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SHARP OSCILLATION CRITERIA FOR
A CLASS OF FOURTH ORDER NONLINEAR
DIFFERENTIAL EQUATIONS

T. KUSANO, J. MANOJLOVIC AND T. TANIGAWA

ABSTRACT. This paper is concerned with the oscillatory
and the nonoscillatory behavior of the fourth-order nonlinear
differential equation

(8) (p)la"1* " 2")" + g@)lel? 2 =,

where o > 0, 8 > 0 are constants and p,q : [a,00) — (0, c0)
are continuous functions. We will establish necessary and
sufficient condition for oscillation of all solutions of sub-half-
linear equation (A) (for 8 < a) as well as of super-half-linear
equation (A) (for 8 > a).

1. Introduction. We consider the fourth-order quasilinear differ-
ential equation

(&) (p(0)]a"" ") + q(B)al®tz =0,

where @ > 0, 8 > 0 are constants and p,q : [a,00) — (0,00) are
continuous functions. If we use the notation

(10’}’(5) = |£"Y—1 67 6 € R7 Y > 07
the equation (A) can be expressed in the form
(p(t)pa(@"))" + a(t)ps(z) = 0.

The equation (A) is called super-half-linear if 8 > a and sub-half-linear
if 8 < a.
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By a solution of (A) we mean a function z : [T,,00) — R, which
has the property that p(t)pq(z"(t)) is twice continuously differentiable
and satisfies the equation (A) for every t € [17;,00). Those solutions of
(A) which vanish identically in some neighborhood of infinity will be
excluded from our consideration. A solution of (A) is called oscillatory
if it has an infinite sequence of zeros tending to infinity; otherwise it is
called nonoscillatory.

The study of oscillation theory of fourth-order nonlinear differential
equations was initiated by Kusano and Naito [4, 5]. They completely
characterized the oscillatory behavior of solutions of the equation (A)
with & = 1. The general case of (A) with @ > 0 has been considered by
Kamo and Usami [3], Naito and Wu [7, 8] and Wu [9]. These authors
have made efforts at obtaining necessary and sufficient conditions for
oscillation of all solutions of (A) under suitable combinations of the
convergence or divergence conditions of the integrals

oo 0o 1/a
[ et [ Gw) o

The object of this paper is to consider the equation (A) under the
following condition on p(t)

(P) /:Ot (ﬁ)l/a dt < co.

The equation (A) with p(t) satisfying (P) has recently been investigated
from a viewpoint of nonoscillation by Kusano and Tanigawa in [6].
They have made a detailed analysis of the structure of nonoscillatory
(or equivalently, positive) solutions of (A). However, the problem of
providing necessary and sufficient conditions for the oscillation of all
solutions of (A), under condition (P), still remains open. Our task is to
proceed further exactly in this direction and to establish sharp criteria
for oscillation of all solutions of (A).

Since the oscillation of all solutions of (A) is equivalent to the ab-
sence of nonoscillatory solutions, in order to establish sharp oscillation
criteria for (A) it is sufficient to derive sharp conditions under which
all possible nonoscillatory solutions of (A) are eliminated. This is ex-
actly the procedure that we are going to follow in the present paper.
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Naturally, extensive use is made of the results obtained in [6] about the
asymptotic behavior of nonoscillatory solutions of (A). Therefore, the
present paper, together with the paper [6], provides the complete char-
acterization of the oscillatory solutions as well as of the nonoscillatory
solutions of (A) under assumption (P).

We emphasize that the structure of the set of nonoscillatory solution
of the fourth-order equation (A) is quite similar to the set of nonoscil-
latory solutions of the second order quasi-linear differential equation

(p@®)|z' | 2) + q(t)|z]P "tz =0, «, B>0,
which includes the Emden-Fowler differential equation
(EF) 2" (t) + q(t)|2(t)"2(t) =0, B >0,

as a special case. The analysis of (EF) started in connection with
astrophysical studies around the turn of the 20th century, and since
then (EF) has been the object of intensive investigations. The equation
(EF) is said to be sublinear or superlinear according as 0 < 8 < 1
or 5 > 1. We emphasize two fundamental oscillation theorems for
equation (EF) due to Atkinson [1] and Belohorec [2], which characterize
the oscillatory solutions of the superlinear and the sublinear cases of

Theorem A [1]. Let q : [a,00) — (0,00) be continuous. Then, all
solutions of equation (EF) with 8 > 1 are oscillatory if and only if

/Ootq(t)dt: 0.

