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ON THE CONNECTIVITY OF ATTRACTORS OF
ITERATED FUNCTION SYSTEMS

ALEXANDRU MIHAIL

ABSTRACT. The aim of the paper is to give sufficient and
necessary conditions when the components of a fixed order of
the attractor of an iterated function system are connected
sets. By a component of order n of the attractor of an
IFS we understand the image of the attractor through the
composition of n functions from the IFS. This gives sufficient
conditions when the attractor of an iterated function system
is a finite union of connected sets. If these conditions are
fulfilled the attractor of the iterated function system will be
locally arcwise connected and every connected component of
the attractor of the iterated function system will be arcwise
connected.

1. Introduction. We start with a brief presentation of iterated
function systems, IF'Ss for short. We will also fix the notations. Iterated
function systems were conceived in the present form by Hutchinson
[5] and popularized by Barnsley [2] and are one of the most common
and most general ways to generate fractals. Many of the important
examples of functions and sets with special and unusual properties
turn out to be fractal sets, and a great portion of them are attractors
of IFSs. There is a current effort to extend the classical Hutchinson’s
framework to more general spaces and infinite iterated function systems
(ITF'Ss) or, more generally, to multifunction systems and to study them
(see for example [1, 7-10]). A recent such example can be found in
[8] where the Lipscomb’s space, which was an important example in
dimension theory, can be obtained as an attractor of an IIF'S defined in
a very general setting. In this setting the attractor can be a closed and
bounded set in contrast with the classical theory where only compact
sets are considered. Although fractal sets are defined with measure
theory, being sets with noninteger Hausdorff dimension [3, 4], it turns
out that they have interesting topological properties as we can see from
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the above example [8]. The topological properties of fractal sets have a
great importance in analysis on fractals, for example (see [6]). One of
the most important result in these direction is Theorem 1.2 below [6,
11] which states when the attractor of an IFS is a connected set. We
want to find sufficient and necessary conditions when the components of
a fixed order (see Definition 2.2 below) of the attractor of an iterated
function system are connected sets. This gives sufficient conditions
when the attractor of an iterated function system is a finite union of
connected sets. If these conditions are fulfilled, the attractor of the
iterated function system will be locally arcwise connected, and every
connected component of the attractor of the iterated function system
will be arcwise connected.

The paper is divided into four parts. The first part is the introduction.
In the second part the description of the shift space of an iterated
function system is given. The main result, Theorem 3.1, is contained
in the third part. The last part contains some examples.

For a metric space (X,d), K(X) denotes the set of nonvoid compact
subsets of X.

Definition 1.1. Let (X,d) be a metric space. K(X) with the
Hausdorff-Pompeiu distance h : K(X) x K(X) — [0, +00) defined by

h(A, B) = max(d(A, B), d(B, A))

min{r/A C B(B,r) and B C B(A,r)}

where
d(A, B) = sup d(z, B) = sup(inf d(z, y))
z€A zcA Y€B

is a metric space.
(K(X),h) is a complete metric space if (X,d) is a complete metric

space, compact if (X, d) is compact and separable if (X, d) is separable
(see [1, 2, 3, 10]).

Definition 1.2. Let (X,d) be a metric space. For a function
f: X — X let us denote by Lip (f) € [0,400] the Lipschitz constant
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associated to f that is

Lip (f) = sup
( ) T,yeX (x,y)

7Y
f is a Lipschitz function if Lip (f) < +oo and a contraction if Lip (f) <
1.

Definition 1.3. An iterated function system on a metric space
(X,d) consists in a finite family of contractions (fx),_15; on X and
is denoted by S = (X, (fr)y_15)- For an IFS § = (X, (fk)kzL—n), Fs
is the function Fs : K(X) — K(X) defined by Fs(B) = U}_; fx(B).

The function Fs is a contraction with Lip (Fs) < max,_1- Lip (fx),
see [1, 2, 5, 10].

