COMPOSITION OPERATORS WHICH IMPROVE INTEGRABILITY BETWEEN WEIGHTED DIRICHLET SPACES

R.A. HIBSCHWEILER

ABSTRACT. The weighted Dirichlet space D_{α} , $(\alpha > -1)$, is the space of analytic functions with derivatives in the weighted Bergman space A_{α}^2 . Let Φ be an analytic self-map of the disc. The composition operator C_{Φ} is said to improve integrability if, for some α,β with $\alpha>\beta$, $C_{\Phi}(f)=f\circ\Phi\in D_{\beta}$ for all $f\in D_{\alpha}$. For $\beta\geq 0$, Carleson-type conditions on a measure related to the generalized Nevanlinna counting function are shown to be necessary and sufficient for the operator $C_{\Phi}:D_{\alpha}\to D_{\beta}$ to be bounded or compact. A simpler characterization is given in the case $\alpha>\beta>0$ for functions Φ of finite valence. For $\beta<0$ and $\alpha>\beta$, $C_{\Phi}:D_{\alpha}\to D_{\beta}$ is compact if and only if $\Phi\in D_{\beta}$ and $\|\Phi\|_{\infty}<1$. Examples are given to show that for $\alpha>\beta\geq0$, the condition $\|\Phi\|_{\infty}<1$ is not necessary for $C_{\Phi}:D_{\alpha}\to D_{\beta}$ to be compact.

1. The weighted Bergman space A^p_{α} , $(\alpha > -1)$, is the set of functions f analytic in the unit disc D such that

$$||f||_{A^p_{\alpha}}^p = \int_D |f(z)|^p (\log(1/|z|))^{\alpha} dA(z) < \infty.$$

Here A denotes normalized area measure on the disc. The measure defined by $dA_{\alpha}(z) = (\log(1/|z|))^{\alpha} dA(z)$ can be replaced by $(1 - |z|^2)^{\alpha} dA(z)$. This results in the same space of functions and an equivalent norm [13]. As noted in [13], the appropriate definition of A_{α}^2 when $\alpha = -1$ is the Hardy space H^2 .

An analytic function belongs to the weighted Dirichlet space D_{α} if its derivative belongs to A_{α}^{2} . The space D_{α} is normed by

$$||f||_{D_{\alpha}}^2 = |f(0)|^2 + ||f'||_{A_{\alpha}^2}^2.$$

Note that point evaluation functionals are bounded on D_{α} . For $\beta < \alpha$, the inclusion $D_{\beta} \subset D_{\alpha}$ is bounded.

Received by the editors on January 26, 2008, and in revised form on June 19, 2008.

 $DOI: 10.1216 / RMJ-2010-40-6-1887 \quad Copy right © 2010 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Mountain \ Mathematics \ Mountain \ Mathematics \ Mathematics \ Mountain \ Mountain \ Mathematics \ Mountain \$

Let Φ be an analytic self-map of the disc. The composition operator C_{Φ} is defined by $C_{\Phi}(f) = f \circ \Phi$ for functions f analytic in the disc. The focus of this work is on composition operators that map D_{α} into D_{β} where $-1 < \beta < \alpha$. In this case $C_{\Phi} : D_{\alpha} \to D_{\beta}$ is bounded, by the Closed Graph theorem, and C_{Φ} is said to improve integrability.

In his dissertation, Riedl [8] characterized the self-maps Φ for which $C_{\Phi}: H^p \to H^q$ is bounded or compact in the case $0 . More generally, Smith [13] characterized the functions <math>\Phi$ for which $C_{\Phi}: A^p_{\alpha} \to A^q_{\beta}$ is bounded (or compact) in the case $0 , <math>\alpha \geq -1$, $\beta \geq -1$. Since $D_{\beta} = A^2_{\beta-2}$ for $\beta \geq 1$, the focus of this work is on the case $\beta < 1$.

The main results of this work are given next, with proofs to follow in Sections 2 and 3. The first result characterizes the maps Φ for which $C_{\Phi}:D_{\alpha}\to D_{\beta}$ is bounded or compact in the case $0\leq \beta<\alpha$. The result is stated in terms of the generalized Nevanlinna counting function N_{β} and the behavior of a related measure. Precise definitions appear in the next section.

Theorem. Let $0 \le \beta < \alpha$, and let $\Phi \in D_{\beta}$. Let ν_{β} be the measure defined by $d\nu_{\beta}(w) = N_{\beta}(w) dA(w)$.

- (1) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded if and only if ν_{β} is α -Carleson.
- (2) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact if and only if ν_{β} is compact α -Carleson.

The function Φ is said to be of finite valence if there exists an M such that no point $w \in D$ has more than M preimages (counting multiplicities) under Φ . A simpler version of the previous theorem will be given for functions Φ of finite valence in the case $0 < \beta < \alpha$.

A standard argument shows that if $\Phi \in D_{\beta}$ and $\|\Phi\|_{\infty} < 1$, then $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact for every $\alpha > \beta$. For negative β the converse is true.

