ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 1, 2011

SOCLE FINITENESS OF THE LOCAL COHOMOLOGY

JAN TRLIFAJ AND M. TAMER KOSAN

ABSTRACT. Let R be a Gorenstein local ring and I an
ideal of R. Denote by H(I, R) the assertion: “The socle of the
local cohomology module H} (R) is finitely generated for each
n > 0.” We translate H (I, R) into a property of the minimal
injective coresolution of R, and then use this translation to
prove H(I, R) for all regular local rings R and all ideals I
with level prime avoidance.

Finiteness properties of local cohomology modules over commutative
local noetherian rings are among the basic topics of local cohomology
theory. Of particular interest is the Artinianness of H}'(R). It is well-
known to hold for I = m (= the maximal ideal of R) for each n € N
[2, 7.1.3]. The general case splits into two questions (cf. [6]):

1. Is the support of H}(R) contained in m?, and
2. Is the socle of H}(R) finitely generated?

A positive answer to the second question for all regular local rings was
conjectured by Huneke (see [3, Conjecture, p. 200]). This conjecture
was proved in a number of cases: for positive characteristic in [7], for
equicharacteristic rings in [9, 10] (where [9] does the characteristic
0 subcase while [10] gives an ‘almost characteristic free’ proof), and
for unramified rings of mixed characteristic in [11]. However, the
conjecture remains open in the case of ramified (regular local) rings
of mixed characteristic. By contrast, examples of non-regular (even
Gorenstein) rings R such that H7?(R) has infinitely generated socle for
some I and n are known, cf. [5, 12].

In [7] the Frobenius homomorphism was essential while the papers
[9, 10, 11] employed D-modules as the key tool. In the present paper,

2010 AMS Mathematics subject classification. Primary 13D45, 13HO05, 13H10,

14B15.
Keywords and phrases. Local cohomology, Gorenstein local ring, regular local

ring, socle.

Research supported by GACR 201/06/0510, MSM 0021620839, and by Tiibitak.
Received by the editors on March 18, 2008, and in revised form on September 1,

2008.
DOI:10.1216/RMJ-2011-41-1-299 Copyright (©2011 Rocky Mountain Mathematics Consortium

299



300 JAN TRLIFAJ AND M. TAMER KOSAN

we use level prime avoidance (defined below) and divisible modules as
our main tools.

Most of our results are proved in the setting of Gorenstein local rings
R. For such an R, we denote by #(I,R) the assertion: “The socle
of the local cohomology module H}(R) is finitely generated for each
n > 0.” In Lemma 2, we translate H(I, R) into a property of the
minimal injective coresolution of R. Though this property may fail for
Gorenstein rings, we use it to prove in Theorem 6 that #(I, R) holds
for all regular local rings R and all ideals I with level prime avoidance.

The latter property means that for each 1 < ¢ < dim R, I has the
ith level prime avoidance, that is, p ¢ Ugeq1q whenever p € @Q; and
Qi # @ # Q}, where Q; (Q}) denotes the set of all prime ideals of
height ¢ that do (do not) contain I.

Note that I has the ith level prime avoidance whenever the set Q! is
finite (by the classical prime avoidance [13, Example 1.6]). Clearly, I
has level prime avoidance whenever [ is a principal ideal of R.

Throughout the paper, R is a commutative noetherian ring with unit,
I is an ideal of R, and M, N are R-modules (not necessarily finitely
generated).

For each i > 0, the ith local cohomology module of M with respect to
the ideal I is defined by

Hj(M) = lim Exty(R/I", M)

and the ith generalized local cohomology module of (M, N') with respect
to I by . '
H;(M,N) = lim ExtR(M/I"M,N).
I = R
Basic properties of local cohomology modules can be found in [2], and
of the generalized local cohomology modules in [14]. We refer to [4,
13] for basic facts from commutative and homological algebra.

Our first result is inspired by a recent work of Dibaei and Yassemi on
local cohomology modules in [3, Section 2], but we deal here with the
generalized local cohomology.

For an arbitrary R-module N, we fix the minimal injective coresolu-
tion of N:
0—+N—-FE - Ey—---.
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Let ;N denote the ith cosyzygy of N in this coresolution for each
i € N, and put Ey = QoN(= N).