Using Banach contraction theorem there exists, for an IFS § =
(X, (fk)g=77)> @ unique set A(S) such that Fs(A(S)) = A(S). More
precisely we have the following well-known result (see [1, 2, 10]).

Theorem 1.1. Let (X,d) be a complete metric space, and let S =
(X, (f&)p—17) be an IFS with ¢ = max,_1, Lip (fx) < 1. Then there
exists a unique A(S) € K(X) such that Fs(A(S)) = A(S). Moreover,
for any Hy € K(X), the sequence (Hyp)n>1 defined by Hpy1 = Fs(Hy)
is convergent to A(S). For the speed of the convergence we have the
following estimation

3

h(H,, A(S)) < 1c h(Hy, H).

—C

In particular we obtain h(Hy, A(S)) < (1/(1 — ¢))h(Ho, H1).

Definition 1.4. The set A(S) from the above theorem is named the
attractor of the IFS & = (X, (fk)p—17)-

Definition 1.5. Let X be a set, and let (A4;);cr be a family of
nonvoid subsets of X. The family (A;);cr is said to be connected if,
for every i, j € I, there exists an (ix),_7; C { such that iy =1, i, = j
and A;, N Ay, ,, # @ for every k € {1,2,... ,n —1}.
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Definition 1.6. Let X be a set, and let (4;)ics be a family of
nonvoid subsets of X. On the family of sets (4;);cr, we consider the
following equivalent relation, A; ~ A; if and only if there exists an
(ik)p—1m C I such that iy =4, i, = j and A;, N 4;,,, # @ for every
ke {1,2,...,n—1}. A class of equivalence is named a component
of the family of sets (A;)icsr. If there is not any danger of confusion
through a component of the family of sets (4;);c; we will understand
the component or the union of the elements of the component.

A family of sets is connected if and only if it has only one component.

Definition 1.7. A metric space (X,d) is arcwise connected if for
every x,y € X there exists a continuous function ¢ : [0,1] = X such
that ¢(0) = z and (1) = y.

Concerning the connectivity of the attractor of an IFS we have the
following theorem (see [6, 11]).

Theorem 1.2. Let (X,d) be a complete metric space, let S =
(X, (fi)p=17) be an IFS with ¢ = max; _7; Lip (fx) < 1, and let A(S)
be the attractor of S. The following are equivalent:

1) The family (A;) is connected where A; = f;(A(S)).
2) A(S) is arcwise connected.
3) A(S) is connected.

i=1,n

We want to find sufficient conditions when the attractor of an IFS
has a finite number of components.

The next result is well known.

Lemma 1.1. Let (X,d) be a metric space, and let (A;)ics be a
connected family of connected subsets of X. Then U;crA; is connected.
If the sets A; are arcwise connected, then U;crA; is arcwise connected.

The next result is a converse of the previous one.
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Lemma 1.2. Let (X, d) be a metric space, and let (A;)icr1 be a finite
family of nonvoid, closed, connected subsets of X such that U;crA; is
connected. Then the family of sets (A;)icr is connected.

Proof. Set A = UjcrA;. Let | € I, M = {j € I| there exists
(ik)k:L—m C I such that iy =1, iy, = j and A;, N A;,,, # O for
every k € {1,2,...,m — 1}}. Set Vi = UjenmrAj and Vo = UjgprAj.
Then ViUV, = A, V4 and V5 are closed sets. Also V1NV, = @. Indeed,
let us suppose by reduction ad absurdum that V; NV, # @. Then there
exists an a € V1 NVa, j1 € M and j» ¢ M such that a« € A;, N A;,.
Because j; € M, there exist (Zk)k:m C I such that iy =1, 4,, = j; and
Ay NA;, ., # D forevery k € {1,2,... ,m—1}. Because a € A;, NAj,,
it follows that jo € M, which is a contradiction.

Because V7 is nonvoid and A is connected, it follows that Vo = @. So
M = I. This ends the proof. ]

2. The shift space for an IFS. In this section we present, in short,
the shift space of an IFS (see [2, 10] for more details).