Theorem. Suppose that $-1 < \beta < 0$, $\beta < \alpha$ and $\Phi \in D_{\beta}$. Then $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact if and only if $\|\Phi\|_{\infty} < 1$.

Theorem. For each pair α, β with $\alpha > \beta \geq 0$, there is an analytic function Φ with $\|\Phi\|_{\infty} = 1$ and such that $C_{\Phi} : D_{\alpha} \to D_{\beta}$ is compact.

Riedl [8] showed that if $0 then <math>C_{\Phi} : H^p \to H^q$ is bounded (respectively, compact) if and only if $N_1(w) = O((\log(1/|w|))^{q/p})$ (respectively, little oh) as $|w| \to 1$. For fixed $\beta \ge 1$, it follows that if $C_{\Phi} : H^p \to H^{\beta p}$ is bounded (or compact) for some p > 0, then $C_{\Phi} : H^p \to H^{\beta p}$ is bounded (compact) for all p > 0. The next result is an analogous statement for the weighted Dirichlet spaces.

Theorem. Let P > 1, and let $\alpha > 0$.

- (1) If $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact) and if $\widehat{\alpha} > \alpha$, then $C_{\Phi}: D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded (compact).
- (2) Assume that Φ is of finite valence. If $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact) for some $\alpha > 0$, then $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (compact) for all $\alpha > 0$.

Various authors have discussed composition operators that improve integrability. In [3], Hunziker and Jarchow studied functions Φ for which $C_{\Phi}: H^p \to H^q$ is bounded, when $p \leq q$. Related results appear in [13], where Smith characterized functions Φ for which $C_{\Phi}: A^p_{\alpha} \to A^q_{\beta}$ is bounded or compact in the case $p \leq q$. This study was continued by Smith and Yang [14] in the case q < p.

2. In this section we dispose of the cases where boundedness of $C_{\Phi}: D_{\alpha} \to D_{\beta}$ ($\beta < \alpha$) requires $\|\Phi\|_{\infty} < 1$. Also we state a theorem of Smith [13], which provides necessary and sufficient conditions for $C_{\Phi}: D_{\alpha} \to D_{\beta}$ to be bounded or compact in the case $\alpha > \beta \geq 1$.

For $-1 < \beta < 0$, we will use techniques similar to those of MacCluer and Shapiro [7]. Let $S(\zeta, \delta) = \{z \in D : |z - \zeta| < \delta\}$ and let ν be a finite positive Borel measure on the disc. The measure ν is said to be β -Carleson if

$$\sup_{|\zeta|=1, 0<\delta \leq 2} \frac{\nu(S(\zeta,\delta))}{\delta^{\beta+2}} < \infty.$$

The measure ν is compact β -Carleson if

$$\lim_{\delta \to 0} \sup_{|\zeta|=1} \frac{\nu(S(\zeta,\delta))}{\delta^{\beta+2}} = 0.$$

Let $\Phi \in D_{\beta}$ and define the measure μ_{β} by $d\mu_{\beta}(z) = |\Phi'(z)|^2(1 - |z|^2)^{\beta} dA(z)$. The measure $\mu_{\beta}\Phi^{-1}$ is the measure assigning mass $\mu_{\beta}(\Phi^{-1}(E))$ to Borel sets $E \subset D$. MacCluer and Shapiro's characterization states that $C_{\Phi}: D_{\beta} \to D_{\beta}$ is bounded (respectively, compact) if and only if $\mu_{\beta}\Phi^{-1}$ is β -Carleson (respectively, compact β -Carleson). See [7] for further details.

Throughout the rest of this work, C will denote a positive constant that may vary from one appearance to the next.

Lemma 2.1. Suppose that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded, where $-1 < \beta < \alpha$. Then C_{Φ} is compact on D_{β} .

Proof. The hypothesis implies that $\Phi \in D_{\beta}$, and thus the measure μ_{β} is finite. Since $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded, there is a constant C with $\|C_{\Phi}(f)\|_{D_{\beta}} \leq C\|f\|_{D_{\alpha}}$ for all $f \in D_{\alpha}$. Let $g \in A_{\alpha}^{2}$, and let $f(z) = \int_{0}^{z} g(w) dw$. Then $f \in D_{\alpha}$ and

$$\|(g \circ \Phi)\Phi'\|_{A^2_\beta} \le \|f \circ \Phi\|_{D_\beta} \le C\|f\|_{D_\alpha} = C\|g\|_{A^2_\alpha}.$$

Since the measure $(\log(1/|z|))^{\beta} dA(z)$ is comparable to $(1-|z|^2)^{\beta} dA(z)$, the change of variable formula from measure theory (see, for example, [7, page 891]) yields

$$\int_{D} |g(\Phi(z))|^{2} d\mu_{\beta}(z) = \int_{D} |g|^{2} d(\mu_{\beta} \Phi^{-1}) \le C \|g\|_{A_{\alpha}^{2}}^{2}.$$