Theorem B [2]. Let q : [a,00) — (0,00) be continuous. Then, all
solutions of equation (EF) with 0 < 8 < 1 are oscillatory if and only if

/Oo t? q(t) dt = oco.

Incidentally, it turns out that these theorems will play an important
role in some parts of the proof of our main results: Theorems 3.1 and
3.2.
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The paper is organized as follows. In Section 2 we begin with the
classification of all nonoscillatory (positive) solutions of (A) accord-
ing to their asymptotic behavior as ¢t — co. As a result, the set of
nonoscillatory solutions of (A) is divided into six subclasses and for
each subclass an integral criterion is formulated for the existence of so-
lution belonging to that particular subclass. These facts have already
been proved in paper [6], but their explicit statements are needed for
later purposes. The main results are stated in Section 3 and proved in
Section 5. The preparatory Section 4 is devoted to a collection of some
lemmas which are crucial in proofs of our main results. The example
illustrating the oscillatory and nonoscillatory behavior of solutions of
(A) will be presented in Section 6.

2. Classification of positive solutions. We begin by classifying
the nonoscillatory solutions of (A) according to their
asymptotic behavior as ¢t — co. If z(t) satisfies (A), then so does —z(t),
and so there is no loss of generality in restricting our attention to the set
of positive solutions. In this section we state and list some of the basic
results regarding the classification of positive solutions of (A). These
results have already been obtained in [6] and they will be essential for
the proof of our main theorems.

Let z(t) be a positive solution of the equation (A). Since, from (A),
(p(t)|2" (t)|*~ 12" (t))" is eventually monotone, it follows that all the
functions (p(t)|z” (t)|* 12" (t))’, 2" (t) and z'(t) are eventually mono-
tone and one-signed. Hence, the next eight cases can be considered:

(p()pal@")) | =" | @ (p(t)pa(z")) | 2" | &
(a) + + (e) - +
(b) + -] ® - + |-
(c) + ~ @ - - |+
(@) + D) - - |-

If 2'(t) < 0 and 2”(t) < O eventually, then tlim z(t) = —oo, which
— 00

contradicts the positivity of solution z(t). Therefore, cases (d) and (h)
never hold. Similarly, since (p(t)pq (2 (¢))” < 0, if (p(t)pa(z”(t)) <0,
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then lim; o p(¢)pa(z” (t)) = —oo, that is, 2" (t) < 0 for large ¢. This
observation rules out cases (e) and (f).

Accordingly, the following four types of combination of the signs of
z'(t), " (t) and (p(t)|z"|* 1 z"")" are possible for an eventually positive
solution z(t) of the equation (A):

(t) (t) (p(t) )
() a'(t)<0, a"(t)>0, (p(t)]a"]*ta") >0,
(D) 2'(¢) >0, 2"(t)<0, (p(t)|z"|*"*2") >0,
Iv) «'()>0, "(t)<0, (p(t)z"]*"2") <0

In determining the asymptotic behavior of positive solutions of (A),
a crucial role is played by the functions:

* 55— ® (g t)gl/e
%mz/ ——im,wwzf (G LG N

PG PG
va(®) = 1, Yalt) =t

which are in fact the particular solutions of the unperturbed differential
equation (p(t)|z”|* 12"”)"” = 0. As a result of further analysis of the
four types (I)-(IV) of solutions mentioned above, Kusano and Tanigawa
in [6] have shown that the following six types are possible for the
asymptotic behavior of positive solutions of (A):

(A) z(t) ~ c1t1(t), t = oo, (B) z(t) ~ eatha(t), t — oo,
(C) x(t) ~ C3¢3(t)a t— o0, (D) x(t) ~ C4¢4(t)a t— o0,
(E) ¢1(t) < 2(t) < ¢2(t), t = oo, (F) v3(t) < x(t) < ¢a(t), t — o0,

where ¢; > 0, i = 1,2, 3,4, are constants and the symbol f(t) ~ g(t),
t — o0 is used to mean the asymptotic equivalence:
f(t)

f®) ~g(#), t=o0 = [lm oy =1,

while the symbol f(t) < g(t), t — oo is used to express the relation

g(t) _

ey (t)
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The interrelation between the types (I)—(IV) of the derivatives of
solutions and the types (A)—(F) of the asymptotic behavior of solutions
is as follows:

> All solutions of type (I) have the asymptotic behavior of type (A);

> A solution of type (II) has the asymptotic behavior of one of the
types (A), (B), (C) and (E);

> A solution of type (III) has the asymptotic behavior of one of the
types (C) and (D);

> A solution of type (IV) has the asymptotic behavior of one of the
types (C), (D) and (F).

