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ON FINITE SUMS OF LAGUERRE POLYNOMIALS

MARK W. COFFEY

ABSTRACT. We evaluate a family of finite summations of
Laguerre polynomials in terms of Laguerre polynomials them-
selves or in terms of a generalized hypergeometric function.
As a byproduct, we find a Kummer-like transformation of the
hypergeometric function 2 F> in terms of a Laguerre polyno-
mial. The results have applications in the theory of special
functions as well as in analytic number theory.

0. Introduction. In recent years it has become evident that the
Laguerre calculus [3] is important in the description of the Li criterion
[11] for the Riemann hypothesis (RH) [5, 6]. The Laguerre polynomi-
als and their properties also play an important role in many areas of
mathematical physics, including random matrix theory, Fourier optics,
and quantum mechanics. The Laguerre polynomials L appear promi-
nently in the solution of the higher dimensional Kepler-Coulomb and
harmonic oscillator problems, whose wavefunctions constitute “quan-
tum shapelets” [7].

Since the Laguerre polynomials form a Sheffer sequence with a special
generating function of exponential form, these polynomials are singled
out in developing representations of special functions under fractional
linear transformation [6]. In particular, the Laguerre polynomials
have properties that are crucial in formulating recurrence and integral
relations for transformations of the Riemann xi function, and therefore
for describing the Li criterion. It appears that the particular Laguerre
polynomials L. , are very important as test functions for a Weil inner
product whose nonnegativity is equivalent to the RH.

Given these several reasons to further investigate the classical orthog-
onal Laguerre polynomials [4, 13], we consider here finite sums that
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may be written in very similar form as either Laguerre polynomials
themselves or as very closely related confluent or other hypergeomet-
ric functions. A very special case that has occurred very recently [6]
provides a touchstone for these developments:

(0.1) ZLJ'——?(””) = i[l—Ln(ax)].

=7

Our main result and its corollaries given in the next section generalize
this relation. We then present a discussion that provides extension,
elaboration and an alternative means to arrive at these finite sums. In
fact, we find that relation (0.1) leads to a Kummer-like transformation
formula for a particular generalized hypergeometric function o F5. A
compendium of known both finite and infinite summations with La-
guerre polynomials is given in [10, Section 48].

1. Finite sum of Laguerre polynomials. Let LS be the Laguerre
polynomial of degree n and parameter « (e.g., [1, Section 6.2]), and let
pFy be the generalized hypergeometric function [2]. Let n and k be
integers, with 1 < k < n. Then we have

Proposition 1. We have

(1.1) Z%(w) = %(Z) oFo(kyk—nsk+ 1,k + 1;z).
j=k

As special cases we have the following.

Corollary 1.
“Lij_(z) 1

(1.2) Y A = o[l = Lu(a)).

X
=

Corollary 2.
SLE () 1

(1.3) > ==

= 7 T [1 = La(2) — 2Ly _y(2)].
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Corollary 3.

(14) > Lﬂ‘f:”(x) = %[2 — 2L, (x) — 3zL}_;(z) + nxL,_1(z)].

Corollary 4.

(1.5) Z ! :%

In this section we provide two different proofs of Proposition 1, and
then describe alternatives in the next.

First method of proof. We begin by using the power series form of
L?_k(w) and then reordering sums:

(1.6)
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We let (a)n, =T'(a+n)/I'(a) denote as usual the Pochhammer symbol,
where T' is the Gamma function. In order to achieve hypergeometric
form in equation (1.6) we shift the summation index and use the
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relations (—n)mik = (—n)e(k —n)m and (—n), = (—1)FE!(}):

(1.7)
- Lf—k(x) B ok (=)™ n zm
Jz::k J _mz::O(ch) (m+k>—!
_ = m({ ™ (B)m 2™
ok mzzo(fl) (m + k> (k+1),, m!
1 = (k)m _l)k z™
Tk o (k4 1)m (m+ k)'( Wmetk
_ (=D (=n)s X () m(k = n)m 2™
kk! mz::O [(k+1),]2 m!

1
= _(n> oFo(k,k—nsk+ 1,k +1;2),
where at the end we have applied the power series definition of 5 F5.