Thus the identity map $I:A_{\alpha}^2\to L^2(\mu_{\beta}\Phi^{-1})$ is bounded. By [7, Theorem 4.3] the measure $\mu_{\beta}\Phi^{-1}$ is α -Carleson, that is, there is a constant C such that

$$\mu_{\beta}\Phi^{-1}(S(\zeta,\delta)) < C\delta^{\alpha+2}$$

for all $|\zeta| = 1$ and $0 < \delta \le 2$. Thus

$$\sup_{|\zeta|=1} \frac{\mu_{\beta} \Phi^{-1}(S(\zeta,\delta))}{\delta^{\beta+2}} < C\delta^{\alpha-\beta},$$

and it follows that $\mu_{\beta}\Phi^{-1}$ is compact β -Carleson. Proposition 5.1 in [7] implies that $C_{\Phi}: D_{\beta} \to D_{\beta}$ is compact. \square

Theorem 2.2. Suppose that $-1 < \beta < 0$. Let $\Phi \in D_{\beta}$. The following are equivalent.

- $(1) \|\Phi\|_{\infty} < 1.$
- (2) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact for all $\alpha > \beta$.
- (3) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded for all $\alpha > \beta$.

Proof. Standard arguments yield $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$. Suppose that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded for some $\alpha > \beta$. By Lemma 2.1, $C_{\Phi}: D_{\beta} \to D_{\beta}$ is compact on D_{β} . Shapiro ([9, Theorem 2.1]) proved that for negative β , C_{Φ} is compact on D_{β} if and only if $\Phi \in D_{\beta}$ and $\|\Phi\|_{\infty} < 1$. \square

In the remainder of this work we consider the case $0 \le \beta < \alpha$.

Let $0 < |\lambda| < 1$, and let $\sigma_{\lambda}(z) = (\lambda - z)/(1 - \overline{\lambda}z)$. It is easy to show that $C_{\sigma_{\lambda}}$ is bounded on D_{α} for all $\alpha \geq 0$. Thus we may assume that $\Phi(0) = 0$ in the rest of this work.

For $w \in D$ and Φ a self-map of the disc, $N_0(w)$ denotes the number of preimages, counting multiplicities, of w. The generalized Nevanlinna counting function N_{γ} ($\gamma > 0$) was introduced by Shapiro in [11].

Definition 2.3. Let Φ be an analytic self-map of the disc, and let $\gamma > 0$. For $w \in D$ with $w \neq \Phi(0)$,

$$N_{\gamma}(w) = \sum (\log(1/|z|))^{\gamma}$$

where the sum extends over all zeros of $\Phi - w$, repeated by multiplicity.

Smith ([13, Corollary 4.4]) used the generalized counting function to characterize self-maps Φ for which $C_{\Phi}:A_{\alpha}^{p}\to A_{\beta}^{q}$ is bounded or compact in the case $0< p\leq q$ and $\alpha\geq -1$, $\beta\geq -1$. His result is stated here for p=q=2. Since $D_{\beta}=A_{\beta-2}^{2}$ when $\beta\geq 1$, Corollary 2.5 follows immediately.

Theorem 2.4 [13]. Let Φ be an analytic self-map of the disc. Let $\alpha \geq -1$ and $\beta \geq -1$. The following are equivalent.

- (1) $C_{\Phi}: A_{\alpha}^2 \to A_{\beta}^2$ is bounded (respectively, compact).
- (2) $N_{\beta+2}(w) = O((1-|w|^2)^{\alpha+2})$ as $|w| \to 1$ (respectively, little oh).

Corollary 2.5. Let $\alpha > \beta \geq 1$. The following are equivalent.

- (1) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded (respectively, compact).
- (2) $N_{\beta}(w) = O((1-|w|^2)^{\alpha})$ as $|w| \to 1$ (respectively, little oh).

Suppose that $\gamma > \beta > 0$. Smith [13] proved that $N_{\gamma}(w) \leq (N_{\beta}(w))^{\gamma/\beta}$ for $w \neq \Phi(0)$. If Φ is of finite valence, that is, there exists an $M < \infty$ such that $\Phi^{-1}(w)$ has at most M elements for all $w \in D$, then $N_{\beta}(w) \leq M(N_{\gamma}(w))^{\beta/\gamma}$, and thus $(N_{\beta}(w))^{\gamma} \approx (N_{\gamma}(w))^{\beta}$ [13]. Corollary 2.5 yields the following results.

Corollary 2.6. Fix P > 1, and let $\alpha \geq P$. If $C_{\Phi} : D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact), then $C_{\Phi} : D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded (compact) for all $\widehat{\alpha} > \alpha$.

Proof. Suppose that $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded. Since $\alpha > \alpha/P \ge 1$, Corollary 2.5 yields $N_{\alpha/P}(w) = O((1-|w|^2)^{\alpha})$ as $|w| \to 1$. Since $\widehat{\alpha} > \alpha$, the previous remarks show that $N_{\widehat{\alpha}/P}(w) = O((1-|w|^2)^{\widehat{\alpha}})$. Thus Corollary 2.5 implies that $C_{\Phi}: D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded. The proof of the statement about compactness is similar. \square

Corollary 2.7. Fix P > 1, and suppose that Φ is finite valent. The following are equivalent.