The following four theorems proven in [6] characterize the existence
of a solution of (A) having the asymptotic behavior of types (A), (B),
(C) or (D).

Theorem 2.1. The equation (A) has a positive solution x(t) of type
(A) if and only if

() |t oade <o,

Theorem 2.2. The equation (A) has a positive solution x(t) of type
(B) if and only if
(©2) | o <.

Theorem 2.3. The equation (A) has a positive solution x(t) of type
(C) if and only if

@ [ e 't~ s)as) ds)l/a dt < oo.

Theorem 2.4. The equation (A) has a positive solution z(t) of type
(D) if and only if

e [ W(/“ 5P q(s) ds)w dt < oo.
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Unlike the solutions of types (A)—(D), a solution of type (E) (or type
(F)) does not have the definite asymptotic behavior as ¢ — oco. These
solutions decay faster than () but slower than ;(t) (or it grows
faster than 3(t) but slower than t4(¢)). Thus, a solution of type (E)
(or type (F)) may well be called an “intermediate” solution between
¥1(t) and o(t) (or between v3(t) and 14(¢t)). This “intermediate”
nature prevents us from characterizing the existence of solutions of
types (E) and (F). Namely, in [6] necessary or sufficient conditions
have been established for the existence of such solutions. This fact will
raise difficulties that should be overcome in the process of proving our
main results.

3. Main results. We now state the main results of this paper
which provide sharp oscillation criteria for the sub-half-linear and the
super-half-linear equation (A).

Theorem 3.1 (Super-half-linear case). Let o < 1 < 3. All
solutions of the equation (A) are oscillatory if and only if

(Cs) / T (1) q(t) dt = oo.

Theorem 3.2 (Sub-half-linear case). Let § < 1 < «a. All
solutions of equation (A) are oscillatory if and only if

I e A L s

4. Auxiliary lemmas. The proofs of the main theorems mentioned
above are presented in Section 5. In order to make the arguments
thereof clear-cut we collect here four necessary calculus lemmas, the
last two of which are concerned with the “intermediate” solution of
types (E) and (F).
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Lemma 4.1. Let a <1< 3. Then
(a) the condition (Cs) implies that

() / g8 () q(t) di = oo

(b) the condition (C3) implies condition (C1);
(c) the condition (C4) implies condition (C1).

Proof. ((Cs) = (C%)). This is obvious, since for 3 > a, we have

Ua(t) > 1%y (t),
ie. 95 (t) > 71yl (t) >ty (t), t>to > max{l,a}.

((Cs) = (C4)). Let (Cs) hold and define

I(t) = / (t — s)q(s)ds, X(t) = /too % ds, t>a.
Since, 1/« > 1, we have t'/* > t and
(4.1)
B m(s—t)sl/a . *“ (s—1t)s .
0= | g @2 [ et = X0 2t

for t >ty > 1, so that x(¢) is well-defined.

Without loss of generality, we may suppose that lim; o, I(t) = oo,
so that we can choose some tg > max{1,a}, such that

(4.2) I(t) > 1 and ¥y (t) < 1 for t > to.
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Now, using (4.1), (4.2) and the fact that 8 > 1 > «, we have

1/«

7 /: (» (t;)l/a </t(t - S)q(s)ds> dt
/: (p( t;)l/a </t(t —s)q(s) ds> dt
/:< i t_sl/a dt) q(s)ds

| M)()%z/ s91(s) g(5) ds

to to

z/wwﬂ@«@w,tzm

to

v

v

which shows that (Cs) implies (C).
((C4) = (C4)). Suppose that (C4) is satisfied and define

(4.3) J(t) = / (t—s)s g(s)ds, t>a.

We may suppose that lim; .o J(t) = 0o. Let typ > max{1,a} be such
that
J(t) 2 Land ¢1(t) <1, t2>to.

