COMMUTATIVE GROUP ALGEBRAS WHOSE QUOTIENT RINGS BY NILRADICALS ARE GENERATED BY IDEMPOTENTS

HIDEYASU KAWAI AND NOBUHARU ONODA

ABSTRACT. We give a condition for the reduced ring $(RG)_{\mathrm{red}}$ to be generated by idempotents over R, where R is a commutative ring, G is an abelian group and RG is the group algebra of G over R.

1. Introduction. This paper is a continuation of [5], in which we gave conditions for the group algebra RG of an abelian group G over a commutative ring R with identity to be generated by idempotents over R. In studying algebras generated by idempotents, we frequently encounter R-algebras A such that $A_{\rm red}$ is generated by idempotents over R, but A itself is not, where $A_{\rm red} = A/{\rm nil}(A)$, the quotient ring of A by its nilradical. In view of this, in the paper we take up a problem asking conditions for $(RG)_{\rm red}$ to be generated by idempotents. The main result is as follows.

Theorem. Let R be a commutative ring with identity and G an abelian group. Then the following conditions are equivalent.

- (1) $(RG)_{red}$ is generated by idempotents over R.
- (2) G is a torsion group, $n \in n^2R_{\text{red}}$ and the nth cyclotomic polynomial $\phi_n(X)$ has a root in R_{red} for every positive integer n such that n = ord(g), the order of g, for some $g \in G$.

Rings are assumed to be commutative R-algebras. For a ring S, we denote by U(S) the group of units in S, and by S[X] the polynomial ring in one indeterminate X over S. We write \mathbf{Z} for the ring of integers. When considering an integer n as an element of S, we assume that n stands for $n \cdot 1_S$ as usual. For basic results and undefined terminology, our general references are [1, 2, 6].

²⁰¹⁰ AMS Mathematics subject classification. Primary 20C07, Secondary 16S34. Received by the editors on May 9, 2007, and in revised form on August 13, 2008.

2. Proof of the theorem. Let A be an R-algebra. Then we set $\Delta(A) = R[E]$, where E is the set of all idempotents of A. Note that A_{red} is canonically an R_{red} -algebra, so that $\Delta(A_{\text{red}}) = A_{\text{red}}$ if and only if A_{red} is generated by idempotents over R_{red} .

Lemma 2.1. Let A and B be R-algebras, and let $\rho: A \to B$ be an R-algebra homomorphism. Then ρ induces an R-algebra homomorphism $\overline{\rho}: A_{\mathrm{red}} \to B_{\mathrm{red}}$ such that $\pi_B \circ \rho = \overline{\rho} \circ \pi_A$, where $\pi_A: A \to A_{\mathrm{red}}$ and $\pi_B: B \to B_{\mathrm{red}}$ are canonical R-algebra homomorphisms, respectively. If ρ is surjective, then $\overline{\rho}$ is surjective, and if $\ker \rho \subseteq \mathrm{nil}(A)$, then $\overline{\rho}$ is injective.

Proof. The assertion is easily verified, and we omit the proof.

Let G be an abelian group. Then, for a prime number p, we set

$$G_p = \{g \in G \mid \operatorname{ord}(g) = p^n \text{ for some } n \ge 0\}$$

and

$$e_p(G) = \sup\{\operatorname{ord}(g) \mid g \in G_p\}.$$

Thus G_p is a subgroup of G. It is known that if G is a torsion group, then G_p is a direct summand of G, and in particular there exists a surjective homomorphism $G \to G_p$. Furthermore, we set

$$supp G = \{ p \mid e_p(G) \neq 1 \}.$$

Note that we have

$$\operatorname{supp} (G/G_p) = \operatorname{supp} G \setminus \{p\}$$

and

$$e_a(G/G_p) = e_a(G)$$

for $q \in \text{supp}(G/G_p)$.

Lemma 2.2. Suppose that R is reduced. Then RG is reduced if and only if p is a regular element of R for every $p \in \text{supp } G$.

For the proof of the above lemma, see [2, Chapter 3, Theorem 4.2 and Corollary 4.3].

Lemma 2.3. Suppose that char $R = p^n$, where p is a prime number and n is a positive integer. Then $(RG)_{red} \cong R_{red}(G/G_p)$.