We start with set notations. IN denotes the natural numbers, N* =
N - {0}, Nx ={1,2,...,n}.

For two nonvoid sets A and B, B4 denotes the set of functions from
A to B.

By A = A(B) we will understand the set BN and by A,, = A,,(B) we
will understand the set BN». The elements of A = A(B) = BN will
be written as infinite words w = wyws * +* Wy W41+ -+ Where w,, € B,
and the elements of A, = A,(B) = BN~ will be written as words
W = wiwy - -wy. A(B) is the set of infinite words with letters from
the alphabet B and A,(B) is the set of words of length n. By
A* = A*(B) we will understand the set of all finite words A* = A*(B) =
Un>1An(B). An element of A = A(B) is said to have length +oo.

We denote by |w| the length of the word w.

If w=uwws wpwmtr - orif w=wiws - w, and n > m, then
[W]m = wiwg - - - Wy More generally if | < m, [w]!, = wi1wire - Wn.
We have [w],, = [w];[w]}, for w € A,(B) if n > m > 1 > 1 and for
w € A(B) if m > 1> 1. For words «, 8 € A*(B) UA(B), @ < 8 means
la| < |6] and [B]jq) = a.
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For two words a € A,(B) and 8 € Ap(B) or B € A(B) by af
we will understand the concatenation of the words o and 3, namely,
af = ayas - apB1Ps - -+ B and respectively aff = ajas -, 5182 -

ﬂmﬂmel .
On A = A(N?) = (N%)N" we consider the metric

X 1— 68
dS(Oé,ﬁ):Z 3k
k=1
where )
5 — 1 1f:c:y.
¢ 0 ifz#y

Definition 2.1. The pair (A(N}) = (N%)N", d,) is a compact metric
space and it is named the shift space with n letters. This is the shift
space for an IFS which contains n functions.

Let Fy : A(N}) — A(N:) be defined by Fi(w) = kw for k = 1,n.
The functions Fj are continuous functions and are named the right
shift functions. Then

ds(aaﬂ)‘

dy(Fr(a), Fu(B) = 5

The function R : A(N}) — A(N}) defined by R(w = wiws - wm
W41 ") = Wows3 -+ WyWm41 * -+ 1S also continuous and is named the
left shift function. Then

ds(R(a), R(B)) = 3ds(, B) — (1 — 65") < 3ds(, B).

Remark 2.1. With the above notations we have: 1) Ro Fi(w) = w
and Fj o R(w) = kwows - - - W41 - -+ for w € A(NY).

2) A(NY) = Up_; Fr(A(N?)) and so A(IN}) is the attractor of the
IFS 8§ = (A(N7,), (F) 1)

Notation 2.1. Let (X,d) be a complete metric space, S =
(X, (fe)p—15) an IFS on X and A = A(S) the attractor of the IFS
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S. For w = wwy - wm € Ap(N3), fuo = fuy, © fw, © -+ 0 fo, and
H, = f,(H) for aset H C X. In particular, A, = f,(4).

Definition 2.2. The sets 4, = f,(A(S)), for |w| = p and p € N*,
are named the components of order p of the attractor of the IFS

S = (Xa (fk)k:L_n)

Notation 2.2. Let (X,d) be a complete metric space, and let
f + X — X be a contraction. We denote by es the fixed point of
f. If f = f,, then we denote by ef_ or by e, the fixed point of f = f.,.

Notation 2.3. Let (X, d) be a metric space and A C X. Then d(A)
is the diameter of A, that is, d(A) = sup,, ,c 4 d(z,y)-

The main results concerning the relation between the attractor of an
IFS and the shift space is contained in the following theorem (see [2,
10]).

Theorem 2.1. If A = A(S) is the attractor of the IFS S =
(X, (fk)p=1m) and ¢ = max,_1 Lip (fx) <1, then we have

1) forw € A = A(N},), A C Ay, and d(Ap,,,) — 0 when
m — oo; more precisely,

w]m+l

d(A,.) < c™d(A).