Then, for all t > ty, we have

OO

oo >

OO

( (t— )5 q(s) ds> Y
2 . (o0 ( (t—s)s 5)ds>dt
= [ </s Gy ) o e

:/mﬁ%@«ﬁwz/mwﬂﬁwma

to to

1

to t) l/a
1
) l/a

which shows that (Cy) is satisfied. O

Remark 1. Note that in the proof of part (a) of Lemma 4.1, we just
need that a < S.
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Remark 2. We have used in the proof of Lemma 4.1 (parts (b) and
(c)), the statement that without loss of generality we may suppose that
lim;_, o I(t) = 00 or lim;_, o J(t) = co. We would like to give here a
brief explanation for this statement, since it will be further used in
the proofs, from time to time. Observe, that the divergence of I(t)
as t — oo was assumed to have the inequalities (I(¢))'/® > I(t) and
(J(t))* > J(t) holding for a < 1 and for all large ¢. It may happen
that I(t) tends to a positive constant as ¢ — co. In this case, there
exist positive constants ki, k2, such that k; < I(t) < ko for large t.
Accordingly, we have

1/«
(1(t)) M0t > B

> 5 =K, e (1) > K I1(t),

for large ¢, which is a sufficient argument to verify that statement (b)
holds. The same remark could be applied to J(¢) as well.

Lemma 4.2. Let 8 <1< a. Then,

(a) the condition (Cg) implies condition (Cs);
(b) the condition (Cs) implies condition (Cr);
(c) the condition (Cg) implies that

1/«

@ ([ ) a=os

(d) the condition (Cs) implies that

(Co) / g (1) qt) dt = oo.

a

Proof. ((Cs) = (C5)). Let (Cs) hold and suppose that J(t) — oo
as t — oo, where J(t) is defined by (4.3). Choose ty > max{a, 1} such
that

J(t) = /t(t — 5)sPq(s)ds > 1 and ¢y (t) < 1 for t > to.
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Then, using integration by parts and the fact that 1/a <1, 8 < 1, we
see that

/ :<p<s>)-1/a( [ s=nra) dr) s
<[ :(p<s>>1/a( [ atryar) as

_ ) ([t arar) as

— 0@ [[=nr e [ oat) o]

s=t

s=tg

—l—/ ¥1(s) s7q(s) ds
<K+ [ o) a(s)ds
< K+/ sy (s)q(s)ds, t>to,

0

where

K= —wg(to)/o(to—r)rﬁq(r) dr+¢1(t0)/°rﬁq(r) dr.

Therefore, (Cs) implies (Cs).

((Cs) = (C%)). For B < 1, we have

([ieurs)'* s [1e-nmos)
<o < /t:(t —5)q(s) ds> e

for all ¢ > tp > max{1,a}. Accordingly, (Cs) clearly implies that

as) [ :° o) (| :<t - ale)ds ) - .

(4.4)
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Choose t; > tg, such that
t
/ (t—3s)q(s)ds > 1 and ¥y(t) <1 for ¢t > ¢;.
to

Then, by integration by parts, we obtain

/ fsl/%p(s))-l/a( [ =t dr)l/a ds

- tlt Wl () ( / (s — r)g(r) dr)l/a ds

to

< @ ( [ 6=nayar ) as

= [#460) [ 1o~ ey ar st [ d

0 s=t;
¢
+/ Pa(s)q(s) ds
t1
¢
§K+/ Vo (s)q(s)ds, t>t,
t1
where
ty t1
K ==vit) [t =r)atr)dr+in(e) [ atr)an

From the last inequality and (4.5), we have that (C7) is satisfied.
((Cs) = (C%)). Since B < «a, we have for all large ¢

(/at(t — 5)s” q(s)d5>1/°‘ < Bl </at(t B S)Q(S)d5>1/a
=t </at(t5)q(s)ds>1/a,

so that, clearly (Cg) implies (Cs).
((Cs) = (Cy)). If (Cs) holds, it implies that for any tg > a

ae [ oo [ (- 95 q(s) is) .

to to
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Choose ty > 1, such that 9;(t) < 1 for ¢ > ty. In view of the basic
integral condition (P), (4.6) implies that

t
lim [ (t—s)s®q(s)ds = oo,

t—o0 to

so that, by L’Hopital’s rule, we have

¢ ¢
lim ! / (t —s)sP q(s)ds = lim [ sPq(s)ds € (0,00],
to

t—o0 to

which shows that there exists some constant k£ > 0 and some t; > tg
such that

t
(4.7) / (t —5)s” q(s)ds > kt for every t > t;.
to

For all ¢t > t;, using integration by parts, we obtain

/ :<p(s>>-1/a ( / ( — ) rfa(r) dr) s
-/ ¢’1’(s)( / :<s — r)rg(r) dr) "

~wi@)( [ = rfarar) - :

-2/ s [ :(s ) rﬁq(r)dr)(l/a)_l
X </t rPq(r) dr> ds.

