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APPROXIMATING EULER PRODUCTS
AND CLASS NUMBER COMPUTATION
IN ALGEBRAIC FUNCTION FIELDS

RENATE SCHEIDLER AND ANDREAS STEIN

ABSTRACT. We provide a number of results that can be
used to derive approximations for the Euler product represen-
tation of the zeta function of an arbitrary algebraic function
field. Three such approximations are given here. Our results
have two main applications. They lead to a computationally
suitable algorithm for computing the class number of an ar-
bitrary function field. The ideas underlying the class number
algorithms in turn can be used to analyze the distribution of
the zeros of its zeta function.

1. Background and motivation. The zeta function of an algebraic
object incorporates a large amount of information about its associated
object. For computational purposes, it is often necessary to compute
a large but finite number of terms in the Euler product representation
of the zeta function. Primarily, this idea has been used for regulator
and class number computation of global fields, as well as in other
applications.

Analytic class number formulas are a powerful number theoretic tool,
since they relate the class number of a global field to its zeta function.
In the 1970s and 80s, a number of algorithms for computing the class
number and, where applicable, the regulator, of an algebraic number
field by way of truncated Euler products were proposed. Quadratic
number fields were investigated by Shanks [47] and Lenstra [38], and
cubic extensions by Williams et al. [4, 17, 57]. Hafner and McCurley’s
seminal subexponential algorithm for imaginary quadratic fields [22]
was subsequently generalized to arbitrary number fields by Buchmann
et al. [8, 9] and has since undergone many improvements, especially for
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quadratic number fields. Newer methods use Bach’s improved method
for approximating Euler products [3]. In addition, the analytic class
number formula and truncated Euler products have been employed in
numerous other applications by Buchmann, Williams, and others; these
applications include proving regulator and class number computation
NP-complete [10], testing whether a real quadratic field has class
number one [51], investigating bounds on the regulator of a real
quadratic field [25], finding polynomials with high prime value density
and testing the Hardy-Littlewood Conjecture F [28, 39|, as well
as numerically verifying the Cohen-Lenstra heuristics [53] and the
Ankeny-Artin-Chowla conjecture [54, 55].

The function field analog of the class number question is the problem
of finding the divisor class number of an algebraic function field over
a finite field, or equivalently, the number of rational points on the Ja-
cobian of the absolutely irreducible nonsingular curve associated with
this field. This is an interesting and in general computationally chal-
lenging problem in number theory and arithmetic geometry, especially
if the underlying finite field has large characteristic. It also has appli-
cations to cryptography, since cryptographic systems based on elliptic
and hyperelliptic curves of small genus have had considerable success
due to their good security and efficiency properties. For these schemes,
the class number must be known, and should be a prime or a small
multiple of a prime of a size at least 160 bits.

There are two general approaches to solving the class number prob-
lem for function fields: general methods that place no restriction on the
base field or the curve, and specific techniques that apply only to certain
types of curves but tend to be much more efficient. For elliptic curves,
the task amounts to counting points on the curve, and the two major
algorithms, due to Schoof-Atkin-Elkies [46] and Satoh [43], respec-
tively, have been extensively researched, improved, and implemented.
Both approaches were generalized to other types of curves and Abelian
varieties. Kedlaya’s p-adic algorithm for hyperelliptic curves [31, 32]
is particularly well-suited to fields of small characteristic and has since
been extended to hyperelliptic curves of characteristic two [15], Artin-
Schreier extensions [13, 36, 37|, superelliptic curves [18, 35], Cyp
curves [14], and more general curves [12, 19]; see also the survey by
Kedlaya [33]. Schoof’s elliptic curve method was generalized to Abelian
varieties by Pila [40, 41] and improved by Adleman and Huang [1, 2].
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The Adleman-Huang algorithm computes the characteristic polynomial
of the Frobenius endomorphism of an Abelian variety of dimension d
in projective N-space over a finite field F, in time O(log(q)?), where
¢ depends polynomially on d and N. For plane curves of degree n, a
randomized algorithm with running time O(log(q)”o(l)) was given by
Huang and Ierardi [24].

None of the last five citations above provides an implementation or
numerical data, so their practical effectiveness remains to be estab-
lished. In fact, the method of [2] requires a semi-algebraic description
of the Jacobian as an algebraic variety, and while the authors illustrate
how to obtain such a description for hyperelliptic curves from the Mum-
ford representations of reduced divisors, this task can be complicated
for more general curves. Methods for special types of curves on the
other hand have yielded impressive numerical results. The algorithm
of [20] for genus 2 hyperelliptic curves for example produced class num-
bers of 39 decimal digits, and the improvements of [21] pushed this up
to the cryptographically secure range of 50 decimal digits (164 bits).
In 2002, a class number of 29 digits of a genus 3 hyperelliptic curve was
computed in [49]. A method for Picard curves given in [6] generated
prime class numbers of up to 39 decimal digits as well as a 55-digit
class number with a 52-digit (173 bit) prime factor.

The idea of truncated Euler products was first employed in [50] to
compute the regulator of a real quadratic function field. The algorithm
subsequently produced class numbers in excess of 102® (with computer
technology dating from before 2002 [49]) and was extended to purely
cubic function fields in [45]. Inspired by the number field methods
discussed earlier as well as the success of these ideas when applied to
quadratic and cubic function fields, we generalize the techniques of
[45] to arbitrary function field extensions in this paper. We provide
a number of bounds and identities relating to the Euler product rep-
resentation of the zeta function of an arbitrary function field. The
usefulness of our ideas is by no means limited to class number compu-
tation, although this topic is undoubtedly their foremost application.
We describe how our results can be employed as the basis of a computa-
tionally suitable algorithm for finding the class number of an arbitrary
algebraic function field via truncated Euler products and the analytic
class number formula. We also explain how the ideas underlying our
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class number algorithm are related to the distribution of class numbers
and of zeros of the zeta function.

Our discussion begins with an overview of function fields and their
zeta functions as well as a brief outline of our method for approximating
the class number in Section 2. In Section 3, we derive bounds that
dictate the quality of our class number approximations. Here, we also
provide a geometric interpretation of our arithmetic results. Sections 4
and 5 discuss two major applications, namely, the actual computation
of the class number and an approach for analyzing the distribution of
the zeros of the zeta function. We conclude with some open problems
in Section 6.

2. The zeta function of an algebraic function field. For an
introduction to function fields and their zeta functions, we refer the
reader to [16, 42, 52]. Let K be an algebraic function field of genus g
over a finite field F,;. Denote by Dk the group of divisors defined over
F,, by DY the subgroup of Dk of degree zero divisors of K defined
over Fy, and by Pg the subgroup of principal divisors of K defined over
F,. Then the factor group Pic% = DY% /Pk is the (degree zero) divisor
class group of K/F,. It is a finite Abelian group whose cardinality
hi = |Pic%] is called the (divisor) class number of K/F,.

