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COMPOSITION OPERATORS WHICH
IMPROVE INTEGRABILITY BETWEEN
WEIGHTED DIRICHLET SPACES

R.A. HIBSCHWEILER

ABSTRACT. The weighted Dirichlet space Dq, (a > —1),
is the space of analytic functions with derivatives in the
weighted Bergman space Ai. Let ® be an analytic self-map
of the disc. The composition operator Cg is said to improve
integrability if, for some o, 8 with a > 8, Ca(f) = fo® € Dg
for all f € Dy. For B > 0, Carleson-type conditions on
a measure related to the generalized Nevanlinna counting
function are shown to be necessary and sufficient for the
operator Cp : Do — Dg to be bounded or compact. A simpler
characterization is given in the case a > 8 > 0 for functions
® of finite valence. For § < 0 and a > 3, Cg : Do — Dg is
compact if and only if ® € Dg and ||®||cc < 1. Examples are
given to show that for a > 8 > 0, the condition ||®||cc < 1 is
not necessary for Cgs : Do — Dg to be compact.

1. The weighted Bergman space A2, (a > —1), is the set of functions
f analytic in the unit disc D such that

1% :/D\f(z)lp (log(1/]2]))* dA(2) < oo.

Here A denotes normalized area measure on the disc. The measure
defined by dA,(z) = (log(1/|z]))*dA(z) can be replaced by (1 —
|2|2)* dA(z). This results in the same space of functions and an
equivalent norm [13]. As noted in [13], the appropriate definition of
A2 when a = —1 is the Hardy space H2.

An analytic function belongs to the weighted Dirichlet space D, if
its derivative belongs to A%. The space D,, is normed by

11D, = 1£O) + 11 %z

Note that point evaluation functionals are bounded on D,. For 8 < «,
the inclusion Dg C D,, is bounded.
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Let @ be an analytic self-map of the disc. The composition operator
Cs is defined by Cg(f) = f o ® for functions f analytic in the disc.
The focus of this work is on composition operators that map D, into
Dg where —1 < 8 < a. In this case Cy : Do, — Dg is bounded, by the
Closed Graph theorem, and Cg is said to improve integrability.

In his dissertation, Riedl [8] characterized the self-maps ® for which
Cs : HP — H9Y is bounded or compact in the case 0 < p < q.
More generally, Smith [13] characterized the functions ® for which
Cop : AL, — A% is bounded (or compact) in the case 0 < p < ¢, a > —1,
B > —1. Since Dg = A3_, for § > 1, the focus of this work is on the
case 0 < 1.

The main results of this work are given next, with proofs to follow in
Sections 2 and 3. The first result characterizes the maps ® for which
Cs : Do — Dg is bounded or compact in the case 0 < 8 < a. The
result is stated in terms of the generalized Nevanlinna counting function
Ng and the behavior of a related measure. Precise definitions appear
in the next section.

Theorem. Let 0 < 8 < «, and let ® € Dg. Let vg be the measure
defined by dvg(w) = Ng(w) dA(w).

(1) Cp : Do — Dg is bounded if and only if vg is a-Carleson.
(2) Cs : Do — Dg is compact if and only if vg is compact o-Carleson.

The function ® is said to be of finite valence if there exists an M
such that no point w € D has more than M preimages (counting
multiplicities) under ®. A simpler version of the previous theorem
will be given for functions ® of finite valence in the case 0 < 8 < a.

A standard argument shows that if ® € Dg and [|®||cc < 1, then
Ces : Dy — Dg is compact for every o > (. For negative [ the
converse is true.

Theorem. Suppose that —1 < 3 < 0, 8 < a and ® € Dg. Then
Co : Do — Dg is compact if and only if ||®]|e < 1.

Theorem. For each pair o, 3 with « > > 0, there is an analytic
function ® with ||®|| = 1 and such that Cs : Do — Dg is compact.
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Riedl [8] showed that if 0 < p < ¢ then Cg : HP — H? is bounded
(respectively, compact) if and only if Ni(w) = O((log(1/|w|))?/?)
(respectively, little oh) as |w| — 1. For fixed 8 > 1, it follows that
if Cg : HP — HPP is bounded (or compact) for some p > 0, then
Cs : HP — HPP is bounded (compact) for all p > 0. The next result is
an analogous statement for the weighted Dirichlet spaces.

Theorem. Let P > 1, and let o > 0.