2) If a., is defined by {a,} = Nm>14,,, then d(ef,,,aw) — 0 when
m — o0o.

3) A = A(S) = Uper{aw}, Ao = Uuer{aaw} for every a € A*,
A = Ugen,, Ay for every m € N* and more general Ay = Ugen,, Aaw
for every a € A* and every m € N*.

4) The set {ey,),./w € A and m € N*} is dense in A.

5) The function m: A — A defined by w(w) = a,, is a continuous and
surjective function.
6) mo Fy, = from for every k € {1,2,... ,n}.

Definition 2.3. The function 7 : A — A = A(S) from the above
theorem is named the canonical projection from the shift space on the
attractor of the IFS S.
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3. The main result. For the proof of the main result (Theorem
3.1) we need the following lemma.

Lemma 3.1. Let (X,d) be a complete metric space and (an)n>1
be a sequence of positive numbers convergent to 0. Let (A;);>o be a

sequence of divisions of the unit interval [0,1] (i.e. A = (y) =0 <
yi < oo <yl =1)) such that Ay C Ay and limy 4o ||A] = 0,
where || A]| = max[, (yl—yt ;). Let (q1)i>0 be a sequence of functions

g Ay = X such that gi41|a, = g1 and for every m > n and
every yzm € Am max{d(gm(yzm)v gn(y?))vd(gm(yzm)vgn(y;-l—l))} < an 1f
yi* € [y}, Yy} 1] Then there exists a continuous function g : [0,1] — X
such that gla, = gi.

Proof. Let A = Up>14A, and g : A — X be the function defined
by g(z) = gi(z) if z € A;. The function g is well defined because
9gmla, = gi for every m > I. We want to prove that g is a uniform
continuous function. Let ¢ > 0 be fixed. Because the sequence (an)n>1
is convergent to 0 there exists an n. such that for every n > ne,
an < €/2. Set & = min[,(y} —y!_;) and § = 6,.. We have
0 < dip1 < 0 < [[A-

Let ¢,d € [0,1] N A be such that ¢ < d and that d — ¢ < §. There
exists an mg > n. such that ¢,d € A,,,. The set (¢,d) N A,_ has at
most one element.

If (¢, d)NA,_ = @, then there exists a j such that y?f <c<d<ly
In this case we have
d(g(c),9(d)) = d(gmy (), gmq (d))
< d(gmo () gn. (7)) + dgn. (U%), gmo (d)) < 2an < e.

Ne
J+1-

If (e,d) N A, = {y?f}, we have y7<, <c <y® <d <y}, and

d(g(c), 9(d)) = d(gm (€), Imo (d))
< d(gimo (), 9n. (¥57)) + d(gn. (¥77)s Gmo () < 2a5.<e.

It follows that g is a uniform continuous function. Then there exists
a unique continuous function g : [0,1] — X such that g|4 = g. We also
have g|a, = g1 o
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Theorem 3.1. Let (X,d) be a complete metric space, p € N*,
let S = (X, (fi)p=17) be an IFS, ¢ = max,_1; Lip (fx) < 1 and let
A = A(S) be the attractor of S. The following are equivalent:

1) For every w € A, = A, (IN?) the family (A.;)

2) Each component of order p of A(S) is arcwise connected.

=T Us connected.

3) Each component of order p of A(S) is connected.

4) Each component of order m with m > p of A(S) is arcwise
connected.

5) Each component of order m with m > p of A(S) is connected.
In these cases we also have:

6) A(S) has at most n? connected components, more precisely A(S)
has the same number of connected components as the number of com-
ponents of the family of sets (Ay)wen, -

7) Each connected component of A(S) is arcwise connected.

8) A(S) is a local arcwise connected set.

Proof. The implications 4) = 2) = 3) and 4) = 5) = 3) are obvious.