Second method of proof. We use induction, noting that (1.1) holds
for k = 1. We have (e.g., [9, page 1039] or [1, page 286])

d (e «
(1.8 L 1(e) = L3 (@),
We assume that (1.1) holds at k. That it also holds at k + 1 easily
follows from the property

d b
— oFy(a,b;c,d;x) = i oFs(a+1,b+1;¢+1,d+ 1;z).

1.
(1.9) dzx cd

We conclude this section by examining the k£ = 0 case corresponding
to equation (1.1). We have

Proposition 2. Let H, = ) ._, 1/k be the nth harmonic number.
Then we have

(1.10)

J(x) = —nx 3F3(l, ].,]. - n,2,2,2,l') +Hn

1

J
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Corollary 5. We have

J
= —nz 3F3(1,1,1 - n;2,2,2; z).

(1.11) .K%Wﬁ)ﬂﬁ22f¢”m

In proving Proposition 2 we write

wn S0
= H, +Z% Xj:(—”m(i)%’

and proceed as above. Corollary 5 follows by applying the property
(1.8). Equivalently, Corollary 5 may be determined by term-by-term
integration. We have

(1.13) )
/Oz %[Ln(t) “tar= 3 (-0 (:L) % Ow =1 gy
- ()
- $:§0( Hm (mz 1> (m—il- 1) %":
SR ()

Then to reach the form in equation (1.11), we use

(1.14) (mi 1) = (_1)m+1—((;n"i’"5!1 = (1™ ((_2;‘311(1 — 1)
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2. Discussion: Alternative approaches and further results.

Contour integration. Contour integral representations of the
Laguerre polynomials are known, including [8], (Vol. 2, p. 190)]
(2.1)

n oo v/4
C_I/QLS — (_l) i/ e—zz/Q <1 + Z> (1 _ Z2)(a—1)/2 dz,
2% 2w (1+) 1—2

where v = 4n + 2a + 2. The path of integration encircles z = 1
in the positive direction, and closes at Rez = oo, Im 2z =constant.
Equivalently, we have

(0+) n
(2.2) L%(z) = M/ (1 _ E) ettjil’

nl2mi oo t

where now the contour encircles the origin in the positive direction and
closes at Re z = —oo. Additionally, contour integral representations of
the confluent hypergeometric function ; F; may be used, as we have the
relation

n

(2.3) L2(z) = ("*“) Py (—nya + 15 2).
We briefly illustrate the use of equation (2.2) in finding Corollary 1.
We have

_1(2) "1 (0+) 2\ at
2.4 d A _/ A L
(2.4) Z j ]2:1 2mi ) t € 2

=1
11 09 (1 " Ldt

—_ -—— —_ _—— e —

221 J_ o t t

L1 La(e),

z

where we applied the residue theorem and the original representation
(2.2). Similarly, a contour integral representation may be written for
sums of the form » 7 7 Lj_,(2)/j and related sums.
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Use of other integral representations.

We next have

Proposition 3. Let I'(z,y) = I'(z) — v(x,y) be the complementary
incomplete Gamma function, defined by

(2.5) I'(z,y) :/ et dt.
y

We have for o > 0 and Jg the Bessel function of order 3,

n a

Z
_ eiﬂx*a/2 i 0f/zf1 n X —1,'71/2 a)— o, T .
- { /t [(n+1,t)J,(2Vzt) dt [T'(e) =T (e, )]}

n!Jo

This proposition proceeds from the representation [1, page 286] for
a>—1,

ezxfa/2

(2.7) L2(x) = / " gl 2Jo(2Vat)e " dt.

n! 0

We then interchange summation and integration, using [9, page 941]

(2.8) P(n+1,2) =nle® Z w_
— m]
so that
(2.9)
" LY (x 00 1
Z L() = e””w_"‘/2/ /21 [—'F(n +1,¢) — e_t] Jo(2Vzt) dt
; ] 0 n:
j=1

With a change of variable, the second integral on the right side may be
evaluated as a Mellin transform of a Gaussian function multiplying a
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Bessel function [9, page 717]:

(2.10) / /2= te=t I, (2Vt) dt

0

— 21—am—a/2/ ua—le—u2/4mJa(u) du
0

=27 ?y(a, )
=2 ?[(a) - [(o,z)], a>0.
Proposition 3 follows.

At a = 1, Corollary 1 may be recovered from Proposition 3 by not-
ing that I'(1,2) = e ® and by using Kummer’s first transformation
e *1F(a,b;2) = 1F1(b— a,b;—z) as applied to the Laguerre polyno-
mial L, (z) = 1Fi(—n, 1; ).