Proof. By Lemma 2.1, we know that the natural R-algebra homomorphism $RG \to R_{\text{red}}G$ induces an R-algebra isomorphism $(RG)_{\text{red}} \cong (R_{\text{red}}G)_{\text{red}}$. Thus, replacing R by R_{red} if necessary, we may assume that R is reduced. Note that char R = p in this case. By [2, Chapter 2, Proposition 2.10], we have

$$(2.1) RG/RG \cdot I(G_p) \cong R(G/G_p),$$

where $I(G_p)$ is the augmentation ideal of the group algebra RG_p ; namely, $I(G_p)$ is the kernel of the R-algebra homomorphism $RG_p \to R$ induced from the group homomorphism $G_p \to \{e\}$, where $\{e\}$ denotes the trivial group. Hence, for the assertion it suffices to show $RG \cdot I(G_p) = \operatorname{nil}(RG)$. Since $R(G/G_p)$ is reduced by Lemma 2.2, it follows from (2.1) that $RG \cdot I(G_p) \supseteq \operatorname{nil}(RG)$. Conversely, note that $g-1 \in \operatorname{nil}(RG)$ for every $g \in G_p$, because

$$(g-1)^{p^m} = g^{p^m} - 1 = 0,$$

where $p^m = \operatorname{ord}(g)$. Since $I(G_p)$ is a free R-module generated by elements g-1, $g \in G_p$, from this we have $I(G_p) \subseteq \operatorname{nil}(RG)$. Therefore $RG \cdot I(G_p) = \operatorname{nil}(RG)$, which completes the proof. \square

Lemma 2.4. If $(RG)_{red}$ is generated by idempotents over R_{red} , then G is a torsion group.

Proof. Note that $(RG)_{\mathrm{red}}$ is integral over R_{red} , because $(RG)_{\mathrm{red}}$ is generated by idempotents over R_{red} and every idempotent is integral over R_{red} . Hence if there were $g \in G$ with $\mathrm{ord}\,(g) = \infty$, then $(R\langle g \rangle)_{\mathrm{red}}$ would also be integral over R_{red} . However since $R\langle g \rangle = R[X, X^{-1}]$, the Laurent polynomial ring in one variable X, we have $(R\langle g \rangle)_{\mathrm{red}} = R_{\mathrm{red}}[X, X^{-1}]$, which is not integral over R_{red} . This is a contradiction. \square

For a positive integer n, we set $\mathfrak{a}_n = 0 :_R n$. Note that $\mathfrak{a}_n = R$ if and only if char $R \mid n$.

Lemma 2.5. The following assertions hold for a positive integer n.

- (1) If R is reduced, then R/\mathfrak{a}_n is also reduced and n is a regular element of R/\mathfrak{a}_n .
 - (2) The following conditions are equivalent.
 - (i) $n \in U(R/\mathfrak{a}_n)$.
 - (ii) $R \cong R/\mathfrak{a}_n \times R/nR$.
 - (iii) $n \in n^2 R$.

Proof. For simplicity we set $\mathfrak{a} = \mathfrak{a}_n$. Since the assertions trivially hold when $\mathfrak{a} = R$, we may assume that $\mathfrak{a} \neq R$.

- (1) Let a be an element of R such that $na^m \in \mathfrak{a}$ for some m > 0. Then $n^2a^m = 0$, and hence $(na)^{2m} = 0$, which implies na = 0 because R is reduced. Thus $a \in \mathfrak{a}$ and $\overline{a} = 0$, where \overline{a} is the residue class of a in R/\mathfrak{a} . In particular, if $b \in \sqrt{\mathfrak{a}}$, then $b^m \in \mathfrak{a}$ for some m > 0, so that $nb^m \in \mathfrak{a}$. Thus $b \in \mathfrak{a}$ by what we have proved, and hence $\sqrt{\mathfrak{a}} = \mathfrak{a}$. Therefore R/\mathfrak{a} is reduced. Similarly, if $n\overline{c} = 0$ for $c \in R$, then $nc \in \mathfrak{a}$, and hence $\overline{c} = 0$. Thus n is a regular element of R/\mathfrak{a} .
- (2) We have $n \in U(R/\mathfrak{a})$ if and only if $\mathfrak{a} + nR = R$, which implies (i) \Leftrightarrow (ii), because $n\mathfrak{a} = 0$. We will show the equivalence (i) \Leftrightarrow (iii). If $n \in U(R/\mathfrak{a})$, then $R = \mathfrak{a} + nR$, and hence $nR = n\mathfrak{a} + n^2R = n^2R$. Thus $n \in n^2R$. Conversely, if $n \in n^2R$, then n(1 nx) = 0 for some $x \in R$, which means $1 nx \in \mathfrak{a}$. Thus $n \in U(R/\mathfrak{a})$, as desired.