2.1. Outline of the method. Our ultimate goal is to find a good
approximation F of hx as well as an upper bound U on the error
|hx — E|. This approximation is computed with two applications in
mind. The first application is the actual computation of kg, which can
be achieved by searching the interval [E — U, E + U], using standard
techniques such as Shanks’ baby step giant step or Pollard’s kangaroo
method, see Section 4 for details. The second application is an analysis
of the mean values of |hx — F|/U when averaged over all function
fields K/F, for fixed g and ¢. The limit of this mean value as g tends
to infinity relates to the distribution of zeros of the zeta functions of
function fields of genus g, see Section 5.

Let Lk (u) € Z[u] denote the L-polynomial of K. Then

29

(2.1) Li(u) = [ - wju),

i=1
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where the w; are algebraic integers with

(2.2) |wj| = /g for j =1,2,...,2g

by the Hasse-Weil theorem (see for example [52, Theorem V.2.1, page
169]). Furthermore, the L-polynomial satisfies the functional equation
Lk (u) = qu*IL(1/qu). The analytic class number formula states that

(2.3) hx = Lk (1) = ¢’Lk(1/q).

The first equality of (2.3) in conjunction with (2.1) and (2.2) yields the
well-known Hasse-Weil interval for hg:

(2.4) (Vi—1)* <hg < (Vg+ 1),

which implies that hx = ¢9. Thus, hg is very large even for function
fields K/F, of modest size.

The L-polynomial is closely related to the zeta function of K. More
exactly, we have

(2.5) Li(u) = (1 —u)(1—qu)Zk(u),

where Zg (u) = (x(s) with ¢~ = u, and (k(s) is the zeta function of
K/F,, i.e., the power series

k(s) =S ﬁ (R(s) > 1).

A>0

Here, N () = gd°8 (0 is the absolute norm of a divisor 2 € Dk of degree
deg (), the summation is over all integral (i.e., effective) divisors 2 of
K, and R(s) denotes the real part of the complex variable s. It is
known that (x(s) is periodic with period 27i/log ¢ and analytic on the
entire complex plane with the exception of simple poles at s = 0, 1
(mod 27i/log q), corresponding to simple poles at v = 1 and u = 1/q
of Zx(u).

Zk (u) has an Euler product expansion that reads

1 - 1
(2.6) ZK(u)=l;[W:H 11 1—w’

v=1deg (P)=v
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where ‘P ranges over all prime divisors of K. One can use a truncated
version of this Euler product representation of Zx (u), together with
(2.3), to approximate hg. Since Zx (u) has poles at u = 1 and u = 1/gq,
these poles need to be extracted from expansion (2.6) in order to make
use of (2.3). This is accomplished in Theorems 2.1, 2.3 and 2.4 below.
Results derived from Theorem 3.1 below then provide bounds that
determine how closely hx can be approximated.

Let z € K be a transcendental element such that K/F,(z) is a finite
separable extension of degree [K : F,(x)] = m. If Py is the infinite
place of Fy(z), then its co-norm with respect to K/F () is

COHK/Fq(z)(Y‘BOO) = €1Poo; T €2Poo, + - + € P,

where the set S = {Booy,.-- , Poo, } consists of all the infinite places
of K with respect to z, and e; is the ramification index of P, in K.

Setting f; = deg (Poo,), we have 3%, e;f; =m
If O, denotes the integral closure of Fy[z] in K, then the finite prime

divisors of K/F4(x) are in one-to-one correspondence with the prime
ideals in O,. By (2.6), Zk (u) can thus be split up as

(2.7) Zk(u) = Zg (u) - Zig (w),

where
T

(2.8) 7% () = [[ —

— ufi
j:11 u’i

represents the contribution of the infinite places to Zx (u) and
(2.9) Ziew) = T—pammr 1— udeg ) H H udeg )
p

represents the contribution of the O, -prime ideals. In the first product

n (2.9), p runs through all O,-prime ideals of K, and in the second
double product, P runs through all the monic prime polynomials in
F,(x) and p through the O,-prime ideals lying over P. Note that
the factorization of Zg (u) given in (2.7) is dependent on the defining
equation, i.e., the minimal polynomial of the extension K/F,(z).
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We now develop explicit formulas for Z3°(u) and for Z% (u). In
particular, we prove in Theorems 2.1 and 2.4 that the poles of Zx (u)
at u =1 and v = 1/q occur in (2.8) and (2.9), respectively. Then we
combine these identities with (2.5) and (2.3) to derive bounds that can
be used to approximate hg.

2.2. Results on Z3(u). The product representation of Z3°(u)
contains only finitely many terms and is thus potentially explicitly
computable. We begin by recalling some useful results on roots of
unity. Let f € N, and let (y € C denote a primitive fth root of unity,
ie., (rf # 1 and (JJ: = 1. Consider the polynomial

u—1

uf —1 — = i
(2.10)  Cp(u) = Z = [[w-¢p ez

of degree f — 1, and let n € N. If f | n, then (¢ =1, so the second
expression for C¢(u) in (2.10) yields Cy(¢}) = f, whereas if f { n, then
(f #1and (}c" =1, so C¢(¢}) = 0 from the first expression for Cy(u)
n (2.10). We thus obtain

[ if f1n,
(2.11) Zg =Ci¢H—-1= {f_l it fln

We use (2.10) to obtain the following representation of Zg (u).

Theorem 2.1. Let K/F, be an algebraic function field of genus g,
z € K transcendental over Fy, and [K : F,(x)] = m. Then

m—1

735 (u) = 1 1 1 H 1
K 1—u 1+Z 15]uj lfujzlliju

where form >2 s; €Z andx; =0 orx?:lforsomedgm.

Proof. The proof simply applies our above observations on roots of
unity to Z% (u). By (2.8) and (2.10), we have

T

1 1—u 1 1
ZK() (1_u) El_ufgzl—up(u)a
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where

— ufi r
212) P =0-w [ = -0 [[ O,

and Cf, (u) is given as in (2.10) with f = f;. It follows that P(u) € Z[u],
P(0) =1 and

degP(u) =r =1+ (fi-1)=) fj-1<) efj—1=m—1
=1 j

Thus, P(u) = 1+ Y75" s;uf with s; € Z for j = 1,...,m — 1.
Furthermore, (2.12) and (2.10) imply that the roots of P(u) are 1 and
the f;jth primitive roots of unity for 1 < j < r. Since the nonzero z;

are the reciprocals of these roots, the result follows. o

By (2.12), r — 1 of the z; are equal to 1, and the remaining z; are of
the form Cf_jk withl <k < fj—land1 < j <r. Forany n € N, we now
set dj, = Lif f; [ n and dj,, = 0 otherwise. Since C¢(¢;") = Cf((})
for all f,n € N by (2.11), we obtain

fi—1 fi—1
—k k
DG =) G =dinfi -1
k=1 k=1
It follows that
m—1 r—1 r fj*l
n __ —-n —kn
ZEDRED DI
j=1 j=1 j=1 k=1