From the last equality, using (4.7) and noting that 1/a < 1 and that
1 (t) is negative, we get

48 [ o) ( / (5=t " s

t1 to

<k - w (s) 54/~ /srﬁqmdrds

to

<k — k2/¢1 / (1/c) 1+Bq(r)drds, t>ty,
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where

t1 1/«
1
ki = —zb'l(tl)(/ (ty — ) rﬁq(r) dr> >0, ky=—k/9=1 50
a

to

Now, from (4.8), using the fact that

o< Umeb 5 (1)

_71+6 )
« « «

we have

/ It(p(s))-l/a (/ ( — e ar) s

<k — k2/¢1 / Bleq(r) drds

=ky + ko K —11(s) /to 7% q(r) dr> s=t

+ /t t P1(s) s/ q(s) ds]

¢
<ks+ky [ ¥i(s) s?/ q(s)ds
t1

s=t

t
§k3+kz/ 71yl (s) q(s)ds, t >t

t1
where k3 = k1 + k2 ¥1(¢1) fttol P/ q(r) dr. Letting t — oo, we conclude
that (Cg) implies (Co). O

Lemma 4.3. If z(t) is a positive “intermediate” solution of type
(E), then it satisfies
(4.9)

3] 1/«
-t
x(t)z/ s e <// dpdr> ds, t>t,
t

and

(4.10) /ootq() P(t)dt =
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Proof. Let z(t) be a solution of (A) of type (E). It has derivatives of
type (1), i.e.,

2(t) <0, 2"(t)>0, (p(t)<pa(:v"(t))>, >0

for all large t, say for ¢ > t;. Since the function (p(¢)pq(z"(t))
decreases to a finite limit ws > 0 as t — oo, integrating the equation
(A) twice, first from ¢ to co and afterwards on [to, ¢] yields

(4.11)
1/«

(0 = ) e+ [ (wa+ [ et erar)as| ez

where &2 = p(to)(z"(¢0))* > 0. Since z'(t) is a negative increasing
function, there exists a finite limit wy = lim;_, o 2'(¢) < 0. If wy < 0,
then the inequality 2'(t) < wy, t > to, yields lim;, o z(t) = —o0, an
impossibility, so that wy must be zero. Since

/t: <w3 + /:o q(r)z? (r) dr> ds = O0(t), t— oo,

condition (P) enables us to integrate (4.11) over [¢,00) and we get
(4.12)

S s S 1/
0= [ e [ (uat [T ot dn)ar] " as
t to T
t > to.
Noting that the limit wo = lim;_, o z(¢) > 0 is finite, integrating (4.12)

from ¢ to oo, we obtain

413) o) =w+ [ e

s 0o 1/
+/ (wg +/ q(p)2P () d,u> dr] ds, t>tg.
to r

If wy > 0, then z(t) ~ wy = woys(t) as t — oo, so that the solution
z(t) would be of type (C). Therefore, we must have that wy = 0. Then,

we have lim; o 2(t)/¥2(t) = w?l,/a, which for ws = 0 implies that
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z(t) < a(t), t = co. Accordingly, from (4.13), for ws = wo = 0, we
conclude that (4.9) is satisfied for any solution z(¢) of type (E).

Furthermore, from (4.13), we find that

1/«
(4.14) t_)oo 1/11 {§2+/t / w)dpds .

If we suppose that (4.10) does not hold, the right hand side of (4.14)
becomes a positive constant ¢, which implies that z(t) ~ c(t) as
t — oo. This, however, contradicts the assumption that z(t) is of
type (E). Therefore, we conclude that x(t) must satisfy (4.10), which
completes the proof. ]

Lemma 4.4. If z(t) is a positive “intermediate” solution of type (F),
then it satisfies

(4.15) 1

/ / ””‘(/t:(r - wa(w)z? (p) du) " i ds, t > to,
and
we) [ :° TOREY :<t ~ 5)a(s) #%(s) ds)l/a dt = oo.

