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SOME PROPERTIES OF THE MULTIPLICITY
SEQUENCE FOR ARBITRARY IDEALS

R. CALLEJAS-BEDREGAL AND V.H. JORGE PEREZ

ABSTRACT. In this work we prove that the Achilles-
Manaresi multiplicity sequence, like the classical Hilbert-
Samuel multiplicity, is additive with respect to the exact se-
quence of modules. We also prove the associativity formula
for this multiplicity sequence. As a consequence, we give new
proofs for two results already known. First, the Achilles-
Manaresi multiplicity sequence is an invariant up to reduction,
a result first proved by Ciuperca. Second, I C J is a reduc-
tion of (J, M) if and only if co(Ip, Mp) = co(Jp, Mp) for all
p € Spec (A), a result first proved by Flenner and Manaresi.

1. Introduction. The integral closure of an ideal is an algebraic
object which has had many applications in several aspects of algebraic
geometry and commutative algebra. Apart from being studied for
its own interest in the multiplicative theory of ideals, it has been
extremely important in solving problems of singularity theory. In
fact, Teissier [13] used the multiplicity and the integral closure of
the product of two m-primary ideals in a local ring (A, m) in order to
study the Whitney equisingularity of a 1-parameter family of isolated
hypersurface singularities.

Let (A, m) be a local Noetherian ring, and let I C J be two ideals
in A. Recall that I is a reduction of J if IJ® = J"*! for sufficiently
large n. The notions of reduction and integral closure are related as
follows: I is a reduction of J if and only if they have the same integral
closure. If I C J are m-primary and [ is a reduction of J then it is well
known and easy to prove that the Hilbert-Samuel multiplicities e(J, A)
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and e(I, A) are equal. Rees proved his famous result, which nowadays
has his name, that the converse also holds:

Theorem 1.1 (Rees’s theorem [12]). Let (4, m) be a quasi-unmized
local Ting, and let I C J be m-primary ideals of A. Then, the following
conditions are equivalent:

(i) I is a reduction of J;
(ii) e(J, A) = e(I, A).

The notion of Hilbert-Samuel multiplicities had been extended for
arbitrary ideals, in the analytic case, by Gaffney and Gassler by means
of the Segre numbers [8] and, in the algebraic case, by Achilles and
Manaresi in [1]. Achilles and Manaresi introduced, for each ideal
I of a d-dimensional local ring (A, m), a sequence of multiplicities
co(I,A),...,ca(I,A) which generalize the Hilbert-Samuel multiplicity
in the sense that, for m-primary ideals I, ¢o(I, A) is the Hilbert-Samuel
multiplicity of I and the remaining cx(I, A), k = 1,...,d, are zero.
Furthermore, Achilles and Rams in [2] proved that this multiplicity
sequence coincides with the sequence consisting of the Segre numbers.

In this paper, by using the techniques developed by Flenner and
Vogel in [7] (see also [6, Theorem 1.2.6]), we prove the additivity
property for the Achilles-Manaresi multiplicity sequence (Theorem
1.2). This property for the coefficient ¢ is also a known result.
It is proved for example in [6, Proposition 6.1.7] (in that book the
coefficient j4 is the coeflicient ¢y with the notation from this paper).
As a consequence, we give new proofs for two results already known.
First, the Achilles-Manaresi multiplicity sequence is an invariant up
to reduction (Theorem 1.3), a result first proved by Ciuperca in [4].
Second, I C J is a reduction of (J, M) if and only if co(I,, M,) =
co(Jp, My) for all p € Spec (A) (Theorem 1.4), a result first proved by
Flenner and Manaresi in [5]. In the literature, the coefficient ¢ (I, M)
is also referred to as the j-multiplicity of (I, M).

Precisely, we prove the following results:

Theorem 1.2 (Additivity). Let (A, m) be a local ring, and let I be
an ideal of A. Let 0 — My — My — My — 0 be an exact sequence of
finitely generated A-modules and D an integer with D > d := dim M.
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Then we have that
e (I, My) = ¢ (I, Mo) + ¢ (I, M2)

forallk=0,...,D.

Theorem 1.3. Let (A,m) be a local ring, and let M be a d-
dimensional finitely generated A-module. Let I C J be proper arbitrary
ideals of A such that htpr(I) > 0. If I is a reduction of (J, M), then
ck(I,M) =cp(J,M) for allk=0,...,d.