Lemma 2.6. Suppose that $R = R_{\text{red}}$ and $(RG)_{\text{red}} = \Delta((RG)_{\text{red}})$. Then, for $p \in \text{supp } G$, we have $(R/\mathfrak{a}_p)G_p = \Delta((R/\mathfrak{a}_p)G_p)$, where $\mathfrak{a}_p = 0 :_R p$.

Proof. We set $\mathfrak{a} = \mathfrak{a}_p$ for simplicity. Since G_p is a direct summand of G, there exists a surjective group homomorphism $G \to G_p$, which induces a surjective R-algebra homomorphism $\sigma: (R/\mathfrak{a})G \to (R/\mathfrak{a})G_p$. Then, setting $\tau: RG \to (R/\mathfrak{a})G$ to be the surjective R-algebra homomorphism induced from $R \to R/\mathfrak{a}$, we have a surjective R-algebra homomorphism induced from

momorphism $\sigma \circ \tau \colon RG \to (R/\mathfrak{a})G_p$. Note that $(R/\mathfrak{a})G_p$ is reduced by Lemma 2.2, because R/\mathfrak{a} is reduced and p is a regular element of R/\mathfrak{a} by Lemma 2.5. Thus, by Lemma 2.1, we know that $(R/\mathfrak{a})G_p$ is a surjective image of $(RG)_{\text{red}}$. Since $(RG)_{\text{red}}$ is generated by idempotents, $(R/\mathfrak{a})G_p$ is also generated by idempotents, as claimed.

Lemma 2.7. Let p be a prime number such that $p \in p^2R$, and let $q = p^m$, where m is a positive integer. If $\phi_q(X)$ has a root in R/\mathfrak{a}_p , then $\phi_q(X)$ has a root in R.

Proof. Note that if α is a root of $\phi_q(X)$ in R/\mathfrak{a}_p , then $(\alpha, 1)$ is a root of $\phi_q(X)$ in $R/\mathfrak{a}_p \times R/pR$. Since $R \cong R/\mathfrak{a}_p \times R/pR$ by Lemma 2.5, we know that $\phi_q(X)$ has a root in R.

Lemma 2.8. Suppose that $(R/\mathfrak{a}_p)G_p = \Delta((R/\mathfrak{a}_p)G_p)$, where $p \in \text{supp } G$. Then $p \in p^2R$ and $\phi_{p^m}(X)$ has a root in R for every positive integer m with $p^m \leq e_p(G)$.

Proof. Since $(R/\mathfrak{a}_p)G_p = \Delta((R/\mathfrak{a}_p)G_p)$, it follows from [5, Theorem 4.2] that $p \in U(R/\mathfrak{a}_p)$ and $\phi_{p^m}(X)$ has a root in R/\mathfrak{a}_p . Hence $p \in p^2R$ by Lemma 2.5, and $\phi_{p^m}(X)$ has a root in R by Lemma 2.7. \square

Lemma 2.9. Suppose that $R = R_{\rm red}$, and let H be a cyclic group with |H| = q, where $q = p^m$, a power of a prime number p. Then $(RH)_{\rm red} = \Delta((RH)_{\rm red})$ if and only if $p \in p^2R$ and $\phi_q(X)$ has a root in R.

Proof. We set A=RH for simplicity. First suppose that $A_{\rm red}=\Delta(A_{\rm red})$, and let $C=(R/\mathfrak{a}_p)H$. Since R/\mathfrak{a}_p is reduced and p is a regular element of R/\mathfrak{a}_p by Lemma 2.5, it then follows from Lemma 2.2 that $C=C_{\rm red}$. Hence, by Lemma 2.1, there exists a surjective R-algebra homomorphism $A_{\rm red}\to C$, so that we have $C=\Delta(C)$. Thus $p\in U(R/\mathfrak{a}_p)$ and $\phi_q(X)$ has a root in R/\mathfrak{a}_p by [5, Lemma 3.3]. Therefore $p\in p^2R$ by Lemma 2.5, and $\phi_q(X)$ has a root in R by Lemma 2.7.