Proof. Let z(t) be a positive solution of type (F). Then it has
derivatives of type (IV), i.e

2(t) >0, 2"(t) <0, (p(t)pa(a"(t)) <0

for all large t, say for t > ty. We now integrate equation (A) twice over
[to, t], obtaining
(4.17)

¢ 1/a
—a"(t) = (p(t)) ™" <§2+£3(t—to)+/ (t—s)a(s) 2" (s) ds> , t > to,

to

where & = p(to)(—2"(t0))* > 0 and &5 = —(p(t)(—z" (£))*)'|t=¢, > 0.
The existence of the finite limit w; = limy_, o 2'(¢) > 0 implies the
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integrability of the right hand side of (4.17) on [tg,c0). Integrating
(4.17) twice more, first on [¢, 00) and afterwards on [to, t], we obtain for
all ¢ Z to:

(4.18)

£(t) = &+ wi(t — to) + / / () e <52 FEy(r—to)
+/ < — W) 2" () dﬂ) " s,

where &y = z(top) > 0. From the above representation for z(t), we
see that if wy > 0 the solution z(¢) would be of type (D), which is
impossible. Therefore, w; = 0 in (4.18). Furthermore, if we suppose
that (4.16) fails to hold, i.e.,

e ( [ :<t ~ 5)a(s) xﬂ<s>ds)1/a dt < oo,

to

then from (4.18) it follows that lim; o, z(t) = wg > 0. This shows
that z(t) is a solution of type (C), contradicting the basic assumption.
Therefore, (4.16) necessarily holds, and the proof of the lemma is
completed. u]

5. Proofs of the main results. We are now in a position to prove
the two theorems stated in Section 3. In each of those two theorems
the “only if” part is easier to handle, so we will direct our efforts at
the verification of the “if” part, that is, to the verification that the
condition (C5) or (Cg) guarantees the oscillation of all solutions of (A),

or equivalently, the nonexistence of any types of nonoscillatory solutions
for (A).

Proof of Theorem 3.1. (The “only if” part): Suppose that (Cs) is not
satisfied. Then, by the “if” part of Theorem 2.1 equation (A) has a
positive solution of type (A). Therefore, (Cs) must hold if all solutions
of (A) are oscillatory.

(The “if” part): We will prove that (Cs) ensures the oscillation of
all solutions of (A), or equivalently, the nonexistence of any positive
solution of (A). Since any positive solution of (A) falls into one of the
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six types (A)—(F) mentioned in Section 2, it is sufficient to verify that
(Cs) eliminates positive solutions of (A) of all these six types.

Elimination of solution z(t) of type (A): This is nothing but what the
“only if” part of Theorem 2.1 asserts.

Elimination of solution z(t) of type (B): Since by (a) of Lemma 4.1,
(Cs) implies (C7), from the “only if” part of Theorem 2.2 we see that
(A) admits no solution of type (B).

Elimination of solution z(t) of type (C): Suppose that (A) has a solu-
tion of type (C). Then, by the “only if” part of Theorem 2.3 condition
(Cs) holds, and hence condition (Cy) holds by (b) of Lemma 4.1. But
this is the contradiction with assumption (Cs).

Elimination of solution z(t) of type (D): Suppose that the equation
(A) has a solution of type (D). Then, by the “only if” part of The-
orem 2.4 condition (C4) holds. By (c) of Lemma 4.1 condition (Cj)
implies condition (C7), contradicting assumption (Cs).

Elimination of solution z(t) of type (E): Suppose that there exists
a solution z(t) of type (E). Then, by Lemma 4.3, z(t) satisfies (4.9),
which implies that
(5.1)

o ([ gigtae) ([ [ emws)”
Put
/ / r)drds, t>t.

X”(t) 1/B
q(t)> ’

which, combined with (5.1), gives the following differential inequality

for X (t):
(_X"(t)>1/ﬁ > XY (t) 4y (£)
q(t) - Y

We then have

X7 (t) = —q(t)a®(t) or a(t) = (—

N X"(t) + 97 (1) a(t) (X () <0, t>to.
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It is not difficult to verify that there exists a positive solution X () of
the Emden-Fowler differential equation

(5-2) X"(t) + 97 (Da(t) (X (1)) =0,

which is superlinear because of § > «a. Atkinson’s theorem (Theorem
A) then implies that

/ T i (Da(t) dt < oo,

which contradicts (Cs).