T

=r—1+Y (djnf;j 1)
j=1

= djnfj — 1,
j=1

for all n € N. In particular, the expression 27;11 z? is always an
integer. Since we have |27 < 1 foralln € N and j € {1,... ,m — 1},
we obtain the general bound
-1

m
n
>

Jj=1

(2.13) <m-1, neN.
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Since dj, < 1 < e;, this bound is attained if and only if e; = 1 and

djn =1, 1e., fj | nforall j € {1,...,r} as only in this case,
m—1 T T
m?:Zf]—IZZle]—lzm—l
j=1 j=1 j=1

For our purposes, the bound in (2.13) will be sufficiently tight. How-
ever, it can potentially be sharpened in specific situations. For example
for n =1 we have d;, = 1if f; =1 and d;, = 0 otherwise, so

m—1 m—1 > -1
T; = Zdﬂfj*l:#{mwj |fj:1}l{2r—’1.

j=1 j=1

We investigate a few specific splitting situations below to show that,
while the bound in (2.13) is met in some instances, there are other
cases where the bound is far from being achieved and the sum in (2.13)
can in fact vanish. The examples below also illustrate that our results
represent a generalization of the situations of [45, 48, 49, 50].

Example 2.2. Let K/F,(x) be an extension of degree m > 1.
(1) Totally ramified case: if Cong/r,(z)(Poo) = MPBoo,, then r =1,
f1 =1, e; = m, and thus

T

~ 1 1
ZK(u)ZHl—ufj T1-u
j=1

It follows that ; =0 for j =1,...,m — 1, and thus Z;n:_ll z} =0 for
any n € N.

(2) Totally inert case: if Cong/r,(z)(Poo) = Pooy, then r = 1,
fi=m, e; =1, and thus

. 1 1 1
7% = = - .
i (u) H 1—um  1—u Cp(u)

j=1

It follows that z; = ¢/, for j = 1,...,m—1, and thus by (2.11) for any
n € N:
x;l =

e {—1 if m1{n,

m—1 ifm|n.

Jj=1
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(3) Totally split case: if Cong /r,(¢)(Poo) = Boos +Poos +**+Pooy
thenr=m, f; =e; =1for j=1,...,m. Thus

m

1 1 1
Zg (u) = = : .
i (u) Hl—u l—u (1—u)m1
Jj=1
It follows that ; =1 for j = 1,... ,m —1, and thus Z;” 11 i =m-—1

for any n € N.

(4) Two-fold split with one degree one place: if Cong /r,(2)(Poo) =
€1Poo; + €2Poo,, where r =2 and f; =1, then

1 1 1 1 1
79 — . — . .
i (u) l—u 1—ubf l—u(Cf2(u) 1—u>

It follows that z; = C}2 forj=1,...,fo—1, 24, =1, and z; = 0 for
fa+1<j<m-—1. Thus, by (2.10) for any n € N:

fa—1 fa—1 .
n __ j 0 if fZTna
T; = ];CJ +1= ZC Cf2 sz) {f2 1ff2‘n

m—1
j=1

2.3. Results on Z%(u). We now derive similar results for Z% (u)
as we did for Z% (u) based on (2.10). We simply state these results;
the proofs are completely analogous to those given in subsection 2.2.
Recall from (2.9) that we can write Z¥ (u) as

Zf{(u)znl_udeg(p HHl_udeg(p
p

where P runs through all monic prime polynomials P € F,[z]. There-
fore, it is useful to investigate [ [, »(1 — udee (P))~1 for an arbitrary but
fixed prime polynomial P € Fy[z]. Note that, in this context, we are
interested in the splitting behavior of the principal ideal (P) generated
by P in O,.

Theorem 2.3. Let K/F, be an algebraic function field of genus g,
z € K transcendental over F,, [K : Fy(z)] = m, and P € Fylz] a
monic prime polynomial of degree v = deg (P). Then
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I 1 1 1
1-udee®)  1—w 145" Lo (Puv

p|P j=1 @j
R 1
S l—uw il S zj(P)u’

where for m > 2, a;(P) € Z and z;(P) = 0 or z;(P)¢ = 1 for some
d<m.

Thus, we can easily determine 2z (P), z2(P),... , zm-1(P) and a1 (P),
az(P),...,am—1(P), once we know how the principal ideal (P) splits
in O,. As before, we have

m—1

(2.14) zj(P)"| <m—-1,n €N,

Jj=1

and the sum above is always an integer. By using the well-known
identity

1 1
1}:[1 udeg(P H H 1—w  1-qu’

v=1deg (P)=v
we obtain the following theorem.

Theorem 2.4. Let K/F, be an algebraic function field of genus g,
z € K transcendental over Fy, and [K : F,(x)] = m. Then

Zg(u

1—z(P)u”’
v=1ldeg (P)=v j=1

where the second product ranges over all monic prime polynomials
P € F,[z] of degree v.



1700 RENATE SCHEIDLER AND ANDREAS STEIN

Proof. By (2.9) and Theorem 2.3, we then have

=11 T [—s

v=1deg (P)= VP\P

I I el
721 deg (P)=v 1—w i 1— zj(P)u”
0 m—1
1 1
_l—quH 1—zj(P)u’ .

v=1ldeg (P)=v j=1

3. Bounds on the logarithm of the Euler product. As before,
let K/F, be an algebraic function field of genus g over a finite field F,,,
z € K a transcendental element over Fy, and [K : F,(x)] = m. From
the second equality of (2.3), (2.5), (2.7), as well as Theorems 2.1 and
2.4, we obtain

hx =q’Lk(1/q)
(3.1) !

(3.2) “log(l—z) =Y 7

Note that by Theorem 2.3, |z;(P)] < 1 < ¢ for v € N, so the
corresponding power series converges. We obtain

(3.3) log(hgk) = )+ Z Z Z Z Py,

vin deg(P)=v j=1
where v runs through all positive divisors of n and

m—1

m—1
(3.4) A(K)=glogq— Z log <1%J> = glogq—log <1+Z %)’
j=1

i=1
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with s1,...,8m—1 € Z as in Theorem 2.1. Note that A(K) can be
computed from the splitting behavior of the place at infinity P, of
F,(z) in K. We now derive bounds relating to the infinite nested sum
in (3.3) which will eventually lead to close approximations of h-.

We proceed similarly to our derivation of (3.3). Identities (2.1), (2.5)
and (2.7), together with Theorems 2.1 and 2.4 yield

29

(3.5) H H H ”i:[ (1—-zju H(l—wju).

v=1ldeg (P)=v j=1 j=1

This time, we take formal logarithms, using (3.2) as a formal identity,
to obtain

Sy » S-S i(-Ea-1a)

where v again runs through all positive divisors of n. Comparing
coefficients at u™ for any n € N implies the following theorem.