2) = 4). Let m > p be fixed. If m = p the result is obvious. We can
suppose that m > p. Let w € Ay, @ = [W]y—p and S = (WP € A,,.
Then w = [Wlm—pw|t P = af and A, = fu(A) = fap(4) =

fa o fs(A) = fa(Apg). Because Ag is arcwise connected and f, is
continuous it results that A, is arcwise connected.

3) = 5). Let m > p be fixed. If m = p the result is obvious. We can
suppose that m > p. Let w € Ay, o = [W]ym—p and B = (W] P € A,,.
Then w = af and A, = fo(Ag). Because Ag is connected and f, is
continuous it results that A, is connected.

5) = 1). Let w € A,,. Then the sets A, and A,; for i € {1,2,... ,n}
are compact and connected. It follows from Lemma 1.2 that the family

(Awi);—17 is connected.

What remains to be proved for the equivalence of the first 5 sentences
is 1) = 2).

1) = 2). For every w € A, and each index 4,5 € {1,2,...,n} such
that A,; N Ay; # 9, let us fix z; € Aui N Ay, . Also, for each index
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i,j € {]., 2, [N ,’I’L}, let us fix (’L;’;)k:m such that ZBJ = ’i, iL;z(w,i,j) =

Jand Ay N Awif+1 # @ for every k € {0,1,... ,m(w,4,j) — 1}. The

sequence (% = % (¢,7)) can be taken without repetition. In

k=0,m(w,i,j)
this case m(w,3,j) < n — 1. We can suppose that m(w,i,j) = n —1
by taking ¥ ; = .- = U(wrif)+1 = Som(wrisf) (and s0 Ay = --- =
Awit iy = i)

Since A, = U A,; it follows that for every z € A, there exists an
iw(2) such that z € Ay, (2) = fu(Ai, (). Let i, : A, = {1,2,...,n}

be a fixed function such that z € A,;_(2)-

We consider an w € A,. Then, for every two elements zo and
z; from Ay, we have fixed A,;_(z,) and Au;,(z,), a sequence (if =
i, (1w(20), 1w (21))) p—gm=1 C I such that i§ =i, (20), i1 = 9w(21) and

AwigNAwiv,  # D forevery k € {0,1,...,n—2} and elements m;‘;‘;’vifﬂ €
Awiz NAwig, - Set 19 (20,21) =g for k € {0,1,... ,n—1}, w§ (20, 21) =
20, W (20,21) = 21 and w{(20,21) = xi e for k€ {1,2,...,n —

1}. We remark that f(20,21) = 4w (20), %_1(20,21) = 4w(21) and
wi (20, 21), W11 (205 21) € Awis (29,2 for every k € {0,1,... ,n — 1}
Let « € A, be fixed. We want to prove that A, is an arcwise

connected set.

Let zg and z; be two fixed different elements from A,. We will define
inductively after ! a sequence (A;);>o of divisions of the unit interval
[0,1], ie., Ay = (yh =0 <y} <--- < y', =1), elements w}, € Ayyy,

where k£ € {0,1,...,n' — 1}, and a sequence (g;);>o of functions
g Ay — Ag such that A; C Aty gila, = g1 91(9)s 91 (Yhrr) € Aut
for every [ and k € {0,1,...,n! — 1} and w} < wz, if I’/ > [ and

Yo € Wi Yhrn)-

Set Ag = (y) =0 < y? = 1), go(0) = 79 and go(1) = z1. We have
zg,z1 € Aq.

Set A = (y} =0 <yl < - <yt =1), where y} = k/n and
91(yk) = wi (20, 71).

In general we will take yb = (k/n'). Then y} = yhtt and A; € Ajpy.