Conversely, suppose that $p \in p^2R$ and $\phi_q(X)$ has a root in R. Then it follows from Lemma 2.5 that $R \cong R/\mathfrak{a}_p \times R/pR$, and hence setting

D = (R/pR)H we have $A \cong_R C \times D$, which implies

$$(2.2) A_{\text{red}} \cong_R C_{\text{red}} \times D_{\text{red}}.$$

Note that $D_{\text{red}} \cong (R/pR)_{\text{red}}$ by Lemma 2.3, because char (R/pR) = p and $H = H_p$. Hence D_{red} is a surjective image of R, and therefore $D_{\text{red}} = \Delta(D_{\text{red}})$. Moreover, since $\phi_q(X)$ has a root in R/\mathfrak{a}_p , we have $C = \Delta(C)$ by [5, Lemma 3.3], so that $C_{\text{red}} = \Delta(C_{\text{red}})$. It thus follows from (2.2) that $A_{\text{red}} = \Delta(A_{\text{red}})$, which completes the proof.

Lemma 2.10. Let S be an R-algebra, and let H be a cyclic group with $|H| = p^m$, where p is a prime number and m is a positive integer. If $(RH)_{red}$ is generated by idempotents over R, then $(SH)_{red}$ is generated by idempotents over S.

Proof. Note that S_{red} is canonically an R_{red} -algebra. Since $(RH)_{\text{red}} \cong (R_{\text{red}}H)_{\text{red}}$ and $(SH)_{\text{red}} \cong (S_{\text{red}}H)_{\text{red}}$, replacing R and S by R_{red} and S_{red} , respectively, we may assume that R and S are reduced rings. Now suppose that $(RH)_{\text{red}}$ is generated by idempotents over R. Then it follows from Lemma 2.9 that $p \in p^2R$ and $\phi_q(X)$ has a root in R. Thus, a fortiori, $p \in p^2S$ and $\phi_q(X)$ has a root in S, so that $(SH)_{\text{red}}$ is generated by idempotents over S again by Lemma 2.9. This completes the proof. \square

Lemma 2.11. Let H_1, \ldots, H_n be cyclic groups with $|H_i| = p_i^{m_i}$ for each i, where p_i is a prime number and m_i is a positive integer. Set $H = H_1 \times \cdots \times H_n$. If $\Delta((RH_i)_{red}) = (RH_i)_{red}$ for each i, then $\Delta((RH)_{red}) = (RH)_{red}$.

Proof. We use induction on n. Let $H' = H_1 \times \cdots \times H_{n-1}$ and set S = RH'. Then, by the induction hypothesis, S_{red} is generated by idempotents over R. On the other hand, Lemma 2.10 implies that $(SH_n)_{\text{red}}$ is generated by idempotents over S. Note that $RH \cong_R SH_n$. Thus $\Delta((RH)_{\text{red}}) = (RH)_{\text{red}}$. \square

We are now ready to prove the following

Theorem 2.12. Let R be a commutative ring with identity and G an abelian group. Then the following conditions are equivalent.

- (1) $(RG)_{red}$ is generated by idempotents over R.
- (2) G is a torsion group, $p \in p^2 R_{\text{red}}$ and $\phi_{p^m}(X)$ has a root in R_{red} for every $p \in \text{supp } G$ and positive integer m with $p^m \leq e_p(G)$.
- (3) G is a torsion group, $n \in n^2 R_{\text{red}}$ and $\phi_n(X)$ has a root in R_{red} for every positive integer n such that n = ord(g) for some $g \in G$.

Proof. We may assume that $R = R_{\text{red}}$. Note that if $p \in p^2 R$, then $p^m \in p^{2m}R$ for every m > 0. Hence $p \in p^2 R$ for every $p \in \text{supp } G$ if and only if $n \in n^2 R$ for every n such that n = ord (g) for some $g \in G$. The equivalence $(2) \Leftrightarrow (3)$ thus follows from [5, Corollary 3.5].

- $(1) \Rightarrow (2)$ This follows from Lemmas 2.4, 2.6 and 2.8.
- $(2) \Rightarrow (1)$ Let f be an element of RG. Then there exists a finite subgroup H of G such that $f \in RH$. Write $H = H_1 \times \cdots \times H_n$, where each H_i is a cyclic group whose order is a power of a prime number. It then follows from Lemma 2.9 that $\Delta((RH_i)_{red}) = (RH_i)_{red}$ for every i. Therefore, by Lemma 2.11, we know that

$$\bar{f} \in (RH)_{red} = \Delta((RH)_{red}) \subseteq \Delta((RG)_{red}),$$

where \bar{f} is the residue class of f in $(RG)_{\text{red}}$. This implies $\Delta((RG)_{\text{red}}) = (RG)_{\text{red}}$, which completes the proof. \Box