Lemma 1. Let s > 0 and I C J be ideals in a commutative
noetherian ring R. Let M and N be R-modules.

For s = 0, assume Hompg(R/J, Homgr(M,N)) is finitely gener-
ated. For s > 1, assume that Ext%(M,N) = 0, and that the mod-
ules ExtL(R/J,Hompg(M, Es_1)) and Ext%(R/J, HY(M,Qs_1N)) are
finitely generated.

Then Hompg (F, Hf (M, N)) is finitely generated for each finitely gen-
erated module F such that SupprF C V(J).

Proof. Step 1. First we prove the claim in the particular case of
F = R/J (and of arbitrary s, M, and N) by induction on s.

If s = 0, then, by assumption, Homg(R/J, Hompg (M, N)) is finitely
generated. Since for each n € N there is the canonical inclusion
Hompg(M/I"M,N) C Homg(M, N), also H?(M,N) C Homg(M, N).
So Homp(R/J, HY(M, N)) is a finitely generated R-module.

If s = 1, then Exth(R/J,Homg(M, N)) and Ext%(R/J, HY(M, N))
are finitely generated by assumption. We will prove that Homg(R/J,
Hj} (M, N)) is finitely generated. Consider the exact sequence

0 — H)(M,N) C Homp(M,N) — Homp (M, N)/H}(M,N) — 0.
Then we have the long exact sequence

-+ = Exth(R/J,Homp (M, N)) — Ext};z(R w)

J’ HY(M,N)

R
— Ext§%<7,H?(M, N)) —

so Exth(R/J,Hompg(M,N)/H?(M,N)) is finitely generated. Note
that

0 — Homg(M,N)/HY(M,N) — D;(M,N) — Hf(M,N) =0
= Exth(M, N)
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is exact where
Dy(M,—) = limHomg(I"M, —)
ne
is the generalized ideal transform functor (cf. [2, 2.2.4]). Then the
sequence

-+« — Homg(R/J,D;(M,N)) — Hompg(R/J, Hf (M, N))
— Exth(R/J,Homg(M,N)/HY(M,N)) — ---

is exact. Since I C J, D;(M, N) contains no non-zero elements annihi-
lated by J, so the module Hompg(R/J, Dr(M, N)) is zero. We have al-
ready proved that Exth(R/J, Homg (M, N)/HY(M, N)) is finitely gen-
erated, hence the same is true of the module Homg(R/J, H} (M, N)).

Now suppose that s > 1, and assume the claim is true for s — 1. We
will prove it for s. Since

Hi(M,N) = h_N)m Ext$, '(M/I"M,QN) = Hi (M, N),
ne

it suffices to prove that Homp(R/J, H; ™' (M,Q;N)) is finitely gener-
ated.

For this purpose, we only have to verify the assumptions of our lemma
for s — 1 and the pair (M, Q;N).

The first assumption for (M, Q;N) says that Ext$; ' (M, Q1 N) = 0.
This holds as Ext}; '(M,N) = Ext(M,N) = 0. The second
assumption for (M, Q;N) says that the module Exth(R/J, Homg (M,
E; s 2))is finitely generated; but this is just the second assumption for
(M, N). Also the third assumptions for (M, Q; N) and (M, N) coincide
because Qgs_oQ1 N = Q,_1N.

This finishes the proof of Step I.

Step II. For the general case, we first recall a classical result of
Gruson saying that F' contains a finite chain of submodules 0 =
Fy C --- C F, = F such that F;/F;_; is a homomorphic image
of a finite direct sum of copies of R/J for each 0 < i < n. So
there is an epimorphism (R/J)™ — F;/F;_; for some m; > 0.
Then Hompg(F;/F;—1,Hi(M,N)) C Homg(R/J,H;(M,N))™, and
the latter module is finitely generated by Step I. By induction n, we
obtain that Hompg(F, Hj(M, N)) is finitely generated. o
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From now on we will restrict ourselves to the particular case of
Gorenstein local rings. We will fix further notation for this case:

Let R be a Gorenstein local ring of Krull dimension dimR = k and
with the maximal ideal m. By a classical result of Bass [1], the minimal
injective coresolution of R has the form

0-R—>Gy—--—Gr1—>Gr,—0
where G; = @pep, E(R/p), and P; denotes the set of all prime ideals of
height i for each ¢ < k (so in particular, G = E(R/m)).