Theorem 3.1. Let K/F, be an algebraic function field of genus g,
z € K transcendental over Fo, and [K : Fy(xz)] =m. Let x1,... ,Zm_1
be as described in Theorem 2.3 and for any monic prime polynomial
P e F,lz] let z1(P),...,2m—1(P) be the quantities as described in
Theorem 2.3. Then we have for all n € N:

m—1 m—1 29
v > N 5@ ==> 2 = W,
vin deg(P)=v j=1 j=1 j=1

where v runs through all positive divisors of n.

For convenience, we put

(3.6) S,(i)= > sz ), vi€N,

deg (P)=v j=1

so Theorem 3.1 can be rewritten as

m—1 2g
(3.7) ZVSV(%):—ZQ:?—ZW?, n € N,
j=1 j=1

vin
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and (3.3) reads

=1 n

3.8 log(hk) = A(K — Sl —)-

(35) %w><wgw%u@

In order to derive approximations for hgx, we need to estimate the
infinite sum in (3.8). It is thus apparent that the quantities vS, (n/v)
play an important role, especially nS,(1), i.e., the case n = v. We
immediately obtain the following result from Theorem 3.1, (2.2) and
(2.13).

Corollary 3.2. For all n € N:

m—1

n n n/2 n/2

E IJSV<;>§ Elxj +2gq/ S(mfl)-}-ng/.
vin J=

Clearly, the second expression above yields a more accurate bound
than the third, but requires that z1,... , z,,—1 be known. Corollary 3.2
is the basis for the first choice of approximation for hx as described
in subsection 4.2. For the second approximation of subsection 4.3, we
need to find a bound on nS,(1). For n =1, (3.7) yields

m—1 m—1 2g
1-$1(1) = > a(P) == =D w;
deg (P)=1 j=1 j=1 j=1

which implies the sharp bound
S1(1)] <m —1+2g/q.

Therefore, let n > 2 and [ the smallest prime divisor of n, i.e., n/l is
the largest divisor of n that is not equal to n. Note that [ = 2 for n
even and [ > 3 for n odd. By (3.6) and (3.7), we easily see that

(3.9)

j=1 j=1 vin
v#n
m—1 2g n n
(3.10) = - ; ? j;w;’ = 75w (l) = Vz; vS, <;>
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for n > 2. In order to bound n|S,(1)|, we let I, denote the number
of monic prime polynomials of degree v in Fg[z] and recall that
Zu|n vI, = ¢". Hence, nl, < ¢", and thus

(311) S,() < (m-1) Y 1=(m-1L <2 L¢ vieN

v
deg (P)=v

by (2.14). It follows from (2.13) and (3.11) that for large values of ¢
only the third term (n/l)S, /(1) in (3.10) has a chance of contributing

significantly to n.S,, (1) besides the second term Efi 1wy, and this only
happens if n is even, i.e., | = 2.

The following estimate will prove useful.

Lemma 3.3. Foralln,B € N withn > 2 and 8 < n:

> s (2)| < m-v@ -
2 (i) =

vin

B<v<n

where | denotes the smallest prime divisor of n.

Proof. Note that, if 8 > n/l, then

3 usu<%>._a

vin
B<v<n

If B < n/l, then we derive from (3.11) that

‘ > v&(%)ﬁ(m—l) Y ¢

v|n vin

B<v<n B<v<n
n/l
<(m-1))_¢"
v=1
=(m-1)(g"" -1)—L-. o

q—1
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We are now able to provide a bound on nS,(1) for n > 2.

Theorem 3.4. For alln € N withn > 2:

9

nSu(DI < (m = 1)+ 200"/ + (m = )" ~ )L,

where | denotes the smallest prime divisor of n.

Proof. This follows from (2.2), (2.13), (3.9), and Lemma 3.3 with
8 =1. i

We remark that this bound will be reasonably sharp for larger values
of g. In specific situations, for example, if x1,x2,... ,ZTy,_1 are known,
we can find a better estimate for the sum Z;’;l z than (2.13) and
thus reduce the first term of m — 1 in Theorem 3.4. However, since the
contribution of this term is generally negligible compared to the other
terms, the given bound is sufficient. The following less sharp bound is
also useful.

Corollary 3.5. For alln € N with n > 2:

Proof. This follows from Theorem 3.4 since 1 — ¢/(q¢ — 1) < 0. For
the last inequality, we use in addition that [ > 2. ]

Corollary 3.6. For all n,A € N withn > 2 and \ < n:

Z vS, (ﬁ> ‘ < 2gq"/2+2(mfl)Lq"/l < 2(g+m-1) q g2,
o v g—1 )
v>A

Proof. The last inequality is again clear since ¢/(¢ — 1) > 1 and
l > 2. For the first inequality, we use Corollary 3.5 and Lemma 3.3
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with 8 = A + 1 to estimate

Zusy(g)‘ < n(8a(1)| +‘ 2 m(%)‘

v|n vin
v>A A<v<n
< 29q"? +2(m — l)L n/t
qg—1
as claimed. n]

The following corollary will be used in the second approximation for
hi described in subsection 4.3. It is essential for accurate bounds.

Corollary 3.7. For u, A € N with p > A:

ZLZ,,SV<E>‘<2_9 V4 g H?
ng" v poy/q—1

N 2(m—-1) ¢ g' (/b g/,
M q—1¢=1/D -1

Proof. By Corollary 3.6, we have

=1 =1
> 3 (1)) < X o (200 4 2m = 1) L)
nq" v nq" qg—1
n=p vin n=p
v>A
< 2g i -n/2
s — q
1% —p
2(m—1) ¢ iq—nu—u/z))'
pooog—1
n=p
The statement now follows from the formula
- an qa ap
Z q = q , o€ Rsg. O
-1



1706 RENATE SCHEIDLER AND ANDREAS STEIN

If n is odd and ¢ is large, then the second term in the bound of
Corollary 3.7 does not contribute significantly. However, if n is even,
i.e., I = 2, then we could also use the somewhat simpler good estimate

S e p ()] e
nz#nq" v q—1./q-1

o
v|n
v>A

3.1. Geometric interpretation. Before we provide applications of
the above results, a geometric interpretation is in order. Let C' denote
the absolutely irreducible nonsingular curve over F, that has K as its
function field. For any n € N, let k, = Fy» and K, = Kk,. Then
K, /k, is an unramified extension of K/F, with the same associated
curve C' and hence the same genus. If N,, denotes the number of k,-
rational points on C (including those at infinity), or equivalently, the
number of degree one places of the function field K, /k,,, then

29
(3.12) Ny=q"+1-) wf.
j=1

Let z € K be transcendental over F, and [K : Fy(z)] = m. If
T1,%2,.-. ,Tm_1 are defined as in Theorem 2.1, then the quantity

m—1
Ny =Y ap+1
j=1

is exactly the number of degree one places of K,,/k, lying above the
place at infinity of k,,(x). Then the number of finite degree one places
of K,,/ky,, or equivalently, the number of points on C with coordinates
in k,, is