- (1) $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact) for some $\alpha > P$.
 - (2) $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact) for all $\alpha \geq P$.

Proof. Suppose that $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded for some $\alpha \geq P$. By Corollary 2.5,

$$N_{\alpha/P}(w) = O((1 - |w|^2)^{\alpha})$$

as $|w| \to 1$. Assume $\widehat{\alpha} \geq P$. Since Φ is finite valent,

$$N_{\widehat{\alpha}/P}(w) \approx (N_{\alpha/P}(w))^{\widehat{\alpha}/\alpha},$$

and thus $N_{\widehat{\alpha}/P}(w) = O((1-|w|^2)^{\widehat{\alpha}})$. Corollary 2.5 implies that $C_{\Phi}: D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded. The proof of the statement about compactness is similar. \square

More general versions of Corollaries 2.6 and 2.7 will be given in the next section.

3. Theorem 2.2 and Corollary 2.5 characterize the maps Φ for which $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded (or compact) for $\alpha > \beta$ in the cases $\beta < 0$ and $\beta \geq 1$. In this section we assume that $\alpha > \beta$ and $0 \leq \beta < 1$.

The argument for Theorem 3.1 is based on [7, Theorem 4.3], where MacCluer and Shapiro prove that a finite positive Borel measure ν is α -Carleson if and only if $A_{\alpha}^2 \subset L^2(\nu)$. In this case, there exists C>0 with $\|f\|_{L^2(\nu)} \leq C\|f\|_{A_{\alpha}^2}$ for all $f\in A_{\alpha}^2$. Furthermore, if ν is α -Carleson, then the identity map $I:A_{\alpha}^2\to L^2(\nu)$ is compact if and only if ν is compact α -Carleson. See [7] for further details.

Theorem 3.1. Let $0 \le \beta < \alpha$, and let $\Phi \in D_{\beta}$. Let ν_{β} be the measure defined by $d\nu_{\beta}(w) = N_{\beta}(w) dA(w)$.

- (1) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded if and only if ν_{β} is α -Carleson.
- (2) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact if and only if ν_{β} is compact α -Carleson.

Proof. Since $\Phi \in D_{\beta}$, a change of variable as in Shapiro [11] implies that ν_{β} is a finite measure. For details, see [11, page 398] or, for $\beta = 0$, [1, page 36].

Suppose that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded. Thus there is a positive constant C such that $\|C_{\Phi}(f)\|_{D_{\beta}} \leq C\|f\|_{D_{\alpha}}$ for all $f \in D_{\alpha}$. Let $g \in A_{\alpha}^2$, and let $f(z) = \int_0^z g(w) dw$. Then $f \in D_{\alpha}$ and $\|f\|_{D_{\alpha}} = \|g\|_{A_{\alpha}^2}$. Since $\Phi(0) = 0$, $\|(f \circ \Phi)'\|_{A_{\beta}^2} = \|C_{\Phi}(f)\|_{D_{\beta}}$, and thus

$$\int_{D} |g(\Phi(z))|^{2} |\Phi'(z)|^{2} (\log(1/|z|))^{\beta} dA(z) \le C \|g\|_{A_{\alpha}^{2}}^{2}.$$

The change of variables formula (see [11, page 398]) yields

$$\int_{D} |g(\Phi(z))|^{2} |\Phi'(z)|^{2} (\log(1/|z|))^{\beta} dA(z) = \widehat{C} \int_{D} |g(w)|^{2} N_{\beta}(w) dA(w)$$
$$= \widehat{C} \int_{D} |g|^{2} d\nu_{\beta}$$

where \widehat{C} is a constant depending only on β . It follows that

$$||g||_{L^2(\nu_\beta)}^2 \le C||g||_{A^2_\alpha}^2.$$

Thus, $A_{\alpha}^2 \subset L^2(\nu_{\beta})$. Theorem 4.3 [7] implies that ν_{β} is α -Carleson.

For the converse of the first statement, assume that ν_{β} is α -Carleson. Thus $\|g\|_{L^{2}(\nu_{\beta})}^{2} \leq C\|g\|_{A_{\alpha}^{2}}^{2}$ for a positive constant C and for all $g \in A_{\alpha}^{2}$. In particular, let $f \in D_{\alpha}$, and let g = f'. A change of variable as in the previous argument yields

$$\|(f \circ \Phi)'\|_{A_{\beta}^{2}}^{2} \leq C \|f\|_{D_{\alpha}}^{2}.$$

Since $|f(\Phi(0))|^2 = |f(0)|^2 \le ||f||_{D_{\alpha}}^2$, it follows that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded.