The induction step. Let us suppose that we have defined g;. Let k €
{0,1,... ,n'—1}. There exists an w! € A, such that gl(yfc),gl(yfc_,_l) €
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A Set o= [wk]‘wq _, and B}, = [w;c]}:;lj_P € A,. We remark
that w!, = ~LB! and Ay = Apg = fu(Ag). Tt follows that
alyl) = f%zc(z) and g(yh,,) = f%zc(z’) for some z,2' € Agt. Set
gl_,_l(y;g';ij) = f%zc(wf’l“(z,z')) for j €{0,1,...,n}.

We have

l
g1 (W) = fy (whk(2,2) = £,
and

l

g1 Wity = F Wik (2,2) = f11(2) = @i(Whs).

k

This means that g;y; is well defined and g;41|a, = gi.

l l
w?’“(z,z'),w‘?’“ (2,2') € A

i1 ol for every j € {0,1,...,n — 1}.
LK (2,27)
Set wf;i_] —wkzﬁ’“( 2y =~LBt ﬁ’“( ,2') for k €{0,1,... ,n' — 1} and
j€{0,1,... ,n—1}. Then
I+1 \_ B / _
9141 (Ykn.5)= I (05" (2, 2)) € f”flc(ABLifi (z,z')) _Awiifi(z,zf)_A et
and
1+1 _ B ’ _
gl+1(yk"+j+1)_f71le (wj+1(z’ ? )) < fv’l‘( BLi; ;C(z z’)) _AWLZ'?L (2,2 )_A :e-;ira
Because w! < wﬁlij for j € {0,1,...,n — 1}, it follows that if I’ > [
then w[k/nl,,l] < wk.

The induction hypotheses are now checked.

We want to apply Lemma 3.1 to the functions g; and divisions A
defined above. We have seen that A; C Ajq; and gi41]a, = gi- Also
|A;]| = 1/n! and so lim;_, o ||A;]] = 0. Set a; = cPHld(A). Let I > 1
and yk, € Ay be fixed. We have to prove that, for every I’ > [ and
every yk, €Ay,

max{d(g (y%), 91 (%)) d(gr (), a1(whi))} < ar if vl € [yk, yhia]-
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We have two cases: yk, € A; and yh, ¢ A,.

In the first case, yg, € A;, we have k' = [k’/nl”l]nl”l and yfc', =y,
where k = [k’/n' ~!]. Because for every [ and k € {0,1,...,n' — 1}
there exists an w} € Ay such that g,(yh) = g (vk), 0¥k, 1) € A,
we have

d(gi (Y)s 91 (Whs1)) = AG1(Wh)> @1 Whr1)) < d(Ayy) < FHd(A) = ar.

Also there exists an w._, € A, such that g;(y}) = gi(v%), g1(¥l_,) €

Awi , and we have

d(gi(yh)s 91 (Wh—1)) = d(9u(h), 9i(h—1)) < d(Ay; ) < PHd(A) = a.

In the second case we have yh, € (4,94 1), where k = [k /nt 1.
Then gi(yh), 1(yhi1) € Ay, wh < wh and gu(yh) € Ay C Ay Tt
follows that

1
k

max{d(g- (vi), 91 (u1)), dlgu (W), 91 (Whs1))} < d(Ar) < FTd(A) = ar.

From Lemma 3.1 there exists a continuous function ¢ : [0,1] — X
such that g|a, = g;. Because g(A;) = ¢i(A;) C Aq, g is a continuous
function and A, is a compact set we have that ¢([0,1]) C Ay. This
proves that A, is arcwise connected.

6) and 7). Because A = Uyep,Aw, A, are arcwise connected for
w € A, and A, has n? elements it follows that A has at most n?
arcwise connected components.