Let I be an ideal of R. For each 1 < i < k, we let Q; = P, NV (I),
K; = ®pcq,E(R/p), and S; = QR + K;. Notice that G; is the
injective envelope of S;, and G;/S; is a factor of the (i + 1)-st cosyzygy
Q;11R =G, /R for each 1 < i < k.

Finally, let K = ®peq/ E(R/p) where Q; = P;\ Qi, s0 G; = K; © K
and S; = K; ® (Sz N KZI)

Lemma 1 can be applied to rephrasing the socle finiteness of local
cohomology in terms of properties of the modules S; (i < k):

Lemma 2. Let R be a Gorenstein local ring of Krull dimension k,
and let I be an tdeal of R. Then the following conditions are equivalent:

(1) Socgr(G;/S;) is finitely generated for each 1 < i < k.

(2) The socle of H}(R) is finitely generated for each n > 0.

Proof. Clearly, both (1) and (2) hold for I = R, so we may assume
that I C m.

Assume (1). In order to prove (2), we only have to verify the
assumptions of Lemma 1 in the given setting, that is, for s = n,
M:N:R, J:m,Ei:Gi_l foriz 1 (WheI‘eGi:OfOI‘Z'Zk‘—I-l),
and F = R/m, where m denotes the maximal ideal of R.

First, Homg(R/m,Homg(R, R)) = Hompg(R/m,R) = Soc(R) is
finitely generated. Clearly Ext}(R,R) = 0 for n > 1 since R is
projective. For n = 1 we see that Exth(R/m, R) is finitely generated
because R/m and R are such. If n > 2, then

Exth(R/m, Homg(R, G, _2)) = Exth(R/m,G,_2) =0

because G, _o is injective.
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It remains to prove that Ext% (R/m, HY(,_1R)) is finitely generated
for each n > 1. We recall that for a module M, H?(M) = I';(M) where

Lp(M)={zecM|3k>0:I"zr =0}

In particular, I';(E(R/p)) = E(R/p) whenp € V(I),and I';(E(R/p)) =
0 when p ¢ V(I).

For n = 1, we have HY(QoR) = H?(R) C Homg(R,R) = R,
hence H? (S R) is finitely generated, and so is Ext%(R/m, HY(QoR)).
If n > k, then I'/(Q,-1R) = Q,_1R is injective, so we have
Ext%(R/m, H?(Q,-1R)) = 0.

Assume 1 < n < k. Then Q,,_1 R is an essential submodule of G,,_1.
SoT(Q, 1R) =Q, 1RNK, 1, and K, is the injective envelope of
T'7(2,-1R). We have

anl/FI(anlR) = Snfl/anlR g anl/anlR = Qn-R g Gn;

so the exact sequence 0 — I'; (2, 1R) = K,, 1 = K, 1/T1(Q, 1R) —
0 yields

Exti,(R/m, H} (Q,-1R)) = Extg(R/m,I1(Q-1R))
~ ExtL(R/m, S, 1/ 1R).

First, consider the case of n = k. Then G, = E(R/m) = Q,R is
an injective module containing S, _1/Q,_1R, so in order to prove that
Ext%(R/m, H?(Q,-1R)) is finitely generated, it is enough to show that
Hompg(R/m,Gn/(Sn—1/Qn—1R)) is such. But this is clear because the
module G,,, and hence also G,,/(S,,—1/Q,_1R), is artinian.

Now, assume 1 < n < k. In order to prove that ExthL(R/m, S, 1/
Q,_1R) is finitely generated, it again suffices to show that Hompg(R/m,
Gn/(Sn-1/Qn-1R)) is such.