Theorem 1.4. Let (A,m) be a local Noetherian ring, and let M
be a quasi-unmized finitely generated d-dimensional A-module. Let
I C J Cm be ideals of A. Then the following are equivalent.

(i) I is a reduction of (J, M).
(i) co(Ip, Mp) = co(Jp, My) for all p € Spec (A).
(iil) co(Ly, My) < co(Jp, My) for all p € Spec (A).

2. Achilles-Manaresi multiplicity sequence. In this section
we recall some well-known facts on Hilbert functions and Hilbert
polynomials of bigraded modules, which will be essential for defining
the Achilles-Manaresi multiplicity sequence associated to a pair (I, M).

Let R = ®7j_¢R:; be a bigraded ring, and let T = &75_,T; ; be
a finitely generated d-dimensional bigraded R-module. Assume that
Ry is an Artinian ring and that R is finitely generated as an Ry -
algebra by elements of R;o and Rg ;. Since the length {g, (75 ;) of
T; ; is finite, we can consider the Hilbert function hr(i,j) of T, given
by hr(i,7) := LR, ,(Ti,;), as a function in two variables i and j. This
function was first studied by van der Waerden [14] who proved that
there is a polynomial Pr(i,j) of total degree at most d — 2 such that
LR, o (Ti,j) = Pr(i,j) for 4, j sufficiently large [14, Theorem 7, page 757;
Theorem 11, page 759]. We can write Pr(i,j) in the form

. i+ k 41
PT(Zaj): Z ak,l(T) (Z—Z > <J—;_ >7
k>0
k+1<d—2

with akJ(T) € Z and akJ(T) >0ifk+1l=d—2.
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Let h(Tl’O)(i,j) = ZZ:O hr(u,j) be the so-called sum transform of h
with respect to the first variable, and let

hY (i, 5) = Zh(“’ ZZhTuv

v=0 v=0u=0
From this description it is clear that, for ¢, j sufficiently large, h(1 % and

hgpl D hecome polynomials with rational coefficients of degree at most
d — 1 and d, respectively. As usual, we can write these polynomials in
terms of binomial coefficients

(1,0 (1,0 i+ k Jj+l
P (.7) Zakl(T)<k><l>
k>0
k+1<d—1

with a( ; )(T) integers and aé do)k (T) >0, and

i+ k j+ 1

A0 = Y o (1) (U7
k>0
k+i<d

with a( ; )(T) integers and afc ) L(T) > 0.

Since

he(iyg) = h5 00, 5) — V(i — 1, 7),

we get a,(ciolzl(T) =a(T) for k,1 >0, k+1<d-2.

Similarly, we have
he ) = B (5,) = G0, G - 1),
o (1,1) 210
which implies that a; ;/; (T) = ay ; ( )for k,0 >0, k+1<d—1.

Definition 2.1. For the coefficients of the terms of highest degree
in Pq(}’l), we introduce the symbols

er(T) = al ) (1), k=0,....d

which are called the multiplicity sequence of T
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Let A be an arbitrary Noetherian ring, I C A an ideal and M an
A-module. Consider the Rees ring of I:

R(I,A):= @ I"t" C Alt]

neN

and the extended Rees ring of I

Re(I,A) = @ I"t" C Alt,t 1],

neZ

where we set I = A for n < 0.

Analogously, consider the Rees module

R(I, M) := @ I"Mt" C M[t]
neN

and the extended Rees module

Re(I, M) := @I"Mt" C Mlt,t71].
nez

Notice that R(I, M) and R.(I, M) are modules over R(I,A) and
R.(I,A), respectively. Obviously, R.(I, M)/t *R.(I,M) is just the
associated graded module G;(M).

We define next the c¢P-multiplicity sequence associated to an ideal.
Let (A, m) be a local ring, S = @,cnS; a standard graded A-algebra
(with Sg = A), N = ®jenN; a finitely generated graded S-module,

and '
m'N. j

T=GulN) = @ 5y,
i,jEN
the bigraded R-module with
miSj
R:=Gn(S) = @ mitls;
i,jEN

Notice that Ry o = A/m is a field.
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Definition 2.2. Consider an integer D such that D > dim N. For
alk=0...,D, we set

0 if dim N < D
D(N) —
N = () ifdimN =D

which is called the cP-multiplicity sequence of N. Moreover, we set
ci(N) := cdmN(N),

First we show that this ¢P-multiplicity sequence behaves well with
respect to short exact sequences.

