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COMMUTATIVE GROUP ALGEBRAS WHOSE
QUOTIENT RINGS BY NILRADICALS
ARE GENERATED BY IDEMPOTENTS

HIDEYASU KAWAI AND NOBUHARU ONODA

ABSTRACT. We give a condition for the reduced ring
(RG)req to be generated by idempotents over R, where R
is a commutative ring, G is an abelian group and RG is the
group algebra of G over R.

1. Introduction. This paper is a continuation of [5], in which we
gave conditions for the group algebra RG of an abelian group G over
a commutative ring R with identity to be generated by idempotents
over R. In studying algebras generated by idempotents, we frequently
encounter R-algebras A such that A,.q is generated by idempotents
over R, but A itself is not, where A;eq = A/nil(A), the quotient ring of
A by its nilradical. In view of this, in the paper we take up a problem
asking conditions for (RG)rea to be generated by idempotents. The
main result is as follows.

Theorem. Let R be a commutative ring with identity and G an
abelian group. Then the following conditions are equivalent.

(1) (RG)eq is generated by idempotents over R.

(2) G is a torsion group, n € n’Rieq and the nth cyclotomic poly-
nomial ¢ (X) has a root in Ryea for every positive integer n such that
n = ord(g), the order of g, for some g € G.

Rings are assumed to be commutative R-algebras. For a ring S, we
denote by U(S) the group of units in S, and by S[X] the polynomial
ring in one indeterminate X over S. We write Z for the ring of integers.
When considering an integer n as an element of S, we assume that n
stands for n - 1g as usual. For basic results and undefined terminology,
our general references are [1, 2, 6].
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2. Proof of the theorem. Let A be an R-algebra. Then we set
A(A) = R|E], where F is the set of all idempotents of A. Note that
Areq is canonically an R,cq-algebra, so that A(Ayeq) = Area if and only
if Ajeq is generated by idempotents over R .q.

Lemma 2.1. Let A and B be R-algebras, and let p: A — B be an R-
algebra homomorphism. Then p induces an R-algebra homomorphism
P Ared — Breq such that mg o p = pomy, where mg: A — Apeq and
mp: B — Bieq are canonical R-algebra homomorphisms, respectively.
If p is surjective, then p is surjective, and if ker p C nil(A), then p is
injective.

Proof. The assertion is easily verified, and we omit the proof. ]

Let G be an abelian group. Then, for a prime number p, we set
Gp ={g € G|ord(g) =p" for some n > 0}

and
ep(G) = sup{ord (g) | g € Gp}.

Thus G, is a subgroup of G. It is known that if G is a torsion group,
then G), is a direct summand of G, and in particular there exists a
surjective homomorphism G — Gj. Furthermore, we set

supp G' = {p | ,(G) # 1}.
Note that we have
supp (G/G,) = supp G\ {p}

and

eq(G/Gp) = €4(G)
for g € supp (G/Gp).

Lemma 2.2. Suppose that R is reduced. Then RG is reduced if and
only if p is a regular element of R for every p € supp G.
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For the proof of the above lemma, see [2, Chapter 3, Theorem 4.2
and Corollary 4.3].

Lemma 2.3. Suppose that char R = p™, where p is a prime number
and n is a positive integer. Then (RG)red = Ried(G/Gp).

Proof. By Lemma 2.1, we know that the natural R-algebra homo-
morphism RG — R,cqG induces an R-algebra isomorphism (RG)yeq &
(RredG)red- Thus, replacing R by Ryreq if necessary, we may assume
that R is reduced. Note that char R = p in this case. By [2, Chapter
2, Proposition 2.10], we have

(2.1) RG/RG - I(Gy) = R(G/G,),

where I(G,) is the augmentation ideal of the group algebra RG,;
namely, I(G,) is the kernel of the R-algebra homomorphism RG, —
R induced from the group homomorphism G, — {e}, where {e}
denotes the trivial group. Hence, for the assertion it suffices to show
RG - I(G,) = nil(RG). Since R(G/G,) is reduced by Lemma 2.2, it
follows from (2.1) that RG - I(G,) 2 nil (RG). Conversely, note that
g — 1 € nil (RG) for every g € G, because

m

(g-1" =g —1=0,

where p™ = ord (g). Since I(Gp) is a free R-module generated by
elements g — 1, g € G, from this we have I(Gp) C nil (RG). Therefore
RG - I(G,) = nil (RG), which completes the proof. O

Lemma 2.4. If (RG)rea is generated by idempotents over Ryed, then
G is a torsion group.