We have the exact sequence

0— (Gn—I/Qn—lR)/(Sn—l/Qn—lR) g Gn/(Sn—l/Qn—lR)
- Gp/U%R =0

where Gn/(anl/anlR) = Gn/QnR = Qn+1R g Gn+1.
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Note that if n < k — 1 then Hompg(R/m,G,t1) = 0 by [4,
Theorem 3.3.8(5)], and if n = k — 1 then Homg(R/m,Gpy1) =
Hompg(R/m, E(R/m)) = Socg(E(R/m)) = R/m. So in either case
Hompg(R/m,G,/(Gy-1/Q-1R)) is finitely generated. It remains to
show that Hompg(R/m,Gy—1/Sp—1) is finitely generated. But this is
exactly our assumption in (1). This finishes the proof of (2).

Assume (2). First, note that Hompg(R/m, H: (€;R)) is finitely gener-
ated for each i > 1, because Hy(N) = Hy*(QN) for each module N
and each n > 1.

We claim that Ext}(R/m,Dr(€;R)) = 0 for all 1 < i < k where
Dy(—) is the classical ideal transform functor [2, 2.2.1]. Since Dj(—)
is left exact, we have the exact sequence 0 — D;(;R)) — D;(G;) —
T; — 0 where T; C D[(Gl/QzR) = D[(Qi+1R).

Notice that Hompg(R/m,T;) € Homg(R/m, D;(Q;+1R)) = 0 because
D;(£2;11R) contains no elements annihilated by m (2 I). On the other
hand, [2, 2.2.7] and the injectivity of G; yield the exact sequence

0— GZ/F[(Gl) — D[(Gi) — HII(GZ) =0
where G;/I'1(G;) is injective by [2, 2.1.5], so ExtL(R/m, D;(G;)) = 0.
Then our claim follows from the exactness of the sequence

0 = Homg(R/m, T;) — Exth(R/m, D;(Q;R)) — Exth(R/m, D;(G;))
=0.

Now [2, 2.2.7] yields exactness of the sequence

Homp(R/m, H} (QR)) — Exth(R/m, Q;R/T (4 R))
— BExth(R/m, D;(R)) = 0.

This shows that the module Ext},(R/m, Q; R/I';(£;R)) is finitely gen-
erated.

Finally, QlR/FI(QZR) = SZ/KZ - Gi/Ki = Kzl Since i < k,
Hompg(Rm, K!) = 0, so Homg(R/m,G;/S;) = Exth(R/m,S;/K;) is
finitely generated, and (1) holds. o

As an immediate corollary of Lemma 2, we obtain the low dimensional
case of the Huneke conjecture:
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Corollary 3. Let R be a Gorenstein local ring of Krull dimension
< 2 with the maximal ideal m, and let I be an ideal of R. Then the
socle of Hy(R) is finitely generated for each n > 0.

Proof. Just note that G2/(S1/Q1(R)) is artinian for k = 2 (see the
proof that (1) implies (2) in Lemma 2 above), so Socg(G1/51) is finitely
generated. u]

Let R be a Gorenstein local ring of Krull dimension k& with the
maximal ideal m, and let x € m be a non-zerodivisor on R.

For a module M, denote by M the R/zR-module {m € M | m -z =
0}. Then M =~ Hompg(R/xR, M).

We will need the following well-known fact (see [8, Lemma 8.12]):

Lemma 4. The ring R/zR is a Gorenstein local ring of Krull
dimension k — 1, and R/xR has a minimal injective coresolution of
the form

0—R/zR— Gy — - —Gr—0 (%)
where the ith cosyzygy of R/xzR in (%) is Q;11 R for each 0 < i < k.

Notice that since Ass(E(R/p)) = {p} for each prime ideal p, we

have a = @pEPz‘JGpE(R/p), K; = @pEP,-,Igp,:cEpE(R/p), and fz/ =
®pepi,1gp7wepE(R/p) (1 < i < k). All these modules are injective as

R/zR-modules by the well-known Hom-® relations.

Our next ‘transfer lemma’ says roughly that if for some 1 < ¢ < k,
an ideal I C m has ith level prime avoidance and G;/S; has infinitely
generated socle, then the same holds for the ideal (I +xR)/z of R/zR
at i — 1 where z € m is any non-zerodivisor on R.