Proposition 2.3. Let0 — Ny — N1 — Ny — 0 be an exact sequence
of finitely generated graded S-modules. Set d := dim N1. Then we have
that (1,1) (1,1) (1,1)

h’To7 (Zaj) + h’T27 (Za]) o h’Tl7 (Za])
s, for i,7 > 0, a polynomial of degree at most d — 1, where Ty :=
Gm(Ns). In particular, for D > d we have that
e (V1) = ¢ (No) + ¢, (N2)

forallk=0,...,D.

Proof. Let Mg := R.(m, Ng) be the extended Rees module associated
to Ng, s = 0,1,2. For any bigraded module T' we denote by hr(i, 5)
the Hilbert-Samuel function of T.

Set M(l) = ker(M1 — Mg) = EBiGZ,jEN(NO)j ﬂmi(Nl)j uitj. We
consider the natural diagram

0 — My(1,0) ——— My(1,0) ——— M5(1,0) ——— 0

0 M}, M, M, 0

which gives an exact sequence of cokernels

!

M,
(1) 0— G := u*ll(iié — Gu(N1) — Gu(N2) — 0.
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Denote the cokernel of the natural injection My — M} by L. Using
the diagram

0 ——— My(1,0) — M}(1,0) L(1,0) 0
.
0 M, M} L 0

the snake-lemma yields an exact sequence
(2) 0—V — Gu(Ny) — G — W —0,

where V and W are the kernel and cokernel of w=' : L(1,0) — L
respectively, i.e., the sequence

(3) 00—V —L(1,0) —L—W —0.

For n < 1, the coefficient modules of 4™ in My = R.(m, Np) and in
MY, coincide; hence ,the action of u~! on L is nilpotent. Therefore, the
dimension of L is at most that of G’, which is bounded by d. Thus, all
modules occurring in the exact sequence (3) have dimension at most d.

Now (1), (2) and (3) are exact sequences of finitely generated modules
of dimension at most d.

Set Ts := G (Ns), s =0,1,2. From (1) and (2) we have
() Y 6d) + bV 6d) - bV d) = B ) - D ).
Because of (3) we have

g WUED V6D = 1,0) - b )
= h(0 1)(z—i—l 7)-

Hence by (4) and (5)

R G g) + ki V(0 5) = BV (6 5) = RV G+ 1, 5)

is a polynomial of degree at most d — 1, which concludes the proof. O
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The above general definition of a cP-multiplicity sequence for a
graded modulo allows us to define next the main multiplicity sequence
associated to an ideal:

Definition 2.4. Let (A, m) be a local ring, I C A an ideal of A,
M a finitely generated A-module and N := G;(M)). Let D > dim M.
We set cP(I,M) := cP(N) for all k = 0,...,D; in the case where
D = dim M we call the sequence

cx(I, M) := ™M1 M), forall k=0,...,dim M

the Achilles-Manaresi multiplicity sequence associated to the ideal I
with respect to M.

To be more explicit, consider the bigraded ring R := Gz (Gr(A)) and
the bigraded R-module T' := Gn(G1(M)). Then R = &75_R; ; and

T = &%_oTi,; with

R; ;= (' + ) / (m**t1[ 4 /1)
and
T,; = (m'IM+ ' M) ) (m*T' M+ M),
respectively.

Observe that Ry = A/m is a field and T has dimension d = dim M.
We denote the Hilbert-Samuel function (g, ,(T;;) of T'= G (Gr(M))
by k1) (i, ) and its Hilbert sum by h(-V(i, ). That is,

RV, 5) =373 h(,g),

v=0u=0

which for ¢, 7 > 0 can be written as

d
1) /e . ek, M) 4 .q_
WGt ) = 3 LM g

where --- means lower degree terms.
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Remark 2.5. The coeflicient just defined are a generalization of the
classical Hilbert coefficients. Indeed, when the ideal I is m-primary
then co(I,M) = e(I,M) and c1(I,M) = -+ = caimm({,M) = 0. In
fact, if I is m-primary, there exists a ¢ such that m* C I and then, for
i, j large enough,

bty (i 3) = €M/ TTH M),
Therefore, the Achilles-Manaresi multiplicity sequence generalizes the
Hilbert-Samuel multiplicity for m-primary ideals.