Elimination of solution z(t) of type (F): Let us suppose that equa-
tion (A) possesses a solution of type (F). Then, by Lemma 4.4, z(t)
satisfies (4.15) and (4.16). Since (4.16) implies that

/T(r — wa(p)z? (n) dp — 00, T — 00,

to

there exists some t; > tg such that

[ = e () d > 1 and 1) < 1 for 7> 1

to

Using the above inequalities and the fact that 1/a > 1, we see that

/S‘”(p(,,))l/a(/ (- wa(we” () du)l/“ dr

to

> [Ty ([ - ma)e ) du) i
> [ ( [ OIRE dr) a()e? () dp
-/ T aweP ) du, s> .

Consequently, we find from (4.15) that

(5.3) 2(t) > /t /oozbl(r)q(r)xﬁ(r)drds, .
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We put

Y(t)—/t/oowl(r)q(r)mﬂ(T)drds, £t

Then, we have Y"(t) + ¢, (t)q(t)z?(t) = 0 for ¢ > ¢, and, since
z(t) > Y (t), t > t; from (5.3), we have that

Y'(t) + 1 (t)q(t)YP(t) <0, t>t;.
Therefore, there exists a positive solution of the Emden-Fowler equation
(5.4) Y(t) + 1()g)YP(£) =0, t>ty,

which is superlinear because of 8 > 1. Applying Theorem A to (5.4),
we have that

/ Tt (t)a(t) di < oo,

t1

which implies that

/ootzpf(t)q(t) dt < co.

t1

But, this clearly contradicts condition (C5), and so equation (A) cannot
possess a positive solution of type (F). This completes the proof of
Theorem 3.1. O

Proof of Theorem 3.2. (The “only if” part): Suppose that condition
(Cs) fails to hold. Then, by the “if” part of Theorem 2.4 equation (A)
has a positive solution of type (D), and so (Cg) must hold if all solutions
of (A) are oscillatory.

(The “if” part): Assume that (Cs) is satisfied. We will show that
(Cs) is sufficient to eliminate all six types (A)—(F) of positive solutions
of the sub-half-linear equation (A).

Elimination of solution z(¢) of type (A): Since by (a) of Lemma 4.2
(Cs) implies (Cs), the application of the “only if” part of Theorem 2.1
ensures the nonexistence of a positive type (A)-solution of (A).
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Elimination of solution z(t) of type (B): By (b) of Lemma 4.2
condition (Cg) implies (C7). In view of the fact that (C7) is the
negation of (C3), from the “only if” part of Theorem 2.2 it follows
that equation (A) cannot have a positive type (B)-solution.

Elimination of solution z(t) of type (C): By (c) of Lemma 4.2, (Cg)
implies (Cg), so that the application of the “only if” part of Theorem 2.3
eliminates solutions of type (C).

Elimination of solution z(t) of type (D): This is equivalent to the
“only if” part of Theorem 2.4.

Elimination of solution z(t) of type (E): We first note that condi-
tion (Cy) holds by (d) of Lemma 4.2. Suppose that equation (A) has
a solution z(¢) of type (E). Then, by Lemma 4.3, x(t) satisfies (4.9).
Following exactly the same steps of elimination of type (E)-solution
as in the proof of Theorem 3.1, we are led to the conclusion that the
Emden-Fowler differential equation (5.2) possesses a positive solution.
Since 8 < a, in this case equation (5.2) is sublinear and, accordingly,
Belohorec’s theorem (Theorem B) implies that

(5.5) / /g (1) q(t) dt < oo,

to
which contradicts (Cy).

Elimination of solution z(t) of type (F): Let us suppose that equa-
tion (A) has a solution z(t) of type (F). Note that x(¢) has derivatives
of type (IV), so that 2'(t) > 0, 2" () < 0 for all large t, say for ¢t > t.
By Lemma 4.4, z(t) satisfies integral inequality (4.15), which implies
that
(5.6)

xw - [ “(p(s)) HewBla(s) ( [ =6 —wae) dr) Past st
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Since .
2(t) — (to) = / 2(s)ds > (t—to) (1), ¢ > to,
to
we have
(t —to)a’(t) — =(t)
(t —t0)?
which implies that ¥(¢) is decreasing on (tg,00), so that the function
X (¢) is well-defined by (5.8). Now, from (5.6), we have
(5.9)
[SS) s 1/a
w0 = [ ([ w v mar) as
t

to

> /too(p(S))l/“‘I’ﬁ/“(S) (/5(8 —7)(r —to)q(r) d?“) - ds

to

U'(t) =

<0, t>to,

=X(t), t>tp.

