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ON POLAR LEGENDRE POLYNOMIALS

H. PIJEIRA CABRERA, J.Y. BELLO CRUZ AND W. URBINA ROMERO

ABSTRACT. In this paper we introduce a new class of poly-
nomials {P,}, called polar Legendre polynomials. They ap-
pear as solutions of an inverse Gauss problem for the equi-
librium position of a field of forces with n + 1 unit masses.
We study algebraic, differential, and asymptotic properties of
these polynomials, which are simultaneously orthogonal with
respect to a differential operator and a discrete-continuous
Sobolev type inner product.

1. Introduction. Let {L, },en be the monic Legendre polynomials.
It is well known that L,, satisfies the following orthogonality relation

1
(1) / Ly(z)z"dz =0, k=0,1,...,n—1,

-1

the second order linear differential equation
(2) —n(n+1)Ln(2) = ((1 - 2°)L,(2))
and the so-called structure relation [7, (4.5.5)]

n*(n+1)

() P DIE) = nlea() -

Ln_l(z).

For a fixed complex number (, that in the sequel is called the pole,
let us define P,, = P, as a monic polynomial such that

(4 (n+1)La(2) = ((z — Q) Pu(2)) = Pul(2) + (2 — O Pp(2).
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P, is called the nth polar Legendre polynomial. Obviously, P, is a
monic polynomial of degree n. From (1) and (4) the following relation
reads

(5) /[Pn(x)+(x—¢)p,;(x)]mkdx=o, k=01, ,n—1.

-1

This type of “orthogonality relation” generated by differential operators
was introduced in [2], where the existence and uniqueness conditions
for more general differential expressions were studied in detail.

Notice that the polynomial

(6) ¢ nt1(2) = (2 =€) Pu(2)

is a primitive of (n + 1) L, (z), such that Il ,41(¢) = 0; that is,
(7) M (2) = (n+1) / Lo (t) dt.
¢

II¢ 41 will be called the primitive Legendre polynomial. The proper-
ties of P, = P, and Il 41 are clearly closely related.

It is important to observe that, since the functions that we are con-
sidering are entire functions, we can assume that the definite integrals
appearing in this paper are line integrals defined on a straight line seg-
ment with initial point in the lower limit of integration and end point
in the upper limit of integration.

Now, combining (2) and (4) and integrating from ¢ to z, we get the
fundamental formula

(8) n(z = Q) Pu(z) = (1 = ¢*)Ly,(C) — (1 = %)L (2).

Furthermore, from (4) it is easy to see that II¢ ,11(2) is the (n+1)th
monic orthogonal polynomial with respect to the Sobolev-type inner
product (called “discrete-continuous type,” see [1])

1

(p,q) ZP(C)q(C)Jr/ P () ¢ (z) d.

-1
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This inner product was firstly introduced in [4], where necessary
and sufficient conditions under which such Sobolev-type orthogonal
polynomials satisfy a linear differential equation of spectral type with
polynomial coefficients are studied.

The location of critical points of a given class of polynomials has
many physical and geometrical interpretations. Let us consider, for
instance, a field of forces given by a system of n masses m;, 1 < j < n,
at the fixed points z;, 1 < j < n, that repels a movable unit mass at
z according to the inverse distance law. Let @, (2) = (2 — 21)™ - (2 —
29)™2 - (2 — z,)™™ where m = m; + mz + - - - + my,,. The logarithmic
derivative of Q,(2) is

Wog@n(2) _ @uld) _ mu | ma . m
9) dz CQum(2)  (z—2) + (2 — 22) ot (2 —zn)

The conjugate of m;/(z — z;) is a vector directed from z; to z, so this
vector represents the force at the movable unit mass z due to a single
fixed particle at z;. By (9) the positions of equilibrium in the field of
force coincide with those zeros of @), that are not zeros of @,,. In
particular, all multiple zeros of @Q,, yield equilibrium positions. This
result is known as Gauss’s theorem ([6, Chapter 3, Theorem 1.2.1]).

Now, let us consider the following inverse problem: if z{, z5,... , 2},
are the zeros of the orthogonal polynomial L,, which we assume to be
the equilibrium positions of a field of forces with n + 1 unit masses,
one of which is given at point ¢, what is the location of the remaining

masses?

Let P, be the monic polynomial whose zeros are the remaining
equilibrium positions. From (4) and (6)
(10) (ntDLn(z) L Pu2) _ L 1 ()

(z=QPu(2)  2—=C Pulz)  Tnta(2)

Then, according to (9), (10) and the above interpretation of the
logarithmic derivative, the location of the remaining unit masses is
the zeros of polynomial P, or, equivalently, the poles of (10). For this
reason P, is said to be a polar polynomial.

The main purpose of this paper is to study some algebraic, differential
and analytic properties of the polar Legendre polynomials or, equiva-
lently, of the primitive Legendre polynomials. The paper is organized
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as follows. In Section 2 we study the orthogonality relations and recur-
rence relations of polar Legendre polynomials and Section 3 is devoted
to the study of the location of zeros and the asymptotic behavior of
zeros and polynomials for the family {P,}.