3. Integral closure and reduction. For completeness, we recall
next some properties of reduction of ideals with respect to an A-module
M in a Noetherian ring A.

An ideal I C J is said to be a reduction of (J, M) if [J"M = J" 1M
for at least one positive integer n.

Next we define a notion for an element of the ring A to be integral
over a pair (J, M). As for the authors’ knowledge, this definition is new.
Since it generalize the usual definition of integral dependence and it is
also equivalent to the notion of reduction of a pair (J, M), as shown in
Proposition 3.3, we think it is interesting to include it here, even though
we will only use it at one place in this work, namely Theorem 4.6.

Definition 3.1. Let M be an A-module, and let I be an ideal of A.
An element z € A is said to be integral over (I, M) if it satisfies the
following relation

2"+ a2+ ta, € (0: M)

with n € N and a; € I* for alli = 1,...,n. The set of all elements in
A which are integral over (I, M) is denoted by (I, M), and it is called
the integral closure of (I, M).

Remark 3.2. (i) Notice that if M is a faithful A-module, then
(I,M)=1.

(i) Notice that z € (I, M) if and only if Zz € I + (0: M)/(0: M) as
an element in A/(0: M ) nce, (I, M) is an ideal of A which satisfies
the relation I 4 (0 : M) ) CVI+(0:M).
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Proposition 3.3. Let I C J be ideals of A, and let M be an A-
module. Then the following conditions are equivalent:

(i) J is integral over (I, M);
(ii) I is is a reduction of (J, M);
(iii) the Rees module R(J, M) is finite over the Rees ring R(I, A).

Proof. We prove first the equivalence (i) < (ii). Notice that by
Remark 3.2 we have that J is integral over (I, M) if and only if
J+(0: M)/(0: M) is integral over I + (0 : M)/(0 : M) as ideals
in A/(0 : M), which is equivalent to I + (0 : M)/(0 : M) being a
reduction of J + (0 : M)/(0 : M) as ideals in A/(0 : M). But we
know that this happens if and only if (I 4+ (0: M))(J + (0: M))"/(0:
M) = (J+ (0 : M))"*t/(0 : M) for some n € N or equivalently
IJ"+(0: M)/(0: M) =J""+(0: M)/(0: M) for some n € N.
But this last equality is equivalent to IJ"M = J"t!M. Hence, the
result follows. The equivalence of (ii) and (iii) follows by [5, Lemma
23 (a)]. o

Proposition 3.4. Let (A,m) — (B,n) be a flat local homomorphism
of local rings such that mB = n, and let I be an ideal of A. Then
ck(I,A)=cp(IB,B) for allk=0,...,d.

Proof. 1t is well known that dim B = dim A + dim (B/mB), see,
e.g., [11, (13.B)]. Hence, since mB = n, we have that dim B = dim A.
Moreover, if M is an A-module and the length {5(B/mB) is finite,
then {g(M ®4 B) = {p(B/mB)-£4(M) (see, for example, [10, Lemma
(1.28), page 13]). Note that ¢g(B/mB) = 1 since mB = n. Thus,
EB(M XA B) = EA(M)

Putting M = (m*[7+17+1) /(m+1[9 + [7+1) with nonnegative integers
t and j and J := I B, we obtain

M®sB=(mF +F™)B/(wm*tF +F™)B
o~ (niJj + Jj+1) / (ni+1Jj + Jj+1).
Hence,
la (P + D) ) (P + )
=g ((n'J7 +J7Y) [ (017 4 J7HY))
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The result follows now by definition of the Achilles-Manaresi multiplic-
ity sequence. O

4. Main results. In this section we prove our main results. We
prove first that the Achilles-Manaresi multiplicity sequence, like the
classical Hilbert-Samuel multiplicity, is additive with respect to exact
sequence of modules. As for the case of Hilbert-Samuel multiplicity, we
prove the associativity formula for the Achilles-Manaresi multiplicity
sequence. The properties for the coefficient cg are also known results.
They are proved for example in [6, 6.1.7, 6.1.8]. As a consequence,
we give new proofs for two results already known. First, the Achilles-
Manaresi multiplicity sequence is an invariant up to reduction, a result
first proved by Ciuperca in [4]. Second, I C J is a reduction of (J, M)
if and only if co (1, M) = co(Jp, M) for all p € Spec (A), a result first
proved by Flenner and Manaresi in [5]. In the literature, the coefficient
co(I, M) is also referred to as the j-multiplicity of (I, M).