If $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact, then $\|f_n \circ \Phi\|_{D_{\beta}} \to 0$ as $n \to \infty$ for any sequence in D_{α} with $\|f_n\|_{D_{\alpha}} \leq C$ and $f_n \to 0$ uniformly on compact subsets as $n \to \infty$. Assume that $\|g_n\|_{A_{\alpha}^2} \leq C$ and $g_n \to 0$ uniformly on compact sets. Let f_n be the antiderivative of g_n with $f_n(0) = 0$. The change of variables yields

$$\|g_n\|_{L^2(\nu_\beta)}^2 = \widehat{C}\|(f'_n \circ \Phi)\Phi'\|_{A^2_x}^2 \le \widehat{C}\|f_n \circ \Phi\|_{D_\beta}^2.$$

Thus $||g_n||_{L^2(\nu_\beta)} \to 0$ for any sequence g_n as described. Theorem 4.3 [7] implies that ν_β is compact α -Carleson.

Finally, if ν_{β} is compact α -Carleson, $\|f_n\|_{D_{\alpha}} \leq C$ and $f_n \to 0$ uniformly on compact sets, then an argument as above shows that $\|(f_n \circ \Phi)'\|_{A^2_{\beta}} \to 0$. Since $|f_n(\Phi(0))| \to 0$, this yields $\|f_n \circ \Phi\|_{D_{\beta}} \to 0$ for any sequence f_n as described. Thus $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact. The proof is complete. \square

Suppose that $0 < \beta < 1$, $\Phi \in D_{\beta}$ and $N_{\beta}(w) = O((1 - |w|^2)^{\alpha})$ as $|w| \to 1$ for some $\alpha > \beta$. It follows that there exists a constant C > 0 with

$$u_{eta}(S(\zeta,\delta)) = \int_{S(\zeta,\delta)} N_{eta}(w) dA(w) \le C \delta^{\alpha+2}$$

for all $|\zeta| = 1$ and $0 < \delta \le 2$. Theorem 3.1 implies that $C_{\Phi} : D_{\alpha} \to D_{\beta}$ is bounded. Thus the conditions in Corollary 2.5 remain sufficient

to imply boundedness even when $0 < \beta < 1$. A similar argument holds for compactness. Lemma 3.2 and Theorem 3.3 will show that the conditions in Corollary 2.5 are necessary if Φ is of finite valence. Thus Theorem 3.1 can be simplified in this case. First note that if Φ is of finite valence, then Φ belongs to D_0 and thus $\Phi \in D_\beta$ for all $\beta > 0$.

Lemma 3.2. Let $\beta > 0$, $f \in D_{\beta}$ and $z \in D$. There is a positive constant C_{β} depending only on β such that

$$|f(z)| \le C_{\beta} ||f||_{D_{\beta}} (1 - |z|^2)^{-\beta/2}.$$

Proof. Smith [13, Lemma 2.5] proved that there is a constant C depending only on β such that

$$|g(w)| \le C||g||_{A^2_\beta} (1-|w|)^{-(\beta+2)/2}$$

for all $g \in A^2_\beta$ and all $w \in D$. Let $f \in D_\beta$ and fix $z \in D$. Then $f' \in A^2_\beta$ and Smith's estimate yield

$$|f(z)| \le \int_0^1 |f'(tz)||z| dt + |f(0)|$$

$$\le C||f||_{D_\beta} \int_0^1 |z| (1 - t|z|)^{-(\beta + 2)/2} dt + |f(0)|$$

$$\le \frac{2}{\beta} C||f||_{D_\beta} (1 - |z|)^{-\beta/2} + ||f||_{D_\beta}.$$

The result follows.

Let $\alpha > 0$ and let $a \in D$. Let

$$k_a(z) = \frac{(1 - |a|^2)^{(\alpha+2)/2}}{(1 - \overline{a}z)^{\alpha+2}}$$

for |z| < 1. Smith [13, page 2340] noted that, for each α , there are positive constants C_1 and C_2 depending only on α with

$$C_1 \le ||k_a||_{A_\alpha^2}^2 \le C_2$$

for all $a \in D$. For $a \neq 0$, let

$$f_a(z) = \int_0^z k_a(w) \, dw.$$

Then $f_a(0) = 0$, $||f_a||_{D_\alpha}^2 = ||k_a||_{A_a^2}^2$, and

$$f_a(z) = \frac{(1 - |a|^2)^{(\alpha + 2)/2}}{(\alpha + 1)\overline{a}} \{ (1 - \overline{a}z)^{-(\alpha + 1)} - 1 \}.$$

Theorem 3.3. Let $0 < \beta < \alpha$.

(1) Fix r_0 and $0 < r_0 < 1$. If $C_{\Phi} : D_{\alpha} \to D_{\beta}$ is bounded, then there is a positive constant C depending only on α , β and r_0 such that

$$1 - |z|^2 \le C(1 - |\Phi(z)|^2)^{\alpha/\beta}$$

for all $z \in D$ with $|\Phi(z)| > r_0$.