Before stating the lemma, we recall that a module D is divisible
provided that Exth(R/rR,D) = 0 (or, equivalently, Dr = D) for
each non-zerodivisor » € R. Any injective module is divisible, and
so are (direct) sums and homomorphic images of divisible modules. In
particular, all the ith cosyzygy modules for i > 0 are divisible, and so
are the modules S; (1 <14 < k) defined above.
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Lemma 5. Let I C m be an ideal of R and 1 < i < k = dim R.
Assume that G;/S; has infinitely generated socle (so clearly Q; # @ #
Q}), and that I has ith level prime avoidance. Let x € m be a non-
zerodivisor on R.

Then S; = Q;R + K; (so that G;/S; is isomorphic to G;_1/S;_1 for
the ideal (I + zR)/zR of the ring R/xzR), and G;/S; has infinitely
generated socle as R/xR-module. Moreover, the ideal (I + zR)/xzR of
R/xzR has (i — 1)st level prime avoidance.

Proof. First we prove that S; = Q;R + K;. Since S; = ;R + K;
by definition, the inclusion D is clear. The direct sum decomposition
S; =K; ® (Sl N KZ/) yields E = E@ S; N KZI

Assume there exists y € S; \ (R + K;). Without loss of generality,
y = 0+ k' where 0 # k' € S;N K. Moreover, y = k + w for some
ke K;\K; andw € Q;R\ Q;R,s0 w= —k+ k.

We have k € @,crE(R/p) C K; for a finite set F C @Q;. By ith level
prime avoidance, for each p € F thereisan r € p \ Ugeq:q- By Matlis
theorem [13, 18.4], it follows that there exists an z1 € R such that
z1 - k =0, but the multiplication by z; is an automorphism of K.

In particular, z; - w € Q;R. Since i > 1 and Q;R is the (i — 1)st
cosyzygy of R/Rx in (*) by Lemma 4, ;R is a divisible R/zR-module.
So there exists an w; € ;R such that x; - w; = z1 - w. Since the
multiplication by 1 is an automorphism of K/, the decomposition of
wy in K; ® K] is wy = k; + k' where (zR + z1R) - k1 = 0 because
w1 € UR. So ki € K;, and y = wy — k1 € QR + K;, a contradiction.

Since the socle of G;/S; is not finitely generated, there is a module
S; C T; C G; such that V; = T;/S; is an infinite direct sum of copies of
R/m. Applying the functor Homg(R/zR, —) we obtain S; C T; C G,
and also the exact sequence 0 — S; — T; — V; — ExtL(R/zR,S;) =0
where the latter Ext is zero because S; is divisible. However, Vi=V;
because = € m, so the socle of G;/S; is not finitely generated as R/xR-
module.

The final claim follows from the fact that the prime ideals of R/zR
of height ¢ — 1 containing (not containing) (I +zR)/zR are exactly the
ideals of R/zR of the form p/zR where z € p € Q; (x € p € Q). O

Finally, we consider the case when R is regular:
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Theorem 6. Let R be a regular local ring, and let I be an ideal with
level prime avoidance. Then the socle of H}(R) is finitely generated
for each n > 0.

Proof. Assume the claim fails and take a counterexample (R, I) with
R of minimal Krull dimension k. By Corollary 3, £ > 2. By Lemma 2,
there is a 1 < i < k such that Socg(G;/S;) is not finitely generated
(and hence Q; # @ # Q).

By the Auslander-Buchsbaum theorem, R is a UFD, so all p € P;
are principal. By classical prime avoidance, there exists an x € m such
that ¢ m? UUpep,p. Then R € P; and R/xR is a regular local ring
of Krull dimension k£ — 1 by [13, 14.2].

If i > 1, then Lemma 5 shows that the R/zR-module G;_;/S; | &
G;/S; corresponding to the ideal (I + zR)/zR of R/zR has infinitely
generated socle, and (I + zR)/zR has level prime avoidance. Thus, by
Lemmas 2 and 4, (R/zR, (I +zR)/zR) is a counterexample such that
R/zR has Krull dimension k — 1, a contradiction.

So i = 1. Take p € @1, so p = xR for a non-zerodivisor of R. Note
that QR = R/zR by Lemma 4. Then G; = E(R/zR) = S; = K1
is just the quotient field of the regular local ring R/xzR. But, as in
the proof of Lemma 5, the divisibility of the R-module S; implies that
the R/zR-module G;/S; has infinitely generated socle, so certainly
G1/S1 # 0, a contradiction. O
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