Let t; > to be fixed arbitrarily. Combining (5.9) with the relation

¢ 1a
X0 =~ w0 [ =)0l ) ds)

to

we obtain the differential inequality

(5.10)
)2 60 [ e-e-wawa) (x0)" iz
Dividing (5.10) by (X (t))?/® and integrating from t; to co, we conclude
that N . Vo
[Twen e ([eone e wlana)
<- /too (X(s))_ﬁ/a X'(s) ds
- (x() ™" < ox,

which contradicts assumption (Cg). Thus, (A) admits no solution of
type (F), if (Cs) is satisfied. This completes the proof of Theorem 3.2. O
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Remark. We conjecture that the number 1 could be removed from
the super-half-linearity condition @ < 1 < 8 and the sub-half-linearity
condition a@ > 1 > 3, i.e., that Theorems 3.1 and 3.2 are still in effect
if a < 8 and B < «, respectively.

6. Example. We present here an example which illustrates our main
oscillation theorems and supplements nonoscillation results of [6].

Example. Consider the equation
(A1) (2" ") e 2 e =0,

where o, and A > 2a + 1 are fixed positive constants and p € R,
U # 2, i # 24 [ is a varying parameter. The assumption A > 2a + 1
ensures that condition (P) is satisfied. Moreover, functions v, (t), ¥2(t)
given by (2.1) have the asymptotic behavior

P1(t) ~ er(a, A) t2_(’\/°‘), t — 00;
Pa(t) ~ ca(a, A) 2= =N/ 0.

It is easy to verify that
t
/ (t —s)q(s)ds ~ ky(u)t*™*, t— o0
. a
/ (t — s)s” q(s) ds ~ ka(p) t*TP7H, ¢ — oo,

and that for (A;):
(C4) is equivalent to p > 2+ (2 — (A\/@)) B = pa;
(Cy) is equivalent to p > 1+ (2— (A —1)/a) B = ug;
(Cs) is equivalent to p > 2+ 2a — X = pc;
(Cy) is equivalent to p > 2+ a+ 58— X = up.
Using that A > 2a+ 1 > 2a and A > «a + 1, it follows by an easy
calculation that
pa < pp < pc < pp, if a <B,
pup < po < pp < pa, if a > B.
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Accordingly, the sub-half-linear equation (A;) has solutions of all types
(A)-(D) if 4 > pp and the super-half-linear equation (A;) has solutions
of all types (A)—(D) if po > pra. Also, the sub-half-linear equation (A;)
has no solution of types (A)—(D) if 4 < p4 and the super-half-linear
equation (A;) has no solution of types (A)—(D) if p < pp.

Conditions (C2), (C5) guarantee the existence of an “intermediate”
solution of type (E), by Theorem 2.9 in [6] and by Theorem 2.10 in
[6], the conditions (C4), (Cs) ensure the existence of an “intermediate”
solution of type (F). Therefore, we may conclude that:

(a) the super-half-linear equation (A;) has a solution of type (E) if
pB < P < fra;

(b) the super-half-linear equation (Ay) has a solution of type (F) if
pp < p < pe-

Theorems 2.9 and 2.10 in [6] are not applicable to the sub-half-
linear equation (A;), since (C2) and (Cs) as well as (C4) and (Cs)
are inconsistent if a < 3.

Suppose that a < 1 < 3. Then, Theorem 3.1 leads to the conclusion
that all solutions of (A;) are oscillatory if and only if

A .
(6.1) p<2+ <2—E>B—NA—mln{ﬂ«AyﬂB,NCaﬂD}-

Suppose that 8 <1 < a. Then, from Theorem 3.2 we conclude that
all solutions of (A;) are oscillatory if and only if

(6.2) p<2+a+B—X=pp=min{pa,pup, ptc, in}-

Note that as is shown in [6], Theorem 2.11, all solutions of (A) are
oscillatory if

(6.3) / T W) q(t) di = oo

and

1/

(6.4) /:o W </:(t ~ 8)g(s) ds> dt = o0
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hold. For equation (A1), (6.3) is equivalent to p < 1+(2—(A/a))B = 11
and (6.4) is equivalent to < 24+ a — A = pg. Notice that, if o <
then g1 < pa and py < pga, and if @ > B then ps < p1 and ps < pp.
Therefore, the above-mentioned oscillation criterion provide us that
the sub-half-linear (super-half-linear) equation (A;) is oscillatory if
p < p < pa (@ < p2 < pp). Thus, our main results Theorems
3.1 and 3.2 give sharper oscillation conditions.
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