Proof. Note that (RG)yeq is integral over Ryeq, because (RG)req is
generated by idempotents over R,.q and every idempotent is integral
over Ryeq. Hence if there were g € G with ord (g) = oo, then (R(g))rea
would also be integral over R,.q. However since R{g) = R[X,X 1],
the Laurent polynomial ring in one variable X, we have (R(g))rea =
Ryeq [X, X 71, which is not integral over R,.q. This is a contradiction. O
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For a positive integer n, we set a, = 0 :g n. Note that a, = R if and
only if char R | n.

Lemma 2.5. The following assertions hold for a positive integer n.

(1) If R is reduced, then R/a, is also reduced and n is a regular
element of R/a,.

(2) The following conditions are equivalent.
(i) n e U(R/ayn).

(ii) R = R/a, x R/nR.

(iii) n € n®R.

Proof. For simplicity we set a = a,. Since the assertions trivially
hold when a = R, we may assume that a # R.

(1) Let a be an element of R such that na™ € a for some m > 0.
Then n?a™ = 0, and hence (na)?™ = 0, which implies na = 0 because
R is reduced. Thus a € a and @ = 0, where @ is the residue class of
a in R/a. In particular, if b € 1/a, then b™ € a for some m > 0, so
that nb™ € a. Thus b € a by what we have proved, and hence v/a = a.
Therefore R/a is reduced. Similarly, if n¢ = 0 for ¢ € R, then nc € a,
and hence ¢ = 0. Thus n is a regular element of R/a.

(2) We have n € U(R/a) if and only if a + nR = R, which implies
(i) & (ii), because na = 0. We will show the equivalence (i) < (iii).
If n € U(R/a), then R = a + nR, and hence nR = na + n?R = nR.
Thus n € n?R. Conversely, if n € n?R, then n(1 — nx) = 0 for some
z € R, which means 1 — nz € a. Thus n € U(R/a), as desired. o

Lemma 2.6. Suppose that R = Ryeq and (RG)rea = A((RG)red)-
Then, for p € suppG, we have (R/ap)G, = A((R/ay)Gp), where
ap =0:r p.

Proof. We set a = a, for simplicity. Since G, is a direct summand
of G, there exists a surjective group homomorphism G' = Gj, which
induces a surjective R-algebra homomorphism o: (R/a)G — (R/a)G).
Then, setting 7: RG — (R/a)G to be the surjective R-algebra homo-
morphism induced from R — R/a, we have a surjective R-algebra ho-
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momorphism o o 7: RG — (R/a)Gp. Note that (R/a)G), is reduced by
Lemma 2.2, because R/a is reduced and p is a regular element of R/a
by Lemma 2.5. Thus, by Lemma 2.1, we know that (R/a)G) is a sur-
jective image of (RG)red. Since (RG)req is generated by idempotents,
(R/a)G,, is also generated by idempotents, as claimed. o

Lemma 2.7. Let p be a prime number such that p € p*R, and let
g = p™, where m is a positive integer. If ¢,(X) has a root in R/ayp,
then ¢4(X) has a root in R.

Proof. Note that if « is a root of ¢4(X) in R/ap, then («, 1) is a root
of ¢¢(X) in R/ap x R/pR. Since R = R/a, X R/pR by Lemma 2.5, we
know that ¢,(X) has a root in R. o

Lemma 2.8. Suppose that (R/ap)Gp = A((R/ap)Gp), where p €
suppG. Then p € p*R and ¢pm (X) has a root in R for every positive
integer m with p™ < e,(G).

Proof. Since (R/a,)G, = A((R/a,)Gp), it follows from [5, Theorem
4.2] that p € U(R/a,) and ¢,=(X) has a root in R/a,. Hence p € p>R
by Lemma 2.5, and ¢,m (X) has a root in R by Lemma 2.7. O

Lemma 2.9. Suppose that R = R.eq, and let H be a cyclic group
with |H| = ¢, where ¢ = p™, a power of a prime number p. Then
(RH)rea = A((RH)rea) if and only if p € p®R and ¢4(X) has a root
n R.

Proof. We set A = RH for simplicity. First suppose that A,eq =
A(Ayeq), and let C = (R/a,)H. Since R/a, is reduced and p is a
regular element of R/a, by Lemma 2.5, it then follows from Lemma 2.2
that ¢ = Cleq- Hence, by Lemma 2.1, there exists a surjective R-
algebra homomorphism A,.q — C, so that we have C = A(C). Thus
p € U(R/ap,) and ¢4(X) has a root in R/a, by [5, Lemma 3.3].
Therefore p € p?R by Lemma 2.5, and ¢,(X) has a root in R by
Lemma 2.7.