2g m—1
(3.13) NE=N,—NZ=q"=) w}—) i
j=1 Jj=1

Let v € N, and let N, denote the number of points on C' with
coordinates in k, but in no subfield of k,. Since the subfields of &,
are exactly the fields k, with v | n, we have

> N, =N:.

vin
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Recall that I, is the number of monic prime polynomials of degree v
in Fylz]. Then vI, is the number of elements in k, that do not lie in
any subfield of k,. If S, (¢) is defined as in (3.6), then we have

vS, (2> =N, —vl,.
v

Using (3.13) and the fact that }° , vI, = ¢", it follows that
n 2g m—1
Z,,s,,<;> SNEg ==Y - Y,
vin j=1 j=1

which is exactly (3.7), i.e., the result of Theorem 3.1. By (2.2), (3.12)
implies the well known Hasse-Weil bound

(3.14) [No — (¢" +1)| < 294"

It follows from (3.13) that

ZV&/(ﬁ)‘ = [Nn = N7° = ¢"|
14

v|n
m—1
:‘anq"flex?
j=1
m—1
< 2gq"* + a?| < 29¢"* + (m - 1),
j=1

which is the result of Corollary 3.2. So Corollary 3.2 can be interpreted
as the Hasse-Weil bound with the information about the infinite places
incorporated.

We now provide two applications of the results of Section 3, namely
computing the class number hg of K/F, and analyzing the distribution
of the zeros of (x(s).

4. Application 1: A class number algorithm for algebraic
function fields. In this section, we provide a context where the
multiple nested sums of Section 3 occur and how they can be used
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to estimate the divisor class number of a function field. We continue
to let K/F4 be an algebraic function field of genus g over a finite field
F,, © € K a transcendental element over Fy, and [K : Fy(z)] = m.
We begin by explaining how a good approximation of the class number
hix of K can be used to actually find hx. Then we provide three
approaches for obtaining such an approximation.

4.1. The idea of the algorithm. Here is a general outline of the
algorithm for computing hg.

(1) Evaluate sufficiently many terms in (3.1) or (3.8) to obtain an
approximation F of hx and a bound U such that |hg — E| < U. It
follows that hg € [E — U, E + U].

(2) Use Shanks’ baby step giant step or Pollard’s kangaroo method to
search through the interval [E—U, E4U] of size 2U+1 to determine h .
Assuming that efficient arithmetic in the ideal or divisor class group of
K is available, the methods in [48, 49] should be easily generalizable.

Note that the search could be shortened by undertaking precompu-
tations or using other information where possible. For instance, one
could determine hx (mod [) for small primes ! or exploit knowledge
about the distribution of hk in the interval [E — U, E + U].

The complexity of the above algorithm is O(max{t,,ts}), where t,
is the time required for computing the approximation E of hg, and
ts is the time it takes to search through the interval [E — U, E + U].
Necessarily, the total running time will be exponential in ¢ and will
be optimized if ¢, ~ t;. The number of arithmetic operations in the
divisor class group of K required to find h is on the order of the square
root of the length of the search interval, i.e., +/2U + 1. It follows that
t, = O(V/U), where the O(-) notation refers to fixed g and ¢ — oo.

If (3.8) is used in the approximation step, then the computation of
eA) with A(K) as given in (3.4) takes negligible running time. For a
parameter A € N, the main contributing part for ¢, is the evaluation
of either the summands S, (n/v) in (3.8) with v < A, or the product
in (3.1) of all the Euler factors H;":_ll(l — zj(P)/q")~!, where P runs
through all the monic prime polynomials in F,[z] of degree up to A.
Note that there are O(¢*/)\) such polynomials. So, in either case,
the computation takes O(S - ¢*) operations, where S is the running
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time to determine the splitting behavior of the principal ideal (P) in
the maximal order O, of K/F4(z) for a monic prime polynomial P of
degree deg (P) < X. Ignoring the running time S and the complexity of
one arithmetic operation, we see that this algorithm is optimized when
a* ~VU.

In the following sections, we generalize ideas from the quadratic and
cubic cases; see [49] for m = 2 and [45] for m = 3. We compute an
approximation depending on a parameter A € N which will be chosen
later for optimal complexity. First, we state the most obvious choice
of E and U, namely, to simply truncate the sum in (3.8); this choice
generalizes the approximations in [49, Theorem 4.1] and [45, Theorem
5.1]. The idea is to represent hx as hx = Ee? and find a sharp bound
¥ on |B|. Then E will be our approximation to hg, and ¢ is a bound
on the absolute value of the logarithm of the tail of the Euler product
representation of hg.

4.2. The first approximation.

Theorem 4.1. Let A € N and A(K) be as defined in (3.4). If we
put

log By (A) = A(K) + g % ZVSVG),

v|n
> 1 n
nov = 3 e Ees(D)
n=\+1 vin
- 1 =1
Y1(A) =29 Z m—i-(m_l) Z o
n=A+1 q n=A+1 q

Uir(A) = B (A)(e”™ — 1),

then we have |Bi(\)| < ¥1(A) and |hx — E1(A\)| < Uy ().

Proof. From the definition of E;(X), B1(A) and (3.8), it follows
immediately that

hi = E1(\) 213,
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From Corollary 3.2, we estimate

St 1 n = m —1+2gq™/?
|B1(A)] < Z Py ZVSV<;)S Z n—qn:wl(/\)-
n=\+1 v|n n=A+1

Since 5 (A) is much smaller than 1 for ¢ large, we obtain

|hg — Ey(N)| = Ey(V)[ePr®) — 1] < BEy(\) (e —1) =Uy(\). o

We remark that 1;()\) can be evaluated using (3.2) with z = ¢~/2,
which yields

It is also worth noting that, as in [49], we could use the following upper
bound on 1 (A) instead of 11 ()\) itself:

2g  _ 2g ad _ m-—1 — _
A) < — ()\+1)/2_,r__ n/2+_ n
nN) <5379 A+2n§+2q A+1n§+1q
_ 29 ownp 29 VT o
A+1 A+2/q-1
m—1 gq At
A+1g-1 '

Using (3.2) and Corollary 3.2, it is also easy to see that

41 B <6A(K)<\/§\/?1>2g<qzl>m_l'

Thus. for fixed g and ¢ — oo it follows that E1(\) = O(eA(%)) = O(¢9)
as expected from (2.4). Since ¥;(\) < 1, we can also estimate
e?1 (M) ~ 1 4 9 (X) which yields that Uy (A\) = O(g9~*A+1D/2),
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Computations in [49] showed that this approximation was signifi-
cantly less effective in the hyperelliptic case than the suggested choice
of F5 in subsection 4.3. The reason will become clear from the defini-
tion of E5; see the discussion in subsection 4.5.