2. Orthogonality and recurrence relations. Besides the well-
known results on orthogonality mentioned in the previous section, the
following additional orthogonality relations between {L,} and {P,}
hold.

Theorem 1. The polar Legendre polynomial P, with pole { € C
verifies

1) [ 1Pu@) + (& = OPL@)] En(o) do
:{0 m #n,
(0 + DLl m=n,

where ||L,||* = f_ll L2(z)dz.
Furthermore, if n > 0 then

(12) [ﬁx—o&uwmuMm
(2/m)(1 — ¢ L, (C) m=0,

0 0<m< (n—1),
—[n(n+1)/(4n? = D] Lpal* m=n-1,

0 m=mn,
Vil m=n-t,
0 (n+1) <m.

Proof. From (1) and (4), the proof of (11) is straightforward. To
prove (12), by the fundamental formula (8) and the structure relation

(3),
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1
[ & OPe )
= /_11 (1_TC2L;(<) + v - lL'n(a:)> Lon(2) dz

- 880 [ @)
+ % /_l(gﬂ — DI, (2) Ln(2) do

= 1_C2L'n(§)/ L, (z)dz

n -1

+ / Loir (@) Lon(2) da

-1

n(n+1)
By /,1 bnoa @) bmfe)

and by (1), formula (12) is also straightforward. O

As a consequence of these orthogonality relations, let us prove now a
recurrence relation for the polar Legendre polynomials.

Theorem 2. The polar Legendre polynomials {P,,} with pole { € C,
satisfy the following recurrence relation

(13) Poi1(2) = 2 Pp(2) + anPr_1(2) + by,
forn > 1, where Py(z) =1 and Pi(z) = z + ¢,
1 —n? -1

14 = = LI .

( ) an 4”2 -1 a’nd bn n(C)

Proof. Let {a, 0, Qn1y--- Qpn} be such that

n+1
(15) (z=Q)Pu(z) = Z O, Pr(z), where a, 1 = 1.
k=0
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Let us consider

(16) (2 = Q) [Pa(2) + (n + 1) Ln(2)]
= (2= Q) [Pu(2) + ((z = Q) Pu(2))']

n+1

=Y onk [Pu(2) + (2 = QPL(2)].

By the orthogonality relation (11), we have
n+1 1

(17) §jam¢/ Ln(@)[Py(a) + (= — O)Pl()) da
k=0 1

= anm (m +1) | L],

form=0,1,...,n.

On the other hand, let us denote

T = / Lon(@)(@ =€) [Pa(@) + (n+ 1)L (2)] da.

-1

Thus, from (1) and (12) we get

(2/n)(1 - L4 (C) m=0,
o 0<m< (n—1),
US) - Inm =4 a2 = 1)/(4n? — ]I Laa? m=n 1,
~(n+1) |Ln? m=n.

In the case m = n—1, we have used the identity || L,||*> = (n?/4n? — 1) x
|Ly—1]|%, which can be obtained from (2) and (13).

Thus, multiplying (16) by L,,, integrating over [—1,1], and using
(17)—(18), we get

(1=¢*/n)Ly(¢)  m=0

0 0<m<(n-1)
Gm =N 2 1)/(an2 1) m=n-1

—C m =n.

Replacing these values in (15) we get (13). O
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3. Zeros and asymptotics. Let us now study the zero distribution
for the polar Legendre polynomials. The next lemma summarizes sev-
eral direct consequences of the formulas contained in the introductory
section, in special the fundamental formula (8).

Lemma 1. The polar Legendre polynomials {P,} with pole ( € C
satisfy

1. If n is odd and ( € R* =R\ {0}, then = —( is a zero of P,.

2. The zeros of the polar polynomial P, have multiplicity at most 2

and their multiple zeros are located on [—1,1].

3. If(=1,¢= -1 or L,({) =0, then the zeros of P,(x) are —1 or
1 and the (n — 1) critical points of the nth Legendre polynomial L,,.

4. All the zeros of P, are located on the lemniscate

(19) M@= {ze € T I anal =001,

k=0

where pr () = [Tro IC—2nks Tno = =1, Znpn =1, and zpn 1, Tnpo, ...,
Tpn1 are the (n — 1) critical points of the Legendre polynomial L.

Proof. In order to prove 1, using (6), (7) and the fact that if n is odd
then all the powers of L,, are odd, one gets P,(—¢) = 0.

Now, assume that w is a zero of P, of multiplicity greater than or
equal to 3. Notice that by (4) a zero of P, with multiplicity greater
than 2 is a zero of L,, and also a zero of L] ; thus, L, (w) = L/ (w) =0
which would imply that w is a zero of multiplicity 2 of L,,. This is a
contradiction since the zeros of L,, are all simple; thus, the multiplicity
of w must be at most 2.