(2) Suppose that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact. If $\varepsilon > 0$, then there exists r_1 , $0 < r_1 < 1$, such that

$$1 - |z|^2 < \varepsilon (1 - |\Phi(z)|^2)^{\alpha/\beta}$$

for all $z \in D$ with $|\Phi(z)| > r_1$.

Proof. We may assume that $\|\Phi\|_{\infty} = 1$. To prove the first assertion, assume that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded and r_0 is fixed. Thus there exists a C > 0 with $\|C_{\Phi}(f)\|_{D_{\beta}} \leq C\|f\|_{D_{\alpha}}$ for all $f \in D_{\alpha}$, and Lemma 3.2 implies that

$$|C_{\Phi}(f)(z)| \le CC_{\beta} ||f||_{D_{\alpha}} (1 - |z|^2)^{-\beta/2}$$

for all $z \in D$ and all $f \in D_{\alpha}$. Fix $z \in D$ with $|\Phi(z)| > r_0$, and let $w = \Phi(z)$. A calculation shows that

$$|C_{\Phi}(f_w)(z)| > \frac{(1-|w|^2)^{(\alpha+2)/2}}{\alpha+1} \{ (1-|w|^2)^{-(\alpha+1)} - 1 \}$$

$$\geq \frac{(1-|w|^2)^{-\alpha/2}}{\alpha+1} \{ 1 - (1-r_0^2)^{\alpha+1} \}.$$

The argument shows that

$$(1 - |w|^2)^{-\alpha/2} \le CC_\beta ||f_w||_{D_\alpha} (1 - |z|^2)^{-\beta/2} \frac{\alpha + 1}{1 - (1 - r_0^2)^{\alpha + 1}}$$

for all z with $|\Phi(z)| > r_0$. Since $||f_w||_{D_\alpha} \approx 1$ for $w \in D$ $(w \neq 0)$, this yields a constant K such that

$$(1 - |z|^2)^{\beta/2} \le K(1 - |\Phi(z)|^2)^{\alpha/2}$$

for all $z \in D$ with $|\Phi(z)| > r_0$, where the constant K depends only on α, β and r_0 . This completes the proof of the first assertion.

Next suppose that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact. By way of contradiction, suppose that $\varepsilon_0 > 0$ and that there is no r_1 as described. Thus there is a sequence $z_n \subset D$ with $|\Phi(z_n)| > 1 - 1/(n+1)$ and

$$1 - |z_n|^2 \ge \varepsilon_0 (1 - |\Phi(z_n)|^2)^{\alpha/\beta}$$

for $n=1,2,\ldots$ Let $w_n=\Phi(z_n)$. Since $|w_n|\to 1$, it follows that $f_{w_n}\to 0$ uniformly on compact subsets of D as $n\to\infty$. Since $\|f_{w_n}\|_{D_\alpha}\leq C$ for all n and since $C_\Phi:D_\alpha\to D_\beta$ is compact, there is a subsequence which we continue to call w_n for which $\|f_{w_n}\circ\Phi\|_{D_\beta}\to 0$. Lemma 3.2 yields

$$(1 - |z_n|^2)^{\beta/2} |f_{w_n}(\Phi(z_n))| \le C_\beta ||f_{w_n} \circ \Phi||_{D_\beta}.$$

Estimates as in the proof of part (1) imply that the left-hand side of the previous inequality is bounded away from 0. This contradiction completes the proof. \Box

Theorem 3.4. Suppose that Φ is of finite valence and $0 < \beta < \alpha$.

- (1) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded $\Leftrightarrow N_{\beta}(w) = O((1-|w|^2)^{\alpha})$ as $|w| \to 1$.
- (2) $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact $\Leftrightarrow N_{\beta}(w) = o((1-|w|^2)^{\alpha})$ as $|w| \to 1$.

Proof. Sufficiency of the conditions involving N_{β} was noted previously in this section.

Assume that each $w \in D$ has no more than M preimages, counting multiplicities, under Φ . There exists R, 0 < R < 1, such that $\log(1/|z|) < 1 - |z|^2$ for all z with R < |z| < 1.

Now let $w = \Phi(z)$, and assume that |w| > R. Since $\Phi(0) = 0$, the Schwarz lemma implies that $|z| \ge |w| > R$, and thus

$$N_{\beta}(w) = \sum (\log(1/|z|))^{\beta} \le \sum (1 - |z|^2)^{\beta}$$

where both sums extend over all preimages of w. Since $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is bounded, part (1) of Theorem 3.3 yields

$$N_{\beta}(w) \le MC(1 - |w|^2)^{\alpha}$$

for all w with |w| > R. Thus $N_{\beta}(w) = O((1 - |w|^2)^{\alpha})$ as $|w| \to 1$. This completes the proof of the first assertion.