(1) If Co : Dy — Dy p is bounded (respectively, compact) and if

a> a, then Cy : Dy — D3 p is bounded (compact).

(2) Assume that ® is of finite valence. If Co : Do — Dqoyp is bounded
respectively, compact) for some a > 0, then Cgp : Dy — D, /p 1s
(resp Y, p ; a/
bounded (compact) for all o > 0.

Various authors have discussed composition operators that improve
integrability. In [3], Hunziker and Jarchow studied functions ® for
which Cg : HP — HY is bounded, when p < ¢. Related results appear
in [13], where Smith characterized functions @ for which Cg : A%, — A}
is bounded or compact in the case p < ¢q. This study was continued by
Smith and Yang [14] in the case ¢ < p.

2. In this section we dispose of the cases where boundedness of
Cs : Do — Dg (B < a) requires ||®||oo < 1. Also we state a theorem
of Smith [13], which provides necessary and sufficient conditions for
Cs : Dy — Dg to be bounded or compact in the case oo > 8 > 1.

For —1 < B < 0, we will use techniques similar to those of MacCluer
and Shapiro [7]. Let S(¢,0) = {z € D : |z — (| < §} and let v be a
finite positive Borel measure on the disc. The measure v is said to be
(-Carleson if

v(5(¢,9))

sup < —— < 00
¢l=1,0<s<2  0°12

The measure v is compact $-Carleson if

i VS0
S ez
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Let ® € Dg and define the measure pug by dug(z) = |®'(2)|*(1 —
|2?)# dA(2). The measure pg®~! is the measure assigning mass
ps(®@71(E)) to Borel sets E C D. MacCluer and Shapiro’s character-
ization states that Cy : Dg — Dg is bounded (respectively, compact)
if and only if pg®~! is S-Carleson (respectively, compact 3-Carleson).
See [7] for further details.

Throughout the rest of this work, C' will denote a positive constant
that may vary from one appearance to the next.

Lemma 2.1. Suppose that Cs : Do, — Dg 1is bounded, where
—1 < B < a. Then Cp is compact on Dg.

Proof. The hypothesis implies that ® € Dg, and thus the measure
pp is finite. Since Cy : D, — Dpg is bounded, there is a constant
C with [|Cs(f)llps < Cl|fllp, for all f € D,. Let g € A2, and let
f(z) = J; 9(w) dw. Then f € D, and

(g0 @)@ |4z <||If o @[lp, < Clfllp. = Cligllaz-
Since the measure (log(1/|z|))? dA(z) is comparable to (1—|z|?)? dA(z),

the change of variable formula from measure theory (see, for example,
[7, page 891]) yields

/D 19(8(2)Pdpss (=) = /D 9Pd(us®) < Cllg3e.

Thus the identity map I : A2 — L?(ug®™') is bounded. By [7,
Theorem 4.3] the measure ug® ' is a-Carleson, that is, there is a
constant C such that

us®(S(C,9)) < €+
for all |(] =1 and 0 < § < 2. Thus

ps® 1(5(¢,0)) a8
R

and it follows that pg®~! is compact 3-Carleson. Proposition 5.1 in
[7] implies that Cs : Dg — Dg is compact. o
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Theorem 2.2. Suppose that —1 < < 0. Let ® € Dg. The
following are equivalent.

(1) 1®floc < 1.
(2) Co : Dy — Dg is compact for all a > .
(3) Cs : Dy — Dg is bounded for all oo > .

Proof. Standard arguments yield (1) = (2) and (2) = (3). Suppose
that Cy : D, — Dg is bounded for some o« > 3. By Lemma 2.1,
Cs : Dz — Dg is compact on Dg. Shapiro ([9, Theorem 2.1]) proved
that for negative 3, Cs is compact on Dy if and only if ® € Dg and
12|00 < 1. O

In the remainder of this work we consider the case 0 < 8 < a.
Let 0 < |\ < 1, and let oy(2) = (A — 2)/(1 — Az). It is easy to show

that C,, is bounded on D, for all & > 0. Thus we may assume that
®(0) = 0 in the rest of this work.

For w € D and @ a self-map of the disc, No(w) denotes the number
of preimages, counting multiplicities, of w. The generalized Nevanlinna
counting function N, (v > 0) was introduced by Shapiro in [11].

Definition 2.3. Let ® be an analytic self-map of the disc, and let
v > 0. For w € D with w # ®(0),

Ny (w) = (log(1/]2]))

where the sum extends over all zeros of ® —w, repeated by multiplicity.