By using the relation (2.8) and integrating termwise, or else by
expressing y(o, z) = (z*/a)e* 1 F1(1, 14«; x) in terms of the confluent
hypergeometric function, the remaining integral in equation (2.6) may
be explicitly evaluated as

Proposition 4. For a > 0, we have

(2.11) /oo 210 (n + 1, t) Jo (2Vt) dt

0
0o u2
_9l-a,—a/2 A ualf‘(n + 1, E)Ja(u) du

T I'(n (0%
= FrFn+a+1l,a514+a,1+a;—x).
F( 1) 2 Q(n s Lty ) ) )

Proof. We write

oo 2
(2.12) / ua1F<n+1,u—>Ja(u) du
0 4z

ol — 1 > a—1 uw?\" —u2/4mJ d
= n! Z mi u ) € o(w) du
m=0

n

L(m+ «)

Fla+1) &= m!

| 2a71xa

=n! 1Fi(a+m, 1+ a; —2x),
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where we have used [9, page 716]. We next interchange sums:

oo 2
(2.13) / ua1F<n+l,Z—>Ja(u) du
0

20— 1gx m+a = (o +m), )e
=nl!
nF(a—i—l)mz:O ; 1+a)

2(1—13;.04 o

" Fm+a
—nl
nF(a—l—l)Z l+ag€'z (a4 m)e

207 1p0 N (—x)f T(a+Ll+n+1)
I(a+1) = (1+ a)el! (a+7)

O

20 Lga F(n+a+1 (n4a+1), ( ) (—xz)*
= «
INa+1) ~ (14 a)? o
207122 T'(n+ a+1)
= F Lol +a,1+a;—
F(Oé+1) o 2 2(n+a+ ) Q5 +Oé, +Oé, .'17),

completing the Proposition.

Remarks. It may be verified that the use of ([9 , page 718, 6.631.10,
page 717, 6.631.5] for the m = 0 term) as applied to the integral of
the right side of equation (2.6) nicely returns us to the finite Laguerre
polynomial sum on the left side of Proposition 3.

The Laguerre polynomials may also be studied via their connection

with the Whittaker function M, ,,

Fla+v+1)

@MW L) = s e

Zﬁ(a+1)/zez/zMa+1/2+u,a/2 (Z)

One may inquire as to the n — oo limit in Propositions 1 and 2. We
have [5]

(2.15) Z @w" = % [1 - ew/(“’*”] , Jw| <1,

that is obtainable simply by integrating a standard generating function
of the Laguerre polynomials. If we let w — 17, then we obtain

o0

Ll () 1
2.16 et = o 0
210 S He) L s



88 MARK W. COFFEY

in agreement with known results (e.g., [9, page 1038], [10, page 313]).
Upon repeated differentiation, we have

- Lﬁt}cfl(x) k!
(2.17) > - = ©>0.
n=k+1

Upon integration of equation (2.16), we have

oo Ln
(2.18) Y 759“") =—lnz—vy, x>0,
n=1

where 7y is the Euler constant, also in agreement with a known result
[10, page 313], giving the obvious special case

(2.19) > L __,

n

where we used L;(1) = 0. Given the asymptotic form of H,, as n — oo,
we may conclude the following from Proposition 2.

Corollary 6. We have as n — oo,

(2.20) —n 3F3(1,1,1-n;2,2,2;1) = —lnn — 2y 4+ o(1).

This is a special case of the large n asymptotics of more general
confluent functions and polynomials covered in Section 7.4.6 of [12].

Remarks. If we take the n — oo limit in Proposition 3, using (2.8),
we readily obtain the known extension ([9, page 1038] or [10, page
313]) of equation (2.16),

(2.21) i L?jl(x) . F(j;w)

Jj=1

, x>0.

If we put w = 1/2 in equation (2.15) and integrate, we find

(2.22) -3 an(f)
n=1

n

= 4 +T(0,2) +1In <g>
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where I'(0, ) = —Ei (—z) in terms of the exponential integral Ei. This
equation is then equivalent to a known result [10, page 315]. More
generally, we find by integrating equation (2.15) that

Corollary 7.