Next assume that $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact. Let $\varepsilon > 0$, and let $\gamma = (\varepsilon/M)^{1/\beta}$. Since $\gamma > 0$, part (2) of Theorem 3.3 provides r_1 such that

$$1 - |z|^2 < \gamma (1 - |\Phi(z)|^2)^{\alpha/\beta}$$

for all z with $|\Phi(z)| > r_1$. We may assume that $r_1 > R$, so that the previous estimate on $\log(1/|z|)$ holds. Thus

$$N_{\beta}(w) \le \sum (1 - |z|^2)^{\beta} \le \gamma^{\beta} (1 - |w|^2)^{\alpha} M = \varepsilon (1 - |w|^2)^{\alpha}$$

for all $w \in D$ with $|w| > r_1$. The proof is complete. \square

Corollary 3.5. Let P > 1, and let $\alpha > 0$.

- (1) If $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded (respectively, compact) and if $\widehat{\alpha} > \alpha$, then $C_{\Phi}: D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded (compact).
- (2) Suppose that Φ is finite valent. If $C_{\Phi}:D_{\alpha}\to D_{\alpha/P}$ is bounded (respectively, compact) for some $\alpha>0$, then $C_{\Phi}:D_{\alpha}\to D_{\alpha/P}$ is bounded (compact) for all $\alpha>0$.

Proof. Suppose that $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded, and let $\widehat{\alpha} > \alpha$. Suppose $w \in S(\zeta, \delta) \cap \Phi(D)$ where $\delta < 1 - R$ and R is as described in the previous proof. Then

$$R < 1 - \delta < |\Phi(z)| \le |z|$$

for all z with $\Phi(z) = w$ and part (1) of Theorem 3.3 yields

$$N_{\widehat{\alpha}/P}(w) \le \sum (\log 1/|z|)^{\alpha/P} (1 - |z|^2)^{(\widehat{\alpha} - \alpha)/P}$$

$$\le C (1 - |w|^2)^{\widehat{\alpha} - \alpha} N_{\alpha/P}(w)$$

$$< C \delta^{\widehat{\alpha} - \alpha} N_{\alpha/P}(w).$$

It follows that

$$\nu_{\widehat{\alpha}/P}(S(\zeta,\delta)) \le C\delta^{\widehat{\alpha}-\alpha}\nu_{\alpha/P}(S(\zeta,\delta))$$

for $|\zeta|=1$ and $\delta<1-R$. Since $C_{\Phi}:D_{\alpha}\to D_{\alpha/P}$ is bounded, Theorem 3.1 yields $\nu_{\alpha/P}(S(\zeta,\delta))< C\delta^{\alpha+2}$ for all $|\zeta|=1$ and $0<\delta\leq 2$, where C depends only on α and P. Thus,

$$u_{\widehat{\alpha}/P}(S(\zeta,\delta)) \le C \, \delta^{\widehat{\alpha}+2}$$

for all $|\zeta|=1$ and all small δ . This is sufficient to establish that $\nu_{\widehat{\alpha}/P}$ is $\widehat{\alpha}$ -Carleson. Part (1) of Theorem 3.1 yields that $C_{\Phi}:D_{\widehat{\alpha}}\to D_{\widehat{\alpha}/P}$ is bounded. The proof of the statement about compactness is similar. This completes the proof of part (1).

Next suppose that Φ is finite valent and $C_{\Phi}: D_{\alpha} \to D_{\alpha/P}$ is bounded for some $\alpha > 0$. Theorem 3.4 yields $N_{\alpha/P}(w) = O((1 - |w|^2)^{\alpha})$ as $|w| \to 1$. Let $\widehat{\alpha} > 0$. Since $N_{\widehat{\alpha}/P}(w) \approx (N_{\alpha/P}(w))^{\widehat{\alpha}/\alpha}$ [13], it follows that

$$N_{\widehat{\alpha}/P}(w) = O((1-|w|^2)^{\widehat{\alpha}})$$

as $|w| \to 1$. Theorem 3.4 implies that $C_{\Phi}: D_{\widehat{\alpha}} \to D_{\widehat{\alpha}/P}$ is bounded.

The proof of the statement about compactness is omitted.

The next two results are in comparison with Theorem 2.2.

Theorem 3.6. The condition $\|\Phi\|_{\infty} < 1$ is not necessary for $C_{\Phi}: D_{\alpha} \to D_{\beta}$ to be compact in the case $\alpha > \beta > 0$.

Proof. Fix $\alpha > \beta > 0$, and fix η with $\eta > \alpha/\beta$. Let $P \subset \overline{D}$ be a polygon with $P \cap \partial D = \{1\}$ and with angular aperture π/η at 1. Let

 Φ be a Riemann map from D onto the interior of P. Then Φ extends to a homeomorphism of \overline{D} onto P, and we may assume that $\Phi(1) = 1$. As in [13] it follows that

$$N_1(w) = O((1-|w|^2)^{\eta})(|w| \to 1).$$

Since Φ is univalent, $N_{\beta}(w) \approx (N_1(w))^{\beta}$. Thus,

$$N_{\beta}(w) = O((1 - |w|^2)^{\eta\beta})(|w| \to 1)$$

and

$$\frac{N_{\beta}(w)}{(1-|w|^2)^{\alpha}} \le C(1-|w|^2)^{\eta\beta-\alpha} \longrightarrow 0$$

as $|w| \to 1$. By Theorem 3.4, $C_{\Phi}: D_{\alpha} \to D_{\beta}$ is compact.