Theorem 4.1 (Additivity). Let (A, m) be a local ring, and let I be
an ideal of A. Let 0 — My — My — Ms — 0 be an exact sequence of
finitely generated A-modules and D an integer with D > d := dim M;.
Then

(1,1) (1,1) (1,1)
h(I,MO)(r, n) + h(I,Mz)(T’ n) — h(I,Ml)(T’ n)
is, for r,n > 0, a polynomial of degree at most d— 1. In particular, we

have that
cP (I, My) = cP (I, My) + cP (I, M>)

forallk=0,...,D.

Proof. Let N; := R (I, M;) be the extended Rees module associated
to M;. Set N§ := ker(Ny — N3) = @®nezMo N I"M;t". We consider
the natural diagram
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which gives an exact sequence of cokernels

i

N,
(6) 0— G := t*l.?\f’ — G(My) — G1(Mz) — 0.
0

Next consider the following commutative diagram

0 ——— No(1) Ny(1) L(1) 0
e e
0 Ny Ny L 0
where L := coker (N9 — N{}). The snake-lemma yields an exact
sequence
(7) 0—U— Gi(My) — G —V —0.

where U := ker(L(1) — L) and V := coker (L(1) — L). We also have
the exact sequence

(8) 0—U—L(1)—L—V—0.

For n < 1 the coefficient modules of t" in R.(I,My) and in N}
coincide, hence the action of ¢t~! on L is nilpotent. Therefore, the
dimension of L is at most that of G, which is bounded by d. Thus, all
modules occurring in the exact sequence (8) have dimension at most d.

For any bigraded algebra F = @, neNErn, consider the Hilbert-
Samuel functions hg(r,n) := ¢(E, ) and their Hilbert sums

hg’l)(r, n) = Z Z hg(u,v).

v=0u=0

Now (6), (7) and (8) are exact sequences of graded G(A)-modules
of dimension at most d. Hence, we may apply the same arguments as
in the proof of Proposition 2.3 along these sequences and obtain

(1,1) (1,1) (1,1)
hir a) (T 1) + B agy (1) = By (7 m)
= h(Ll’l)(T +1,n) — h(Ll’l)(r, n)

= hg)Yl)('f' + 1,n)
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which, for r,n > 0, is a polynomial of degree at most d — 1 because L
has dimension at most d. u]

A standard application of the additivity formula is the following so-
called associativity formula.

Corollary 4.2 (Associativity). Let (A,m) be a local ring, let I
be an ideal of A, and let M be a d-dimensional finitely generated A-
module. Then,

cr(I, M) =Y ex(TA/p, Afp) L(My),
p

where the sum is taken over all prime ideals p such that dim(A/p) = d.

Proof. We write o := } {(M;) where the sum is taken over all
prime ideals p such that dim(A/p) = d, and proceed by induction on
o.If o = 0 then M = 0 and so the formula is obvious. If ¢ > 0,
choose a prime ideal py with dim(A/py) = d and ¢(M,,) > 0; then
po € Supp(M). Thus M contains a submodule N isomorphic to
A/po. If dimM/N < d, then 0 = ¢(M,,) = 1 and by Theorem 4.1
ex(I, M) =ci(I,N). If dim M/N = d, then o(M/N) < o(M) = o and
so by induction hypothesis

cr(I, M/N) = cr(IA/p, Afp) L((M/N)p).
P

Now ¢(M,) = L((M/N),) for p # po and £(M,,) = L((M/N),,) +
1. Since by Theorem 4.1 cx(I,M) = ck(I, M/N) + cx(I,A/po), the
assertion follows. |

The next theorem is one of the main results of this work, which says
that the Achilles-Manaresi multiplicity sequence is an invariant of I up
to reduction.

Theorem 4.3. Let (A,m) be a local Noetherian ring, and let
M be a finitely generated A-module of dimension d. Let I C J
be proper arbitrary ideals of A. If I is a reduction of (J,M), then
ek(I, M) = cx(J,M) for allk =0,...,d.