Statement 3 is a direct consequence of fundamental formula (8) since
(20) 126 — 1] [Ln(20)] = [¢* = 1] L, (O]
Finally, statement 4 follows by considering the factorization of (2% —

L' (z). o

Remark 1. The following example shows that zeros of P, (z) do not
have to be simple. Let ¢ = (2v/3)/3 (or ¢ = —(2v/3)/3); hence, the
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corresponding polar Legendre polynomial of degree two is

2v3 1 s, 2V3 1
3 z—i——(orPg(z)—z -3 z+§).

3

Py(z) =22 +

Notice that z = —+/3/3 (or z = /3/3) is a zero of multiplicity two of
Pz(Z)

With the boundedness condition for the zeros of the polar Legendre
polynomials {P,,} we have the following result

Lemma 2. Given ¢ € C let us define A¢ = sup,¢(_q,17|¢ — 2| and
(54 = infze[fl,l] ‘C - £U| Then

1. All zeros of the polar Legendre polynomials {P,} with pole ¢ € C
are contained in |z| < Ac +1.

2. If 6¢ > 1, zeros of the polar Legendre polynomials {P,} with
pole ¢ € C are simple and contained in the exterior of the ellipse
|z 4+ 1]+ |z — 1| = 2, where 1 < a < d¢.

Proof. 1. By (19) we already know that zeros of P,(z) are on the
lemniscate A,(¢). Since p,(¢) < A?H, they are contained in the
interior of the lemniscate [[;_, |z — zn k| = A?H, where z, 0 = —1,
Tpn =1land @, 1, Ty 2y... ,&p,n—1 are the (n —1) critical points of the
Legendre polynomial L, and therefore |z, ;| < 1. Now, for any z*,
such that |2*| > 1+ A¢, we have

n

n
[T = znsl = TT 112" = len
k=0

k=0

n+1
| > AC )

so assertion 1 is obtained.

2. Let z be such that |z + 1| + |z — 1| = 2a. From the well known
arithmetic-geometric mean inequality we get

n 1 n n+1
H|z—wn’k| < (—Z|z—xn,k|> <a™tl,
k=0 ntli=
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If z is a zero of P,, from (19) we get

n

n
H |z — ZTn k| = H IC — & k| > (52"'1 > o™t

k=0 k=0

This and assertion 2 of Lemma 1 allows us to get the conclusion. ]

Finally, let us study the asymptotic behavior of the zeros of the polar
Legendre polynomials,

Theorem 3. Let {P,} be the polar Legendre polynomials with pole
¢ € C\[-1,1], such that ¢ > 1. Then the accumulation points of zeros
of {P,} are located on the ellipse
(21)

o PO O
MO freee= Pt e it

where p(¢) := |+ /(% — 1| and the branch of the square root is chosen
so that |z + V22— 1] > 1 for z € C\ [-1,1].

sinf, 0 <0 < 27r},

Proof. From (20) zeros of the nth polar Legendre polynomial satisfy
the equation

1/n
|1L7.(2)]

1/n

22—1 1/n
1L (O™

(22)

l/n: Cz_l
n

On the other hand, from the asymptotic properties of the Legendre
polynomials it is well known that

2
2 i |14,(2)"" = L
n—oo 2
uniformly on compact subsets of C \ [-1,1]. Taking limit as n — oo,
from 2 of Lemma 2 and using (23) in both sides of (22), we have that
set of accumulation points of zeros of the sequence of polynomials {P,,}
are contained in the curve

A(Q) = {ze C:lz+V22 —1 :p(g)}.
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Hence,

Finally, we will study the relative asymptotics of the polar Legendre
polynomials {P,} with respect to the Legendre polynomials {L,} and
their derivatives {L/}.

Theorem 4. Let { be a fizred complex number, and let L, and P, y
A¢ be as above. Then

1.

nP,(2) _, 22-1
L(2) nok 2=C7

n—roo

(24)

uniformly on compact subsets of the set {z € C:|z| > A¢ +1}.
2.

P,(2) — vz22-1
) L) % 2=C

uniformly on compact subsets of the set {z € C: |z| > A¢ +1}.

Proof. Let K be a compact subset of {z € C : |z| > A+ 1}. From
formula (8) we have

nPy(z) 1-CL, ()  2*-1
Li(z)  z2—=CLh(2) =z2—-¢°

Hence, in order to prove (21) it is sufficient to show that

(26) 2%8 0

uniformly on a compact subset K C {z € C : |z| > A + 1}
Let &1, Tn2,... ,&nn_1 be the n — 1 zeros of L) (z) and d¢.x =
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inf .ex |z — w|; hence,

|w\ZAC+1
L, (¢) Ry ¢ = Tk A \"!
‘ “ = k=l o< < ) <1, z€eK.
Ln(z) Hk:l ‘Z - l‘n,k| dC,K + AC

This inequality is equivalent to the uniform convergence of (26) on a
compact subset K of {z € C:|z] > A; + 1},

The statement (25) is a direct consequence of (24) and the well-known
asymptotic behavior of the Legendre polynomials (see [8, Corollary
1.6])

L) — 1
T () —

nLn(z) n—00 Z2_1’

uniformly on compact subsets of C\ [—1,1]. o
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