4.3. The second approximation.

Theorem 4.2. Let A € N and A(K) be as defined in (3.4). Also, let
' be the smallest prime divisor of A\ + 1. If we put

log Ex (M) Z Zu5< )

vin
+n2;+1 %S()
V=2 sl

D/
2 _ m—1 gq q
1/]20\):_9(] (A+1)/2+ ( )

A+ 1 At1lg—1 gt
cmol ey g Y VT e
A1 A+2 g1

A+2 g-1¢0-a/) _1

U2(A) = Ex(N)(e¥*™ — 1),
then we have |Ba(A\)| < ¥2(A) and |hx — Ea(N)| < Ua(N).

q*(lf(l/l'))(kﬁ),

Proof. Note that by (3.1) and (3.4), the definition of E3(\) is
equivalent to

! H 1—(z(P)/g)’



1712 RENATE SCHEIDLER AND ANDREAS STEIN

so E5(A) is in fact computable. It then follows from the definition of
By () that
hK = EQ()\) 632()\).

This yields the representation as required in subsection 4.1. We now
use Theorem 3.4 and Corollary 3.7 to bound |Bz(A)|.

=1
NG

1
|B2(A)] < )\__H‘SA—I—I(I)‘ +
q n=A+2

v>A
29 owpz,m=1 g g -1
A+1 A+lg—1 gt
cmol ey Y VT e
At 1 A +2 g1
2(m—1) ¢ gt =/ g - A/+)
A+2 g—1g-/M 1

= 12(A).

As in the proof of Theorem 4.1, we then obtain that |hx — E2(\)| <
Ug(/\) O

Analogous to the proof of (4.1), we derive that

(4.2) By(\) < eA<K><\/a\/? 1>29<qiil>m_le¢2@>.

Thus, for fixed g and ¢ — 00, we again have ¥3(\) < 1. It follows that
E>(\) = 0(¢9) and Us(\) = O(qg—(A+1)/2)'

4.4. The third approximation. We now discuss a third choice for
the approximation. It is based on the second choice plus the following
observations. Let A € N. In order to compute E3(\) as defined in
Theorem 4.2, we need to compute z1(P),... ,zn—1(P) for all monic
prime polynomials P with deg(P) < A. Once we know z;(P) for all
j=1,...,m—1, it is easy to evaluate the powers z;(P) for arbitrary
i € N. In particular, we can easily compute S, (i) for 1 < v < A and
any ¢ € N. Therefore, we may assume that we know vS,((A +1)/v)
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for all v with I’ <v < A+ 1 and v | A + 1, where as before, I’ denotes
the smallest prime divisor of A + 1. Furthermore, we assume that we
have computed 1, ... , T, 1 and thus know their (A+1)st powers. We
then obtain from (3.9) that

A+1
A+ DS == e}t =Y wrt— H° usy< >

: ° v
Jj=1 Jj=1 v|A+1
v#A+1

where only the second term on the righthand side is unknown. The
following bound is then immediate.

m—1

e
2%
A+1

Z I/SV (T) ‘

viA+1
v#A+1

A+ DS (1) < +29g MY/

(4.3)
_|_

Theorem 4.3. Let A € N and A(K) be as defined in (3.4). Also, let
' be the smallest prime divisor of A\ + 1. If we put

log Bs(}) = A(K) + nil niqn Sus, (g)

vin
= 1 n
3 es(3)

n=A+1 v|n

rv<A
= log Ex(A),

= 1 n
Bg()\) = Z n—n ZZ/SV<_> = BQ()\)v

n=A+1 q V‘n
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2
V() = g 2

A+1
m—1
A+1
A+1
()\+l A+1< Zj Z VS”( v >D
j=1 vA+1
v#EA+L

29 VA s

A+2 g1

2m—1) q 1=/

A+2 g 1q@ amy—1?
Us(A) = E3(A)(e”*™ - 1),

then we have |Bs(A\)| < ¥3(A) and |hx — Es(X\)| < Us(N).

—(1—(1/1'))(>\+2)’

Proof. As in the proof of Theorem 4.2, we have E3()\) ePs(N) =
Ea(\) €83 = hg. Since

moy =22 3 Lyt (1),

n= )\+2 v|n
v>A

we use (4.3) to estimate

(/\-f-l)‘SA_H
|Bg(A>|s(H1—m Z Z S
n= )\+2 vin
v>A
29 _(t1))2
Sxr1d
m—1
A+1
At1
are(| S0+ 2 s ()
()\—i—l = el v
v#A+1

29 V1 ()2
At+2g-1
2(m—-1) ¢ q(lf(l/l’)) qf(lf(l/l'))()\+2)
N+2 g—140-(/) 1
= 3(A).
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As in the proofs of Theorems 4.1 and 4.2, it is clear that |hx — E3(\)| <
U3(>\) [}

Since E3(A) = E»(A) and B3(A) = B2(A), we see that

(4.4) Es(\) < eA<K><\/a‘/? 1)29<#>M1e%@>.

Again, we have ¢3(\) < 1, E3()\) = O(¢?) and Us()\) = O(g¢~ I 1)/2),

4.5. Complexity. We need to determine how to select a value
of A\ that optimizes the algorithm and which of the approximations
given in the previous three sections to choose. Each of the three
approximations for hx given above was given in terms of quantities
E(X) and U(A) such that |hg — E(X)| < U(A), so hg lies in the interval
[E(A) —U(N), E(A\) + U()N)] of length 2U(A) + 1. Our most important
application is when g is large, yielding in each case that E()\) = O(¢9)
and U(X) = O(¢?~A*1)/2), As pointed out in subsection 4.1, the total
running time of the class number algorithm will be exponential in ¢
and is optimal when

@~ VU = q29—-(A+1))/4

yielding an optimal choice of A ~ (2¢g —1)/5. Since A must be an
integer, we obtain

)\_{L(Qg—l)/5j if g=2 (mod 5),

(4.5) round ((2g — 1)/5) otherwise.

This yields a total expected running time of

O(qround((2g*1)/5)+n), g > 3,

where
0 if g=0, 3 (mod 5),

1/4 ifg=1 (mod5),
-1/4 if g =2 (mod 5),
1/2  ifg=4 (mod 5).
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Note that for g < 2 (4.5) would yield the meaningless choice A = 0.
Here, we can obtain running times of O(g'/4) for g = 1 and O(¢*/4) for
g = 2 using for example (2.4). However, we point out that there are
better methods for these genera, as outlined in Section 1.

Finally, a comment on which choice of approximation might be
optimal. The first approximation in Theorem 4.1 has a clean and sharp
error term, whereas the approximations in Theorems 4.2 and 4.3 use all
of the computable information about the Euler factors. The difference
between Fj(\) and FE3(\) = E3()) is precisely the term

> 1 n
> 2s(3)
n=A+1 vin
r<A

which is not contained in E;(\). In the hyperelliptic case, see [48, 49,
50], the second choice of the approximation turned out to be better
than the first choice; the third approximation was not included in the
discussion there. In view of the better error term, one might expect
that the third approximation is yet more accurate than the second
choice, as Us(\) might be a better bound on |hx — E(X)| than Uz (A),
resulting in a shorter search interval. However, it needs to be seen in
any given situation which approximation works best. One possibility
is to use the intersection of all three intervals when searching for hg,
but it is unclear whether this intersection will on average coincide with
one specific interval.