Remark 2.13. For an integer n, we have $n \in n^2R_{\mathrm{red}}$ if and only if $n^k \in n^{k+1}R$ for some positive integer k. In fact, suppose that $n \in n^2R_{\mathrm{red}}$. Then $n(1-nx) \in \mathrm{nil}\,(R)$ for some $x \in R$, which implies $n^k(1-nx)^k = 0$ for a sufficiently large positive integer k. Thus $n^k \in n^{k+1}R$. Conversely suppose that $n^k \in n^{k+1}R$ for some k > 0. Then $n^k(1-ny) = 0$ for some $y \in R$, so that $(n(1-ny))^k = 0$. Thus $n(1-ny) \in \mathrm{nil}\,(R)$, and hence $n \in n^2R_{\mathrm{red}}$.

Remark 2.14. If char R > 0, then $p \in p^2 R_{\text{red}}$ for every prime number p, so that $n \in n^2 R_{\text{red}}$ for every integer n. In fact, let $r = \text{char } R_{\text{red}}$, which is a square-free positive integer. If p is not a divisor of r, then $p \in U(R_{\text{red}})$, and hence the assertion is obvious. If $p \mid r$, then set s = r/p, and let a and b be integers satisfying ap + bs = 1. Then $p = ap^2 + br$, so that $p \in p^2 R_{\text{red}}$. Therefore, for the case of positive characteristic, we have the following

Theorem 2.15. Let R be a commutative ring with identity and G an abelian group. If $\operatorname{char} R > 0$, then the following conditions are equivalent.

- (1) $(RG)_{red}$ is generated by idempotents over R.
- (2) G is a torsion group, and $\phi_{p^m}(X)$ has a root in R_{red} for every $p \in \text{supp } G$ and positive integer m with $p^m \leq e_p(G)$.
- (3) G is a torsion group, and $\phi_n(X)$ has a root in R_{red} for every positive integer n such that $n = \operatorname{ord}(g)$ for some $g \in G$.

We conclude this paper by showing that $\Delta((RG)_{\text{red}}) = (RG)_{\text{red}}$ is equivalent to $\Delta(RG) = RG$ in the case where char R = 0 and R is indecomposable. For this purpose we need some results.

Lemma 2.16. The following assertions hold.

- (1) For $a \in R$, if $\overline{a} \in U(R_{\rm red})$, then $a \in U(R)$, where \overline{a} denotes the image of a in $R_{\rm red}$.
- (2) Let n be a positive integer such that $n \in U(R_{red})$. If $\phi_n(X)$ has a root in R_{red} , then $\phi_n(X)$ has a root in R.

Proof. Since the assertion (1) is easily verified, we give a proof only for (2). Let c be an element of R whose image \overline{c} in R_{red} is a root of $\phi_n(X)$. Then $(\phi_n(c))^m = 0$ for some m > 0. Since $n \in U(R)$ by (1), we can define a **Z**-algebra homomorphism

$$\rho: S = \mathbf{Z}[n^{-1}][X]/(\phi_n(X)^m) \longrightarrow R$$

by $\rho(\overline{X}) = c$, where \overline{X} is the image of X in S. On the other hand it follows from Lemma 2.17 below that S contains a root u of $\phi_n(X)$. Then $\rho(u)$ is a root of $\phi_n(X)$ in R, which completes the proof.

Lemma 2.17. Let n and m be positive integers. Then there exists a polynomial u(X) in $\mathbf{Z}[n^{-1}][X]$ such that $\phi_n(u(X))$ is divisible by $\phi_n(X)^m$ in $\mathbf{Z}[n^{-1}][X]$.

Proof. It suffices to prove the assertion for the case m=2. Indeed, if f(X) is a polynomial in $\mathbf{Z}[n^{-1}][X]$ such that $\phi_n(f(X))$ is divisible by $\phi_n(X)^2$ in $\mathbf{Z}[n^{-1}][X]$, then $\phi_n(f(f(X)))$ is divisible by $\phi_n(X)^4$,

and $\phi_n(f(f(f(X))))$ is divisible by $\phi_n(X)^8$, and so on. Thus, for any r > 0, we can find u(X) in $\mathbf{Z}[n^{-1}][X]$ such that $\phi_n(u(X))$ is divisible by $\phi_n(X)^{2^r}$ in $\mathbf{Z}[n^{-1}][X]$.