1822 R. CALLEJAS-BEDREGAL AND V.H. JORGE PEREZ

Proof. Since I is a reduction of (J, M), we have that I(J:M) =
JHIM = J(J'M)) for some i > 0. Hence, we have that G;(J:M) =
Gs(J'M), and thus c¢i(I,J:M) = c&(J,J:M) for all k = 0,...,d.
On the other hand, set M; := J'M/Ji*'M for j > 0. Notice
that JM; = 0 = IMj; hence, G[(Mj) = M; = GJ(Mj) and then
(I, M) = ci(J,M;) for all k=0,... ,d.

Using the additivity of the c?-multiplicity sequence as proven in
Theorem 4.1, we now conclude that

i—1

eI, M) = cf(1,J° M)+ c}(I, M)

The above theorem was also proved by Ciuperca by different methods
[4, Proposition 2.7]. Ciuperca proved first that the Achilles-Manaresi
multiplicity sequence behaves well with respect to general hyperplane
sections and then, applying [1, Proposition 2.3|, he used induction on
the dimension of the local ring. Our approach is much simpler.

Example 4.4. Let A = k[z,y,z] be the ring of polynomials
in three variables over the field k, and let m = (z,y,z) be the
maximal homogeneous ideal. As in the local case, one can define
the Achilles-Manaresi multiplicity sequence. For any ideal I of any
d-dimensional ring A, we denote by c(I,A) the Achilles-Manaresi
multiplicity sequence of I, ¢(I,A) = (co(I, A),... ,cq(l,A)).

(1) Let I = (z2%,y%2%), and let J = (2*22,y%2*, 22y23). Notice that
JI = J?, i.e., I is a reduction of J. Using the intersection algorithm
[1, Theorem 4.1] for computing the Achilles-Manaresi multiplicity
sequence, one easily shows that in this particular case c¢(I,A) =
c(J,A) =(0,24,2,0).

(2) Let A = Ek[z,y] be the ring of polynomials in two variables
over the field k, and let m = (z,y) be the maximal homogeneous
ideal. Let I = (2°y3,2%y") and J = (z°y3,22y",2%) be ideals of
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A. Then a similar computation shows that ¢(J,A) = (29,5,0) and
e(I,A) = (40,3,0). Hence, those ideals do not have the same integral
closure.

4.1. Local criterion for reduction. In this section we give
a criterion for reduction of ideals involving the cg-multiplicity in all
localizations in prime ideals.

In order to be able to prove the main result in a simple way, we need
some notations. Let (A4, m) be a Noetherian local ring. Given a finitely
generated A-module IV}, the extended Rees module

Re(m,N;) == @miNjui
i€Z
will be denoted by P;. It gives rise to the associated graded module

P
Gj = u—IJPj = Gm(N]) = @[G]]z

iEN

where )
mle
Gjli = v
métiN;

In general, given any graded module F', its ¢th homogeneous component
will be denoted by F;, i.e., FF = ®;eNF.

Lemma 4.5. Let N;, j =0,1,2, be finitely generated A-modules and
0— Ny — Ny — Ny — 0

an ezact sequence. Set Py := ker(Py — P»). Let L be the cokernel of
the natural embedding Py — Pj. Let U and V denote the kernel and
cokernel of the map u~! : L(1) — L, respectively. Then we have that

(i) £([G1]e) = £([Goli) + €([G2i) — [€(U7) — £(Vi)];
(i) 0 > U — L(1) > L -V — 0 is an exact sequence and

(iii) all modules occurring in (ii) have dimension at most dim(Ny).

Proof. The proof is analogous to that of [6, Theorem 1.2.6.]. o
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The next theorem provides a crucial step in the proof of our main
result of this section.

Theorem 4.6. Let (A, m) be a local Noetherian ring, I C J ideals of
A, and let M be a finitely generated d-dimensional A-module. Assume
that I, is a reduction of (Jq, My) for every prime q of A with q # m.
Then

(i) ex(I,M) = cp(J,M) for all k = 1,...,d and co(I,M) >
C(](J,M).

(ii) Suppose that M is a quasi-unmized A-module. If co(I, M) <
co(J, M), then I is a reduction of (J, M).