We remark that the computational effort is essentially the same for
all three approximations. For each approximation, we basically need to
compute z1(P),. .., zmn_1(P) for all monic prime polynomials P with
deg (P) < A. As pointed out at the beginning of subsection 4.4, the
additional running time for computing z;(P)® is then negligible. This
yields the quantities S, (7) for 1 < v < X and for any € N without too
much additional effort. Thus, all three approximations, error terms
and intervals should be computable in roughly the same running time.

5. Application 2: Distribution of the zeroes of the zeta
function. The second application of our bounds in Section 3 is a
generalization of ideas in [48] and relates the results of the previous
sections to the distribution of zeros of the zeta function of an algebraic
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function field of genus g. Note that by (2.1) and (2.5), the function
Zk (u) has zeros wj, 1 < j < 2g. If we write w; = ,/ge’¥? according to
(2.2), where ¢ is a fixed square root of —1 and ¢; € [0, 27[, then this is
essentially asking the question of how the values ¢; are distributed as
we range over all function fields of genus g.

In Section 4, we used the ideas of Section 2 to find an approximation
E()\) and a real number U(\) such that |hxg — E(A)] < U(A). In
all three cases, we represented hx as hx = E()\) e and found a
sharp upper bound () on |B(A)|. Furthermore, U()) was defined as
U(\) = E(\)(e?™ —1). Our considerations in this section are again
mainly of interest for the case that ¢ is fixed and ¢ — oo, in which
case we have ¥(\) < 1. The power series expansion of the exponential
function then implies e & 1+9(A). Thus, we expect that for large g,

U\ = EON) (¥ —1) = E\)y(N).
Similarly, we expect that
ik = E(V)| = EN)[”Y — 1]~ E(\)B()|,

and hence

lhi — EQ)| _ [BO)
UX) P(A)

Let a(g, q) be the average value of |hxg — E(X)|/U(X) over all function
fields K/F, of genus g for fixed values of g and g. The quantity
a(g, q) measures how closely U()\) bounds the “error” |hgx — E(A)| in
general, i.e., how the values of h cluster around the center point of the
interval [E(A) — U(X), E(A) + U(X)]. We therefore wish to determine
a(g) = limg,o a(g, q), at least heuristically. The interpretation here
is that for fixed g, the bound U()) on |hx — E(A)| is on average by a
factor of a(g)~! too large. From (5.1), we expect that for large q,

(5.2) a(g,q) ~ Mean (%)

(5.1)

In order to obtain an expression for a(g,q), the goal is to analyze the
quotient |B(A)|/¥(A) of (5.1) for each of the three approximations of
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Section 4. Letting ¢ — oo, we can then obtain an approximate value
for a(g).

As before, we put w; = \/ﬁei‘f’i with ¢; € [0,27] for 1 < j < 2g. We
know that the w; satisfy w;;, = w;, the complex conjugate of w;, for
1 < j < g and that the ¢, are periodic, i.e., 914 = —¢; (mod 27) for
1 < j < g. Therefore, we can enumerate the ¢; such that 0 < ¢; <7
and @ji 4 = —p; (mod 27) for 1 < j <g.

For A € N as in (4.5), we now define

2g g
(5.3) GA(@1,- - 5 pg) = D _ €T =23 "cos((A + 1)g;).
j=1 j=1

For brevity, we also set

A+1 -
(54) E(A,m,q) = l—lS()“i’l)/ll(l,) q ()\+1)/2,

where as before, [’ is the smallest prime divisor of A + 1. The idea is to
relate a(g) to the average of |G,|, or of |Fy| where F\ = G + £(\,m)
and €(\,m) is the contribution of the average of £(\,m,q), taken
over all function fields of degree m and genus g, and for ¢ — oo.
Note that for A even, I’ > 2, and hence (A, m,q) tends to zero as
g — oo by (3.11). The same holds true in many cases when the
extension degree m = [K : Fy(x)] > 3; for example, obviously whenever
Sit1yw(l') = 0. However, €(\,m) does not always vanish. For
example, we know from [48] that £()\,2) = 1 for A odd.

For quadratic function fields, i.e., m = 2, the connection between
Mean (|Fy|) and a(g) was established in [48]. For this case, results by
Katz and Sarnak [29, 30] lead to a close numerical approximation of
Mean (|F}|), which in turn yielded good approximate values of a(g) for
several genera g. Unfortunately, finding the exact value of Mean (|F)|)
appears to be difficult in general.

The argument of [48] could potentially be turned around as follows.
With a fast class number algorithm, it would be possible to compute the
quotients |hg — E(X)|/U(X) for a large number of function fields K/F,
for fixed ¢ and g. Taking the numerical average of all these quotients
could give an idea of the value of a(g,q). Repeating this process for
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many large prime powers g might ultimately shed light on the value of
the limit a(g).

We now investigate the quotient |B(M)|/v¥()) for all three approxi-
mations given in Section 4, thereby obtaining an approximate value for
a(g, q), and ultimately for a(g) in all three cases.

5.1. Heuristics for the first approximation. By the definition
of B1(A) in Theorem 4.1 and (3.7), we have

VI
=1
£ Ly (?)
n=A+2 q vin
1 m—1 2g
= A+1 A+1
A1 ( Ty - ZWJ )
(A+1)g et et
[es) 1 m—1 2g
IR COIEES )
n=A+2 nq j=1 j=1

Since w])-‘“ = g 1/2e(0+1)i9; it follows by (5.3) that
1
(A4 1)gM1

29
> wit
j=1

|Gl

— —(A+2)/2
= Opngorz @ TR,

Bi(A) = +0(g” A7)

(5.5)

where we recall that the O(-) notation refers to g fixed and ¢ — oo.
From Theorem 4.1 and the comments afterwards, we know that

_ 29 —(A+2)/2
Y1) = (A + 1)g+D/2 +0(q-M272),

so (5.2) yields a(g,q) =~ |GA|/2g for large q. One would thus expect
that

(5.6) a(g) ~ %MeanﬂG,\D.
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Thus, if we know how to evaluate Mean (|Gy|), then we are able to

determine a(g).