Conversely, suppose that p € p?R and ¢¢(X) has a root in R. Then
it follows from Lemma 2.5 that R & R/a, x R/pR, and hence setting
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D = (R/pR)H we have A =g C x D, which implies
(22) Ared gR C11red X Dred-

Note that Dyeq = (R/pR)red by Lemma 2.3, because char (R/pR) = p
and H = H,. Hence D,¢q is a surjective image of R, and therefore
Dyca = A(Drea). Moreover, since ¢4(X) has a root in R/a,, we have
C = A(C) by [5, Lemma 3.3], so that Creq = A(Creq). It thus follows
from (2.2) that Ajeq = A(Ared), which completes the proof. o

Lemma 2.10. Let S be an R-algebra, and let H be a cyclic group with
|H| = p™, where p is a prime number and m is a positive integer. If
(RH);eq is generated by idempotents over R, then (SH)yeq is generated
by idempotents over S.

Proof. Note that Syeq is canonically an R.4-algebra. Since (RH )eq =
(RredH)rea and (SH)red =2 (Sred H )red, replacing R and S by Ryeq and
Sred, respectively, we may assume that R and S are reduced rings.
Now suppose that (RH)eq is generated by idempotents over R. Then
it follows from Lemma 2.9 that p € p?R and ¢,(X) has a root in R.
Thus, a fortiori, p € p2S and ¢,(X) has a root in S, so that (SH)yeq is
generated by idempotents over S again by Lemma 2.9. This completes
the proof. mi

Lemma 2.11. Let Hy,...,H, be cyclic groups with |H;| = p;*
for each i, where p; is a prime number and m; is a positive integer.
Set H =Hy X -+ X Hy,. If A(RH;)red) = (RH;)rea for each i, then
A((-R-H')red) = (RH)red'

Proof. We use induction on n. Let H' = H; X -+ x H,,_; and set
S = RH'. Then, by the induction hypothesis, Sieq is generated by
idempotents over R. On the other hand, Lemma 2.10 implies that
(SH},)rea is generated by idempotents over S. Note that RH g SH,.
Thus A((RH)yed) = (RH)yed- o

We are now ready to prove the following

Theorem 2.12. Let R be a commutative ring with identity and G
an abelian group. Then the following conditions are equivalent.



COMMUTATIVE GROUP ALGEBRAS 235

(1) (RG)rea ts generated by idempotents over R.

(2) G is a torsion group, p € p?Ryeq and ¢pm(X) has a root in Ried
for every p € supp G and positive integer m with p™ < e,(G).

(3) G is a torsion group, n € n*R.eq and ¢, (X) has a root in Rieq
for every positive integer n such that n = ord (g) for some g € G.

Proof. We may assume that R = R,.q. Note that if p € p2R, then
p™ € p*™R for every m > 0. Hence p € p*R for every p € suppG if
and only if n € n?R for every n such that n = ord (g) for some g € G.
The equivalence (2) < (3) thus follows from [5, Corollary 3.5].

(1) = (2) This follows from Lemmas 2.4, 2.6 and 2.8.

(2) = (1) Let f be an element of RG. Then there exists a finite
subgroup H of G such that f € RH. Write H = H; x --- X H,,, where
each H; is a cyclic group whose order is a power of a prime number. It
then follows from Lemma 2.9 that A((RH;)red) = (RH;)rea for every
i. Therefore, by Lemma 2.11, we know that

fT € (RH)red = A((R}I)red) - A((RG()red)7

where f is the residue class of f in (RG)yed. This implies A((RG)red) =
(RG)red, which completes the proof. o

Remark 2.13. For an integer n, we have n € n?R..q if and only
if n* € n**1R for some positive integer k. In fact, suppose that
n € n?Rieq. Then n(1 — nz) € nil (R) for some x € R, which implies
nF(1 — nz)* = 0 for a sufficiently large positive integer k. Thus
n* € n*t'R. Conversely suppose that nf € nf+'R for some k > 0.
Then n*(1 — ny) = 0 for some y € R, so that (n(1 —ny))* = 0. Thus

n(1l — ny) € nil (R), and hence n € n?Ryeq.

Remark 2.14. If char R > 0, then p € p?R,.q for every prime number
p, so that n € n%2R,eq for every integer n. In fact, let 7 = char Ryeq,
which is a square-free positive integer. If p is not a divisor of r, then
p € U(Ryed), and hence the assertion is obvious. If p | r, then set
s = r/p, and let a and b be integers satisfying ap + bs = 1. Then
p = ap? + br, so that p € p?R,cq. Therefore, for the case of positive
characteristic, we have the following
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Theorem 2.15. Let R be a commutative ring with identity and
G an abelian group. If charR > 0, then the following conditions are
equivalent.

(1) (RG)req is generated by idempotents over R.
(2) G is a torsion group, and ¢pm(X) has a root in Ryeq for every
p € supp G and positive integer m with p™ < e,(G).

