidently has no solutions in positive integers u, v.

Theorem 3.1. For any odd prime p, there are at most 99 positive
integer points on E_,, with |z| > 128 - 1012p33/2,

Theorem 3.1 is not entirely satisfying because of the lack of informa-
tion regarding the possible exceptionally large solutions. However, this
theorem does improve upon results in the literature, such as the main
result of [8].

From a computational point of view, if E/_5, has two positive integer
points satisfying the hypotheses of Theorem 1.1, then this can be
verified relatively efficiently by checking each of the four relevant cases
above for which solutions can exist. In particular, the most time
consuming aspects of such a computation would only require finding
the factors of p in Z[/2], finding the factors of 2p in Z[i], computing the
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minimal solution to X2 — 2Y2? = —p and computing the fundamental
solution to X2 — pY?2 =1.

Determining if Es, has a positive integer point (z,y) with z = 2u?
or pu? amounts to determining the solvability of v? — 2u* = p and
v? — pu* = 8. In practice, if solutions exist at all, then they arise from
the product of the minimal solution to the corresponding quadratic
equation times a small power of a unit. Thus, the most time consuming
aspect of this computation would be the computation of the minimal
solutions to the quadratic equations X? — 2Y2 = p, X2 —pY? =1
and X? — pY?2 = 8. If the former is solvable, then bounds for the
size of the minimal solution, such as those in [6, Theorem 108], show
that determining solvability requires no more than O(,/p) arithmetical
operations. Determining the solvability of X? — pY? = ¢ (c = 1,8)
can be accomplished by computing the continued fraction expansion of
/P, as a solution (X,Y") in positive integers will have the property that
X/Y is a convergent to \/p (provided that p > 64 if ¢ = 8).

The purpose of the above discussion is to point out that the verifica-
tion that E/_o, satisfies the hypotheses of Theorem 1.1 can in practice
be achieved by relatively straightforward methods in computational al-
gebraic number theory, as opposed to computations for computing the
rank involving descent, searching for points on homogenous spaces, or
other more technical methods involving elliptic curves.
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