Proof. We may factor out the annihilator of M to assume that M is
a faithful A-module. Passing to the completion, we might assume that
A, and hence M, is complete (see Proposition 3.4 and [9, Corollary
(4.12)]). In particular, A is equidimensional of dimension d in the
setting of (ii). Theorem 4.3 shows that ¢ (I, M) does not change when
we replace I by the ideal generated by the elements in J that are
integral over I on M. Notice that, by Remark 3.2 (i), the notions of
being integral over (I, M) and over I coincide. Thus, by our assumption
on I and J we may suppose that JM/IM has finite length over A.

For any j € N, consider the following exact sequences of A-modules

JIHLM JIM JIM

(9) 0_>IJ'+1M_>IJ'+1M_>JJ'+1M_>O
and

10 0 M JIM JIM 0

(10) oM mhM DM

Applying Lemma 4.5 (i) to the exact sequence (9), we have that

' JIM _ JIM i, JITIM
11 mJIM+D+HM ) \miJiM + JitiM Ii+ipm
(11)

— W06+ 1,5) = B0, )]

where L := @; jenL; ; with

[ WM JM 4 DM
DT mEJItIM 4 [N
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and where we use the fact that ¢(J7T1M)/(I’*1 M) < co and hence for

1> 0,
JITIM JITIM
Z(miJﬂ'“M—kIHlM) :g<m>-

Applying Lemma 4.5 (i) to the exact sequence (10) we have that

' JIM _ M Lo M
(12) W JIM + DM ) T\ M + M LM

— G+ 1,5) = BV, )]

where L = Gai,jENL;,j with

D__WﬂMﬂNM+F“M
b miliM + HIM

and where we use the fact that ¢(J7M)/(I?M) < oo, and hence for

i >0, _ _
. JiM _ (M
miJiM+ M)~ \TM)

By Lemma 4.5 (iii), L and L' have dimension at most d, hence
(RO (i+1,5) — b9 (0, 5)] and [RS” (i + 1, 5) — B (G, 5)] are even-
tually polynomials of degree at most d — 2. On the other hand, by
Amaos’s theorem [3], £(J7M)/(I? M) is eventually a polynomial in j of
degree at most d. Write its leading coefficient by a*(I/J; M).

Therefore, by equalities (11) and (12), we have that

J J
JUM T JUM
Xy(WﬂWﬁhW“M>+;;P(NHM>_[<NM>]

u=0

and

iy IeM
milvM + [0

u=0
are eventually polynomials of degree at most d with the same leading
coefficients. Hence, c(I,M) = ¢x(J,M) for all £k = 1,...,d and
co(I, M) =co(J, M)+ a*(I/J; M), which proves (i).
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Under the assumptions of (ii) we have that a*(I/J; M) = 0 which, by
Rees-Amaos’s theorem [12, Theorem 2.1], implies that I is a reduction
of (J,M). o

We are now ready to assemble the proof of the main theorem of this
subsection.

Theorem 4.7. Let (A, m) be a local Noetherian ring and M a quasi-
unmized finitely generated d-dimensional A-module. Let I C J C m
ideals of A. Then the following are equivalent.

(i) I is a reduction of (J,M).
(i) co(Ip, Mp) = co(Jp, My) for all p € Spec (A).
(ii) co(Iy, My) < co(Jp, My) for all p € Spec (A).

Proof. The implication (i) = (ii) follows from Theorem 4.3 and (ii)
= (iii) is trivial. To show that (i) follows by (iii), we let q be any
prime ideal of A. Assuming that (iii) holds we prove by induction
on e := dim A, that I, is a reduction of (J;, M,). If e = 0, then
the result follows because the ring A, is a local Artinian ring, and
hence the maximal ideal is nilpotent. In this case any two comparable
ideals form a reduction. Hence, we may suppose that e > 0. Let p
be any prime ideal of A such that dim A, = e —1 and p C q. Hence,
by induction hypotheses we have that I, is a reduction of (Jy,, M,).
The quasi-unmixedness assumption on M is preserved by localization.
Thus, in the local ring (Ag,qq), all the assumptions of Theorem 4.6
hold, hence I is a reduction of (Jg, My). u]

Notice that, by [1, Proposition 2.3, Corollary 3.4], the above theorem
coincides with Flenner-Manaresi’s theorem [5, Theorem 3.3]. Their
proof relies heavily on the behavior of the j-multiplicity under hyper-
plane sections and ours on the additivity property for the Achilles-
Manaresi multiplicity sequence.

Acknowledgments. The authors thank the referee for several
suggestions given to improve the presentation of this paper.
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