The proof of the next theorem is a minor adaptation of a result of Jovović and MacCluer [4, page 232].

Theorem 3.7. Let $\alpha > 0$. The condition $\|\Phi\|_{\infty} < 1$ is not necessary for $C_{\Phi} : D_{\alpha} \to D_0$ to be compact.

Proof. An example will be given in which $\|\Phi\|_{\infty} = 1$ and C_{Φ} : $D_1 \to D_0$ is compact. Let Ω be a simply connected region in \overline{D} with $\Omega \cap \partial D = \{1\}$. In a neighborhood of 1, assume that the region Ω is symmetric about the x-axis, and the upper boundary of Ω is given by $y = (1 - x^{1/2})^3$. Let Φ be a univalent map carrying D onto the interior of Ω . A calculation yields

$$u_0(S(1,\delta)) = 2 \int_{1-\delta}^1 (1-x^{1/2})^3 dx = o(\delta^3).$$

Since it suffices to verify the Carleson condition at $\zeta=1$, Theorem 3.1 now implies that $C_{\Phi}:D_1\to D_0$ is compact, and it follows easily that $C_{\Phi}:D_{\alpha}\to D_0$ is compact for $0<\alpha\leq 1$. The example can be adapted for any natural number $n\geq 2$, using the function $y=(1-x^{1/2})^{n+2}$. Calculations as above show that $C_{\Phi}:D_n\to D_0$ is compact. \square

The final result relates this work to the work of Smith [13] and Riedl [8]. In what follows, A^p denotes the standard unweighted Bergman

space. Smith proved that, for $0 , <math>C_{\Phi} : A^p \to H^q$ is bounded (respectively, compact) if and only if $N_1(w) = O((1-|w|)^{2q/p})$ (respectively, little oh). Riedl proved that, for $0 , <math>C_{\Phi} : H^p \to H^q$ is bounded if and only if $N_1(w) = O((1-|w|)^{q/p})$, with the analogous statement for compactness. Smith [13] obtained the corollary that for $\eta \ge 2$, $C_{\Phi} : H^p \to H^{p\eta}$ is bounded for some (for all) p > 0 if and only if $C_{\Phi} : A^p \to H^{p\eta/2}$ is bounded for some (for all) p > 0. The analogous statement holds for compactness.

Fix $\eta \geq 2$ and assume that Φ is of finite valence and p > 0. By Theorem 3.4, $C_{\Phi}: D_p \to D_{p/\eta}$ is bounded if and only if $N_{p/\eta}(w) = O((1-|w|)^p)(|w| \to 1)$. Since $N_1(w) \approx (N_{p/\eta}(w))^{\eta/p}$, Smith's corollary leads to the following result. The proof is omitted.

Corollary 3.8. Let Φ be of finite valence, and let $\eta \geq 2$. The following are equivalent.

- (1) $C_{\Phi}: D_p \to D_{p/\eta}$ is bounded for some (for all) p > 0.
- (2) $C_{\Phi}: A^p \to H^{p\eta/2}$ is bounded for some (for all) $p \geq 0$.
- (3) $C_{\Phi}: H^p \to H^{p\eta}$ is bounded for some (for all) p > 0.

The statements remain equivalent if "bounded" is replaced by "compact".

REFERENCES

- 1. C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, New York, 1995.
- 2. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237–241.
- 3. H. Hunziker and H. Jarchow, Composition operators which improve integrability, Math. Nachr. 152 (1991), 83–99.
- 4. M. Jovović and B.D. MacCluer, Composition operators on Dirichlet spaces, Acta Sci. Math. (Szeged) 63 (1997), 229-247.
- 5. D.H. Luecking, Forward and reverse Carleson inequalities for functions in the Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85–111.
- **6.** B.D. MacCluer, Composition operators on S^p , Houston J. Math. **13** (1987), 245–254.
- 7. B.D. MacCluer and J.H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canadian J. Math. 38 (1986), 878–906.

- 8. R. Riedl, Composition operators and geometric properties of analytic functions, thesis, University of Zurich, 1994.
- 9. J.H. Shapiro, Compact composition operators on spaces of boundary-regular holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 49-57.
- 10. ——, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
- 11. —, The essential norm of a composition operator, Annals Math. 125 (1987), 375-404.
- 12. J.H. Shapiro and P.D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on H^2 , Indiana Univ. Math. J. 23 (1973), 471–496.
- 13. W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331–2348.
- 14. W. Smith and L. Yang, Composition operators that improve integrability on weighted Bergman spaces, Proc. Amer. Math. Soc. 126 (1998), 411–420.
- 15. N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (1998), 2013–2023.

University of New Hampshire, Durham, NH 03824 Email address: rah2@unh.edu