Smith ([13, Corollary 4.4]) used the generalized counting function
to characterize self-maps ® for which Cg : A2 — A% is bounded or
compact in the case 0 < p < g and a > —1, f > —1. His result is
stated here for p = ¢ = 2. Since Dg = A%_Q when 8 > 1, Corollary 2.5
follows immediately.

Theorem 2.4 [13]. Let ® be an analytic self-map of the disc. Let
a> —1 and B > —1. The following are equivalent.

(1) Cp : A2 — A% is bounded (respectively, compact).
(2) Nai2(w) = O((1 — |w|?)**2) as |w| — 1 (respectively, little oh).
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Corollary 2.5. Let a > 8 > 1. The following are equivalent.
(1) Cs : Do — Dg is bounded (respectively, compact).
(2) Ng(w) = O((1 — |w|?)¥) as |w| — 1 (respectively, little oh).

Suppose that v > g > 0. Smith [13] proved that N,(w) <
(Ng(w))?/# for w # ®(0). If ® is of finite valence, that is, there exists
an M < oo such that ®~!(w) has at most M elements for all w € D,
then Ng(w) < M(N,(w))?/7, and thus (Ng(w))? = (N, (w))? [13].
Corollary 2.5 yields the following results.

Corollary 2.6. Fiz P > 1, and let a« > P. If C3 : Do — Dqy/p
is bounded (respectively, compact), then Cg : Do~ — DE/P is bounded

(compact) for all @ > .

Proof. Suppose that Cg : Dy — D,/ p is bounded. Since o > a/P >
1, Corollary 2.5 yields N, p(w) = O((1 — |w|*)*) as |w| — 1. Since

@ > a, the previous remarks show that N~ ,(w) = O((1 — |w\2)2).

a/P
Thus Corollary 2.5 implies that Cs : D> — Do /P is bounded. The
proof of the statement about compactness is similar. u]

Corollary 2.7. Fiz P > 1, and suppose that ® is finite valent. The
following are equivalent.

(1) Cs : Dy — Dy/p is bounded (respectively, compact) for some
a> P.
(2) Co : Dy — Dqyyp is bounded (respectively, compact) for alla > P.

Proof. Suppose that Cs : Dy — D,/p is bounded for some a > P.
By Corollary 2.5,

Noyp(w) = O((1 — [w]*)*)
as |w| — 1. Assume @ > P. Since ® is finite valent,

Nz p(w) = (Nayp ()™,
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and thus NE/P(w) = 0((1 - \w|2)‘/"\). Corollary 2.5 implies that
Ce : Dy — DE/P is bounded. The proof of the statement about
compactness is similar. a

More general versions of Corollaries 2.6 and 2.7 will be given in the
next section.

3. Theorem 2.2 and Corollary 2.5 characterize the maps ® for which
Co : Dy — Dg is bounded (or compact) for o > (3 in the cases 8 < 0
and 8 > 1. In this section we assume that « > S and 0 < 8 < 1.

The argument for Theorem 3.1 is based on [7, Theorem 4.3], where
MacCluer and Shapiro prove that a finite positive Borel measure v is a-
Carleson if and only if A2 C L?(v). In this case, there exists C' > 0 with
|fll2wy < Cllfllaz for all f € AZ. Furthermore, if v is a-Carleson,
then the identity map I : A2 — L%(v) is compact if and only if v is
compact a-Carleson. See [7] for further details.

Theorem 3.1. Let 0 < 8 < «, and let ® € Dg. Let vz be the
measure defined by dvg(w) = Ng(w) dA(w).

(1) Cp : Do — Dg is bounded if and only if vg is a-Carleson.
(2) Cs : Do — Dg is compact if and only if vg is compact o-Carleson.

Proof. Since ® € Dg, a change of variable as in Shapiro [11] implies
that v is a finite measure. For details, see [11, page 398] or, for 5 = 0,
[1, page 36].

Suppose that Cg : Do, — Dg is bounded. Thus there is a positive
constant C' such that ||Ce(f)|lp, < C|fllp, for all f € D,. Let
g € A% and let f(2) = foz g(w)dw. Then f € D, and ||f||p, = ||g||Ag¥.
Since ®(0) =0, ||(f o <I>)’||Az = [|C2(f)|lps, and thus

/D |9(2(2))[%|®' (=) * (log(1/|21))7dA(2) < Cllglz -

The change of variables formula (see [11, page 398]) yields

/Ig(<1>(2))|2\<1>’(Z)I2(10g(1/|2|))ﬁdA(Z)25/ |9(w)[*Ng (w)dA(w)
D D

= (7/ |g\2d1/5
D
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where C is a constant depending only on 3. It follows that
1901Z2(5) < Cllgllz -

Thus, A2 C L?(vs). Theorem 4.3 [7] implies that v is a-Carleson.