Now suppose that m=2, and set $f(X)=X(n+1-X^n)/n$. Then $f(X)\in \mathbf{Z}[n^{-1}][X]$ and $f(\xi)=\xi$, where ξ denotes a primitive nth root of unity. Hence, setting $F(X)=\phi_n(f(X))$, we have $F(\xi)=\phi_n(\xi)=0$. Moreover, since $f'(X)=(n+1)(1-X^n)/n$, we have $f'(\xi)=0$, which implies $F'(\xi)=0$, because $F'(X)=f'(X)\phi_n'(f(X))$. From this we can easily see that F(X) is divisible by $\phi_n(X)^2$ in $\mathbf{Z}[n^{-1}][X]$. This completes the proof. \square

Theorem 2.18. Let R be a commutative ring with identity and G an abelian group. Then the following conditions are equivalent.

- (1) RG is generated by idempotents over R.
- (2) $R_{\text{red}}G$ is generated by idempotents over R_{red} .

Proof. Since there exists a natural surjection $RG \to R_{\text{red}}G$, the implication $(1) \Rightarrow (2)$ is obvious, while $(2) \Rightarrow (1)$ follows from Lemma 2.16 and [5, Theorem 4.2].

Now we have the following

Theorem 2.19. Let R be a commutative ring with identity and G an abelian group. If R is indecomposable and char R=0, then the following conditions are equivalent.

- (1) RG is generated by idempotents over R.
- (2) $(RG)_{red}$ is generated by idempotents over R.

Proof. We have only to show $(2) \Rightarrow (1)$. Note that $R_{\rm red}$ is also indecomposable. Indeed, let e be an element of R whose image \overline{e} in $R_{\rm red}$ is an idempotent. Then $\overline{e}(1-\overline{e})=0$, so that $e^n(1-e)^n=0$ for some n>0. Since $(e^n,(1-e)^n)R=R$ and R is indecomposable, it then follows that $e^n=0$ or $(1-e)^n=0$. Thus $\overline{e}=0$ or $1-\overline{e}=0$, as desired. Moreover we have char $R_{\rm red}=0$. Hence, replacing R by $R_{\rm red}$, we may assume that $R=R_{\rm red}$ by Theorem 2.18.

Let p be an element of supp G. Then, by Theorem 2.12, we have $p \in p^2R$, so that $R \cong R/\mathfrak{a}_p \times R/pR$ by Lemma 2.5. Since R is indecomposable, from this it follows that $\mathfrak{a}_p = R$ or pR = R. However, if $\mathfrak{a}_p = R$, then p = 0 in R, which contradicts char R = 0. Thus pR = R, and hence supp $G \subseteq U(R)$. The assertion then follows from Theorem 2.12 and [5, Theorem 4.2].

Remark 2.20. Theorem 2.19 does not hold if char R > 0. In fact, let $R = \mathbf{F}_p$, the prime field of characteristic p > 0, and let G be a cyclic group of order p. Then $RG = R[X]/(X-1)^p$, which is indecomposable, and hence $\Delta(RG) \neq RG$. However, we have $(RG)_{\rm red} = R$, which is trivially generated by idempotents over R.

Acknowledgments. Theorem 2.19 was originally proved only for the case of $R = R_{\text{red}}$. The authors thank the referee whose comments led them to obtain the general result given in this paper.

REFERENCES

- I. Kaplansky, Infinite Abelian groups, University of Michigan Press, Ann Arbor, 1969
 - 2. G. Karpilovsky, Commutative group algebras, Dekker, New York, 1983.
- 3. H. Kawai, Algebras generated by idempotents and commutative group algebras over a ring, Comm. Algebra 30 (2002), 119–128.
- 4. ——, Conditions for a product of residue-class rings of a ring to be generated by a p-group of units, Comm. Algebra 33 (2005), 371–379.
- 5. H. Kawai and N. Onoda, Commutative group algebras generated by idempotents, Toyama Math. J. 28 (2005), 41–54.
 - 6. H. Matsumura, Commutative algebra, Benjamin, New York, 1970.

GENERAL EDUCATION, ISHIKAWA NATIONAL COLLEGE OF TECHNOLOGY, ISHIKAWA 929-0392, JAPAN

Email address: kawai@ishikawa-nct.ac.jp

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FUKUI, FUKUI 910-8507, JAPAN Email address: onoda@apphy.u-fukui.ac.jp