(3) G is a torsion group, and ¢,(X) has a root in Ryeq for every
positive integer n such that n = ord (g) for some g € G.

We conclude this paper by showing that A((RG)red) = (RG)red is
equivalent to A(RG) = RG in the case where charR = 0 and R is
indecomposable. For this purpose we need some results.

Lemma 2.16. The following assertions hold.

(1) For a € R, if @ € U(Ryed), then a € U(R), where @ denotes the
image of a in Ryieq-

(2) Let n be a positive integer such that n € U(Ryeq). If ¢n(X) has
a 100t in Ryed, then ¢n(X) has a root in R.

Proof. Since the assertion (1) is easily verified, we give a proof only
for (2). Let c be an element of R whose image ¢ in R,eq is a root of
¢n(X). Then (¢n(c))™ = 0 for some m > 0. Since n € U(R) by (1),
we can define a Z-algebra homomorphism

p: S =Zn[X]/(¢n(X)") — R

by p(X) = ¢, where X is the image of X in S. On the other hand
it follows from Lemma 2.17 below that S contains a root u of ¢, (X).
Then p(u) is a root of ¢, (X) in R, which completes the proof. o

Lemma 2.17. Let n and m be positive integers. Then there exists
a polynomial u(X) in Z[n=1][X] such that ¢, (u(X)) is divisible by
On(X)™ in Z[n ][ X].

Proof. 1t suffices to prove the assertion for the case m = 2. Indeed,
if f(X) is a polynomial in Z[n~][X] such that ¢, (f(X)) is divisible
by ¢,(X)? in Z[n71][X], then ¢,(f(f(X))) is divisible by ¢, (X)4,
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and ¢, (f(f(f(X)))) is divisible by ¢,,(X)®, and so on. Thus, for any
r > 0, we can find u(X) in Z[n !][X] such that ¢, (u(X)) is divisible
by ¢n(X)?" in Z[n™][X].

Now suppose that m = 2, and set f(X) = X(n+1— X")/n. Then
f(X) € ZIn~Y[X] and f(&) = £, where £ denotes a primitive nth root
of unity. Hence, setting F'(X) = ¢, (f(X)), we have F(&) = ¢,,(§) = 0.
Moreover, since f/(X) = (n+1)(1 — X™)/n, we have f'(£) = 0, which
implies F'(£) = 0, because F'(X) = f/(X)¢,' (f(X)). From this we
can easily see that F(X) is divisible by ¢,(X)? in Z[n~'][X]. This
completes the proof. O

Theorem 2.18. Let R be a commutative ring with identity and G
an abelian group. Then the following conditions are equivalent.

(1) RG is generated by idempotents over R.
(2) RyeaG is generated by idempotents over Ryeq.

Proof. Since there exists a natural surjection RG — R,eqG, the im-
plication (1) = (2) is obvious, while (2) = (1) follows from Lemma 2.16
and [5, Theorem 4.2]. O

Now we have the following

Theorem 2.19. Let R be a commutative ring with identity and G
an abelian group. If R is indecomposable and char R = 0, then the
following conditions are equivalent.

(1) RG is generated by idempotents over R.
(2) (RG)rea ts generated by idempotents over R.

Proof. We have only to show (2) = (1). Note that R,eq is also
indecomposable. Indeed, let e be an element of R whose image € in
R.eq is an idempotent. Then €(1 —€) = 0, so that e”(1 —e)™ = 0 for
some n > 0. Since (", (1 —e)”)R = R and R is indecomposable, it
then follows that e =0 or (1 —¢e)®" =0. Thuse=0o0r1—€e=0, as
desired. Moreover we have char R..q = 0. Hence, replacing R by R, eqd,
we may assume that R = R..q by Theorem 2.18.
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Let p be an element of supp G. Then, by Theorem 2.12, we have
p € p?R, so that R = R/a, x R/pR by Lemma 2.5. Since R is
indecomposable, from this it follows that a, = R or pR = R. However,
if a, = R, then p = 0 in R, which contradicts char R = 0. Thus
pR = R, and hence supp G C U(R). The assertion then follows from
Theorem 2.12 and [5, Theorem 4.2]. O

Remark 2.20. Theorem 2.19 does not hold if char R > 0. In fact, let
R = F,, the prime field of characteristic p > 0, and let G be a cyclic
group of order p. Then RG = R[X]/(X —1)P, which is indecomposable,
and hence A(RG) # RG. However, we have (RG)reqa = R, which is
trivially generated by idempotents over R.
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the case of R = R,cq. The authors thank the referee whose comments
led them to obtain the general result given in this paper.
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