(2.23) - i L"TE:”) w" =y + F<o, %) +In(wz), x> 0.
n=1
In particular, we obtain for w = —1,
(2.24) —i(—l)"L":c) = 7+F<0,—g> +In(—z),
n=1
so that
(2.25) fi(fl)"L”Tfl) :7+F<0,%> +1In(—1).
n=2

This equation provides a companion to that of equation (2.19). The
approximate numerical value of the constant on the right side is
0.1229957600383592806859883.

1

We note in passing that the values L;_;(1) may be written as a
certain alternating sum over the Lah numbers of combinatorics.

3. Kummer-like transformation for 5F5;. As a summary of
Proposition 1, Corollary 1, and Propositions 3 and 4 at k = a =1, we
have

Corollary 8.

1
(3 l) ;[lan(x)] :n2F2(1,17R;2,2;1')
) 1
=(n+1)e* oFy(n+2,1;2,2; —z) — —(e®* — 1),
x

one conclusion of which s

(3.2) Ly(z) =€’[1 = (n+ 1)z 2Fo(n +2,1;2,2; —z)].
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Corollary 8 provides a Kummer-like transformation for the hyper-
geometric function 9F5. This identity, as well as the expression of
equation (3.2), appears to be new. Equation (3.2) may be successively

differentiated with respect to x to find o F5 expressions for the Laguerre
polynomials szfk'

We may now give a direct proof of the first and last members of
Corollary 8, thereby also furnishing equation (3.2).

Proof. We have

(3.3)
e” 2F2(’I’l+ 2, 1,2 2 — )

oo

v (D (n+2)e
_ZZ( —e)![(e+1)!f2x

1 > 1 B (m —n)! o
 (m+1) Z [(m—i—l)! F(—n)[(m—i—l)!]?]

- (n—li-l) E: ¢ -1 *”'ZO (n—m m_+11 [(mﬂj—ml)!]?]
:(anl)B(ez_1)_%[Ln(m)_1]].

We may proceed similarly for more general sums with integers j1,
j2 Z ]-a

(3.4) engz(n+2,1;l+j1,1+j2;*33)

n+2
= %414 |§ —_wf
iz < (L+ 1)\ £+J2)( )
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= 7114, m
12 T;go (m— e €+j1)!(€+j2)!x

m

> . . T
Z 3Fh(1 —m,n+2;1+J1,1+J2;1)Wa

where the last expression follows simply from using 1/(m — ¢)! =
(=1)%(—=m)y/m!. In this way, we find that the functions e 3 F5(n +
2,1;1+ ji1,1+ j1; —) contain a term with L,,_;, y1(z)/2’1. We record
the following special cases of equation (3.4) in the next proposition.

Proposition 5. We have

(3.5)
2
e’ 2 Fa(n+2,1;2,3; —x) = m{ Lil 1(33)}
(3.6)
4
T 2. 1: . — S -t —1 Ln, y
Pl 4 2158,3-0) = ot e = 1)+ L (0)]
6
©yFy(n+2,1;3,4—2) = ——
€ 2 2(n+ 153, 4; LE) n(n+1)x2
2
(3.7) X [(m:—2)e —i——an 2(a:)]
9e®(n?z? — nz? — dnz + 4z + 4)
F: 2,1;4,4;, —
e”2Fa(n + z) = n(n? —1)z3
36Ln,2(.’13)

(3-8) - m-

4. Final proposition. Another way to express Corollary 1, for
instance, is as

n Ll 1
(4.1a) 2@ / At o) [1 — La(@)),
where
(4.1b) fltz) =) e 'Ll (2).

j=1
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It is of interest to have an alternative form of this function. More
generally, we have the following, providing another representation of
the finite sum of Proposition 1.

Proposition 6. Forn > k > 1 integers, we have
(4.22) Liw(@) / folt, 7)
j= k

where

(4.2b) fr(u,z) = (Z) e MRy (k—n, k+1me ") = e MLy (we ™).

Proof. We have (cf. [9, page 845])
(4.3) oFs(k,k—n;k+1,k+ 1;2)

1
= k/ th=r By (k — n,k 4 1;xt) dt
0

:%/ thILE L (at) dt.
k 0

Therefore, with a change of variable and the use of Proposition 1 we
have

) Y L) _ (Z)

; / e " Pk —n,k+ 1;ze ") du,
j=k

0

and Proposition 6 follows.

Remark. Equation (4.3) can be proved directly by either repeated
integration by parts or by the use of induction and properties (1.8) and
(1.9).
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