For the converse of the first statement, assume that v is a-Carleson.
Thus ||g||2L2(UB) < C||g||124§ for a positive constant C' and for all g € A2.
In particular, let f € D,, and let g = f’. A change of variable as in
the previous argument yields

I(f o @)% < ClIfllB,-

Since |f(®(0))]* = [f(0)]* < |IflI3,, it follows that Cg : Dy — Dpg is
bounded.

If Cg : Dy — Dg is compact, then || f,, o ®||p, — 0 as n — oo for any
sequence in D, with ||f,||p, < C and f, — 0 uniformly on compact
subsets as n — co. Assume that |[gn[|42 < C and g, — 0 uniformly on
compact sets. Let f, be the antiderivative of g, with f,(0) = 0. The
change of variables yields

190132,y = Cl(S5 0 )02 < Cllfuo @,

Thus ||gn||z2(v,) — O for any sequence g, as described. Theorem 4.3
[7] implies that v is compact a-Carleson.

Finally, if vg is compact a-Carleson, | fn|lp, < C and f, — 0
uniformly on compact sets, then an argument as above shows that
[(£n © @)l 4z — 0. Since |f,(®(0))| — 0, this yields ||f, o ®[|p, — 0
for any sequence f,, as described. Thus Cy : D, — Dg is compact.

The proof is complete. ]

Suppose that 0 < 3 < 1, ® € Dg and Ng(w) = O((1 — |w]?)*) as
|w| — 1 for some a > (3. It follows that there exists a constant C' > 0
with

va(S(C8) = [ Nplw) dA(w) < 5
5(¢,9)

for all |{| =1 and 0 < 6 < 2. Theorem 3.1 implies that C : Dy — Dg
is bounded. Thus the conditions in Corollary 2.5 remain sufficient
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to imply boundedness even when 0 < 8 < 1. A similar argument
holds for compactness. Lemma 3.2 and Theorem 3.3 will show that the
conditions in Corollary 2.5 are necessary if ® is of finite valence. Thus
Theorem 3.1 can be simplified in this case. First note that if ® is of
finite valence, then ® belongs to Dy and thus ® € Dg for all 3 > 0.

Lemma 3.2. Let 8 >0, f € Dg and z € D. There is a positive
constant Cg depending only on B such that

1F(2)] < Call fllp, (1~ [21%) 7772,

Proof. Smith [13, Lemma 2.5] proved that there is a constant C
depending only on 8 such that

l9(w)] < Cllg|laz (1= Jw])~#+2/2

for all g € A% and all w € D. Let f € Dg and fix z € D. Then f’ € A%
and Smith’s estimate yield

()] < / £ (t2)] 2] dt + |£(0),

1
< C|flbs / J2(1 — t]2))~B+D/2 g 1 | £(0)
2
B

The result follows. O

< ZOIf |y (1 = =) 772 + || £ || .-

Let « > 0 and let a € D. Let

(1= Jaf?)(2)/2

kal2) = =g

for |z] < 1. Smith [13, page 2340] noted that, for each «, there are
positive constants C; and Cs depending only on « with

C1 < |lkal%2 < Co
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for all a € D. For a # 0, let
fulz) = / ko (w) duw.
0

Then £,(0) = 0, ||fal}, = [lkall%s, and

(L Jaf?)(>+272

R {1 —a@z)~ e+t 1},

fa(z) =

Theorem 3.3. Let 0 < B < a.

(1) Fiz ro and 0 < rg < 1. If Cg : Dy — Dg is bounded, then there
s a positive constant C depending only on o, B and ro such that

L—[z]* < C(1~|2(2)")*/?

for all z € D with |®(z)| > ro.
(2) Suppose that Cy : Do — Dg is compact. If € > 0, then there
exists r1, 0 < r; < 1, such that
1— |2 <e(1—[2(2))/*

for all z € D with |®(z)| > rq.