Let us consider the family of sets (A, )wen,. Because the sets A, are
arcwise connected it results from Lemma 1.1 that every component of
the family of sets (A, )wea, is arcwise connected. This implies that A
has at most connected components as the number of components of the
family (A, )wen,. Let M be a connected component of A. If w € A,
and A, N M # @, because A, U M is a connected set, it follows that
A, C M. We obtain that M = Uyen,;a,cmAw. From Lemma 1.2 the
family (Aw)wea,;a,cnm is connected. It follows that A has the same
number of connected components as the number of components of the
family of sets (A )wen, -
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8) Let a € A(S) and € > 0. Let ny € N be such that ¢"0d(A4) < ¢
and ng > p. Set M = UweAno;aeA“,Aw and N = UweAno;aéAwAw-
Because A, are arcwise connected then M is arcwise connected. Also
M C B(a,e). On the other side N is compact, a ¢ N and so
d(a, N) > 0. This means that M is a neighborhood of a in A. O

4. Examples.

Example 4.1. Let us consider the function ¢ : [0,1] — [0, 1] defined

by
 ifgelol]
o(z) = % ifxe [i,%]
%—i 1f:c€[%,1]
[

Then Lip (¢) = 1/2. Let ¢ : [0,1] — [0, 1] be the function defined by
Y(z) =1—¢(1—x). Then Lip (¢) =1/2. Let S = ([0,1], (¢, %)) be an
IFS. We have A(S) = [0,(1/4)] U[(3/4), 1].

BB o))

~fsfefsd] - i
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This means that A(S) = [0, (1/4)] U[(3/4),1].

We have 4; = ¢(4) = [0,(1/4)], 4> = (4 = [(3/4),1],
Ay = [0,(1/8)], Az = [(1/8), (1/4]], Azy = [(3/4), (7/8)] and Az, =
[(7/8), 1] Then AlﬂAg = @, AllﬂAlg = {1/8} and AQIﬂA22 = {7/8}
This means that the families of sets (A11, A12) and (Asg;, A22) are con-
nected. We also remark that A; and A, are connected sets but A(S)
is not a connected set.

Example 4.2. We consider the metric space R? with the Euclidean
distance. Set T = {(z,y,2) € Rz +y + 2 = 1,z,y,2z € [0,1]},
Ry = {(z,y,2) € T|z € [(3/4),1]}, Ry = {(z,y,2) € Ty € [(3/4),1]},
R; = {(z,y,2) € T|z € [(3/4),1]}, Ry = {(z,y,2) € T|z,y,2z €
[0,(1/2)]}, Rs = {(z,y,2) € Tlz € [(1/2),(3/4)]}, Re = {(z,y,2) €
Tly € [(1/2), (3/4)]} and Rr = {(z,y,2) € T|z € [(1/2), (3/4)]}.

Let f = (f1, f2, f3) : T — Ry C T be the function defined by

<z2—1,%,%> ifweR;

20+3 2y—1 .
o3 2y ,%) ifw € Ry

f ,g,2241> if w e R3

%7 8(1y_z)7 3(1Z_w)> if w € Ry

it s s<1z—y>> if w € Re

(
(
flz,y,2) = <w4—3,%,i> ifwe Ry
(
(
(

i s(iz)’ s(ﬁz)v %) if w e Ry.

Let g : T'— Rp C T be the function defined by

g(xayv Z) = (f2(y7 Qﬁ,Z), f1(y,$, Z)’ fg(y,.’L‘, Z))

In a similar way let h : T — R3 C T be the function defined by
h(iL‘,y,Z) = (fl(Z,y,Z'),fg(Z,y,ZL'),fg(Z,y,ClT))- We consider the IFS
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S = (T,(f,g,h)). Let A = A(S) be the attractor of S. We have
Af C Ri, Ay C Ry and A, C R3. Because the sets Ry, Ry and R3 are
mutually disjoint it follows that the sets Ay, A, and A, are mutually
disjoint. The family of sets (Afs, Atg, Afp) is connected because

71
Apf N Ay = {(§,§,0>},

7 1
anrnan={(50.5)}

311
= (555}

and so are the families (Ayr, Agg, Agr) and (Apy, Ang, Anrn). This
means that Ay, A, and A are connected sets. In fact, Ay, A, and
Ay, are isomorphic with the Sierpinsky triangle and A consists in three
mutual disjoint copies of the Sierpinsky triangle.

and
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