Proof. We may assume that ||®||.c = 1. To prove the first assertion,
assume that Cs : Do — Dg is bounded and r¢ is fixed. Thus there
exists a C' > 0 with [|Cs(f)l|p; < C|fllp, for all f € D,, and
Lemma 3.2 implies that

Ca(f)(2)] < COsllfllpa (1~ |2*) 7/

for all z € D and all f € D,. Fix z € D with |[®(z)] > 79, and let
w = ®(2). A calculation shows that

1— 2\ (a+2)/2
Calfu)(a) > L1

R i
a+1

{0 Ju*)~HD —1}

{1-(1-rf)>tt}.




COMPOSITION OPERATORS 1897

The argument shows that

a+1

1_ 2 —DL/2 < 1_ 2 —ﬂ/Z—
(1= )™/ < COlfullo, (1= o) 1 e

for all z with |®(z)| > r¢. Since ||fw|lp, = 1 for w € D (w # 0), this
yields a constant K such that

(1= 12?2 < K(1-|2(2) )/

for all z € D with |®(z)| > ro, where the constant K depends only on
a, B and rg. This completes the proof of the first assertion.

Next suppose that Cy : Dy, — Dg is compact. By way of contradic-
tion, suppose that €9 > 0 and that there is no r; as described. Thus
there is a sequence z, C D with [®(z,)| >1—1/(n+ 1) and

1= zal® > 0(1 = |(2a)[*)**

for n = 1,2,.... Let w, = ®(z,). Since |w,| — 1, it follows that
fw, — 0 uniformly on compact subsets of D as n — oo. Since
| fw,llp, < C for all n and since Cy : Dy — Dg is compact, there is a
subsequence which we continue to call w, for which || fy, o ®||p, — 0.
Lemma 3.2 yields

(1 = [2a>)?"?|fu, (2(z0))] < Cpll fus, © @llDs-

Estimates as in the proof of part (1) imply that the left-hand side of
the previous inequality is bounded away from 0. This contradiction
completes the proof. i

Theorem 3.4. Suppose that ® is of finite valence and 0 < 8 < a.
(1) Cg : Do — Dg is bounded < Ng(w) = O((1—|w|*)*) as |w| — 1.
(2) Cp : Dy — Dg is compact < Ng(w) = o((1 —|w|?)®) as |w| — 1.

Proof. Sufficiency of the conditions involving Ng was noted previously
in this section.

Assume that each w € D has no more than M preimages, counting
multiplicities, under ®. There exists R, 0 < R < 1, such that
log(1/|z]) <1 — |2|? for all z with R < |2] < 1.
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Now let w = ®(z), and assume that |w| > R. Since ®(0) = 0, the
Schwarz lemma implies that |z| > |w| > R, and thus

Np(w) = (log(1/|2]))" < Y (1~ [2*)

where both sums extend over all preimages of w. Since Cy : Do, — Dg
is bounded, part (1) of Theorem 3.3 yields

Na(w) < MC(1 = |w]*)*

for all w with |w| > R. Thus Ng(w) = O((1 — |w|?)*) as |w| — 1. This
completes the proof of the first assertion.

Next assume that Cy : D, — Dg is compact. Let € > 0, and let
v = (¢/M)"/8. Since v > 0, part (2) of Theorem 3.3 provides r; such
that

1 [z < (1 - |2(2)])7

for all z with |®(z)| > r1. We may assume that r; > R, so that the
previous estimate on log(1/|z|) holds. Thus

Np(w) <Y (1~ =) <47 (1 = Jw’)*M = e(1 — [w]*)*
for all w € D with |w| > ry. The proof is complete. O

Corollary 3.5. Let P > 1, and let a > 0.

(1) If Co : Do — Dy p is bounded (respectively, compact) and if
a>a, then Cg : Dy — Dz, p is bounded (compact).

(2) Suppose that @ is finite valent. If Cg : Do — Dgoyp is bounded
(respectively, compact) for some o > 0, then Cy : Dy — Do/p is
bounded (compact) for all o > 0.

Proof. Suppose that Cg : Dy — Dy/p is bounded, and let @ > a.
Suppose w € S(¢,0) N ®(D) where § <1 — R and R is as described in
the previous proof. Then

R<1-6<|8(2)| <2
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for all z with ®(z) = w and part (1) of Theorem 3.3 yields
Ny p(w) <D (log 1/]2))/ (1 — |2f?)(eme)/®
< C(1 = |w]*)*~*Nayp(w)
< C(saiaNa/P(’w).
It follows that
ve p(S(C,6)) < C6 20 p(S(C,))

for (| = 1and 6 < 1 —R. Since C3 : Dy — Dy p is bounded,
Theorem 3.1 yields v, /p(S(¢,6)) < Cé*+? forall |{| =1and 0 < § < 2,
where C' depends only on « and P. Thus,

vap(8(C,0)) < C5°+2

for all [¢(| = 1 and all small §. This is sufficient to establish that v~ /P
is a-Carleson. Part (1) of Theorem 3.1 yields that Cs : Dy — D;p
is bounded. The proof of the statement about compactness is similar.

This completes the proof of part (1).

Next suppose that ® is finite valent and Cg : Do, — D p is bounded
for some a > 0. Theorem 3.4 yields N, p(w) = O((1 — |w|*)*) as
|w| — 1. Let & > 0. Since NE/P(w) ~ (Na/p(w))a/o‘ [13], it follows
that ~

Ny p(w) = O((1 — [w]*)*)
as |w| — 1. Theorem 3.4 implies that Cg : D~ — Dy, p is bounded.

The proof of the statement about compactness is omitted. O
The next two results are in comparison with Theorem 2.2.

Theorem 3.6. The condition |®||« < 1 is not necessary for
Cs : Do — Dg to be compact in the case o > 3 > 0.

Proof. Fix a > 3 > 0, and fix  with n > /8. Let P C D be a
polygon with P N D = {1} and with angular aperture 7/n at 1. Let
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® be a Riemann map from D onto the interior of P. Then ¢ extends
to a homeomorphism of D onto P, and we may assume that ®(1) = 1.
As in [13] it follows that

Ni(w) = O((1 = [w|*)")(lw] = 1)
Since ® is univalent, Ng(w) ~ (N1(w))”. Thus,
Na(w) = O((1 = [w]*)")(jw| — 1)

and N ()
_ B\ <Ol - |wH)m—* —0
(1—|w|?)> — ( [wl*)

as |w| — 1. By Theorem 3.4, Cy : D, — Dg is compact. O

The proof of the next theorem is a minor adaptation of a result of
Jovovi¢ and MacCluer [4, page 232].

Theorem 3.7. Let o > 0. The condition ||®|ec < 1 is not necessary
for Cp : Dy — Dy to be compact.

Proof. An example will be given in which ||®||.c = 1 and Cgp :
D; — Dy is compact. Let © be a simply connected region in D with
QN oD = {1}. In a neighborhood of 1, assume that the region Q is
symmetric about the x-axis, and the upper boundary of €2 is given by
y = (1 —2'/?)3. Let ® be a univalent map carrying D onto the interior
of 2. A calculation yields

1

w(S(1,5)) = 2/1_5(1 _ 2P dg = o(5%).

Since it suffices to verify the Carleson condition at { = 1, Theorem 3.1
now implies that Cg : Dy — Dy is compact, and it follows easily that
Cs : D, — Dy is compact for 0 < o < 1. The example can be adapted
for any natural number n > 2, using the function y = (1 — z'/2)"+2,
Calculations as above show that Cs : D,, — Dy is compact. O

The final result relates this work to the work of Smith [13] and Riedl
[8]. In what follows, AP denotes the standard unweighted Bergman
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space. Smith proved that, for 0 < p < ¢, Cs : AP — HY is
bounded (respectively, compact) if and only if Ny (w) = O((1—|w|)29/P)
(respectively, little oh). Riedl proved that, for 0 < p < ¢, Cp :
HP — H4 is bounded if and only if Ny(w) = O((1 — |w|)¥/P), with
the analogous statement for compactness. Smith [13] obtained the
corollary that for n > 2, Cg : HP — HP" is bounded for some (for all)
p > 0 if and only if Cp : AP — HP"/? is bounded for some (for all)
p > 0. The analogous statement holds for compactness.

Fix 7 > 2 and assume that ® is of finite valence and p > 0. By
Theorem 3.4, Cy : D, — Dy, is bounded if and only if N,/,(w) =
O((1—|w|)P)(Jw| — 1). Since Ni(w) = (Np/n(w))”/p, Smith’s corollary
leads to the following result. The proof is omitted.

Corollary 3.8. Let ® be of finite valence, and let n > 2. The
following are equivalent.

1) Cs : D, — D, /, is bounded for some (for all) p > 0.
P p/n

(2) Cg : AP — HP"/2 is bounded for some (for all) p > 0.

(3) Cg : H? — HP" is bounded for some (for all) p > 0.

The statements remain equivalent if “bounded” is replaced by “com-
pact”.
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