5.2. Heuristics for the second approximation. From Theo-
rem 4.2, we have

S _
IBo(V)] = '*q*;# +0(g0+Dr2),

where as before, we assume g fixed and ¢ — co. By (3.10) and (3.11),
we see that

)\—i— 1 "n_
( |S)\+1 Z /\+1 (l) +O(q()‘+1/l) 1),

where !’ is again the smallest prime divisor of A + 1. When dividing
|Sx+1(1)| by ¢**1, the error term becomes O(q A+D)A=A/)=1) ' which
is negligible compared to the term O(g~**2/2) in |By(\)|. So we
obtain by (5.3) and (5.4) that

2g
1 A+1
Dot A S ()] + 0

1B2(N)| = 5777557
A+ DT | =

2g
1 A+1 A+1
T A+ 1)z z; : RRLSEVAQL e
]:
+ O( )\+2)/2)
_ 1
- (/\+1)q(A+1)/2

G +e(A,m,q)| + O(qg~M72),

Similarly, from Theorem 4.2,

2g _ -1 _ ’ _
\) = (A+1)/2 (A+1)(1—(1/1")) (A+2)/2
Y2(N) 119 +—)\+1q +0(q )

l - —_ ’
T (A 1)gOF2 (29+(m—1)q (+1)(1/2 1/z))

+ O(q—(k+2)/2)‘
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It follows from (5.2) that for large ¢

N |G,\ +5()\7m7Q)‘
(5.7) a(g,q) ~ 29+ (m — 1)q_()\+1)(1/2—1/l’)'

Note that for A odd we have I’ = 2, so the second term in the
denominator of the righthand side of (5.7) is equal to (m—1)¢® = m—1,
whereas for A\ even, the term tends to zero as ¢ — oo. Therefore,
altogether, this term tends to (m — 1) - parity (A). Recalling that we
defined F = Gx+¢<(A, m) where €(, m) is the contribution of e(X, m, q)
as ¢ — 0o, we expect

~ Mean (|Fy|)
(5.8) alg) » 29+ (m —1) - pAarity (A)

Thus, again, if we can compute Mean (|F)|), then we are able to
determine a(g). Recall that parity (A\) = 0 and F) = G for X even. In
this case, (5.8) reduces to (5.6). However, if A is odd, then (5.8) reads
a(g) = Mean (|Fy])/(2g + m — 1), which is different from (5.6).

5.3. Heuristics for the third approximation. Theorem 4.3 and
(3.11) imply that Bs(\) = B2(A) and

_ 29 e, A LISodn e )] —(A+2)/2
P3(N) = 1 + = ey +0(q )

1 —
= m (29 + (X, m,q)) + O(q (A+2)/2)’

so that we expect by (5.2) that for large ¢

_|Gx+e(\,m, q)|

olg.9) 29 +e(X,g,m)
Thus, one would expect that
Mean (|Fy|)
5.9 N
(59) o)~ 5

Note that for e(A,m) = 0, (5.9) is once again equivalent to (5.6), but
for A odd it yields a different result.
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5.4. Evaluation of Mean (|F)|) and Mean (|G,|). It remains
to investigate how to evaluate Mean (|F,|) and Mean (|G,|). Since
similar arguments hold true for Mean (|G,|), it is sufficient to describe
the evaluation of Mean (|Fy|). Finding the exact value of Mean (|Fy|)
appears to be difficult. However, if we are able to determine a good
numerical approximation of Mean (|F}|), then we are able to derive
a good numerical approximation of «a(g). In [48], results by Katz
and Sarnak [29, 30] led to an approximation of «a(g) for quadratic
extensions (m = 2). These results verified numerical data obtained in
[48] about the average value of |hx — E(\)|/U(\) explicitly.

We now explain how to generalize these ideas. In order to compute
or approximate Mean (|Fy|), the idea is to express this mean as

Mean (|Fy|) :/ |F\| d Haar
(5.10) A
= /[0 | ‘F)\(Sola..- ,QPg)|,U:g(d(P1,... 7d§0g),

where “Haar” in the first integral denotes the Haar measure of a sub-
group of the symplectic group Sp (2g) and p, denotes the appropriate
measure. Obviously, the main difficulty is to determine p, for a given
class of curves. Once we know (4, We are simply faced with computing
a Riemann integral. There are various numerical methods for accom-
plishing this task. If none of them applies, we might approximate the
Riemann integral in (5.10) by Riemann sums.

In the elliptic case, i.e., m = 2 and g = 1, Birch [7] showed that the
correct choice is

2
pi(der) = - sin (1) dps .
In the hyperelliptic case, i.e., m = 2 and g > 1, Katz and Sarnak [29,
Theorem 10.8.2, page 321] showed that 4 is basically the Haar measure

of a maximal compact subgroup of the symplectic group Sp (2g). It then
follows from Weyl [56, page 591] that the correct choice is

,Urg(dQOl, v 7d(pg)

1y%2 .
=4 H - sin®(¢;) H4 (cos(g;) — cos(p;))? dipy - - - dipg.
P

1<j
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In the general case of an arbitrary function field, where m > 3 and
g > 3, it is not necessarily true that p, is the Haar measure of a
maximal compact subgroup of the symplectic group Sp (2g). It would
be very interesting to find p, for a given class of nonhyperelliptic curves
and then apply the above construction to find a(g) or a good numerical
approximation of a(g). Conversely, using the method of Section 4, one
could compute the quotients |hx — E(A)|/U(X) for a large number of
function fields K/F, of genus g, and for a large number of values of g.
The numerical average of all these quotients could produce approximate
values for a(g, q) and might give a clue as to the value of a(g), at least
for certain genera g.

6. Conclusion and open problems. In this paper, we provided
a number of results that can be used to bound the Euler product
representation of the zeta function of an arbitrary algebraic function
field. These results lead to a computationally suitable algorithm for
determining the class number and can also be used to analyze the
distribution of the zeros of the zeta function.

Our methods require that the quantities x1,...,%,,_1 as given in
Theorem 2.1 and z1(P), ... 2zm—1(P) as given in Theorem 2.3 for monic
prime polynomials P € F,[z] be known up to a certain degree bound.
In other words, it is necessary to determine the splitting behavior
in K of a large number of places of F,(z), including the place at
infinity. While this can be done very efficiently for certain types of
function fields, including quadratic and cubic extensions, this task is
more difficult in general.

Our second application dealt with the distribution of class numbers.
By our construction, this question is ultimately linked to equidistribu-
tion of the zeros of (x(s) relative to a measure p4. In the elliptic and
the hyperelliptic case, it is known that p, corresponds to the Haar mea-
sure of a maximal compact subgroup of the symplectic group Sp (2g).
In the general case of an arbitrary function field, it would be most in-
teresting to find the correct value of p4. It would even be of interest
to classify certain curves where p4 is known and apply this knowledge
to approximating «(g). Alternatively, one could use the class number
algorithm of Section 4 to compute numerical averages to approximate
the relevant mean value as explained just prior to subsection 5.1.
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In subsection 4.1, we outlined only the most basic framework of our
class number algorithm. It would be interesting to use additional
information in the search phase, such as the values hx (mod [) for
small primes [, or information on where hy is expected to lie relative
to E(A) in the interval [E(X) — U(N), E(A\) + U(A)], to speed up this
method. This latter question of where in the search interval the class
number is expected to be found relates back to the quality of the error
bound U(A) and hence to the issues discussed in Section 5. It remains
to be seen how this information can be computed effectively for large
values of ¢ and genera g > 3.

Finally, we point out that in step (2) of the class number algorithm
(the search), very efficient ideal or divisor arithmetic is needed. There
are highly suitable algorithms for the case of hyperelliptic [11, 26, 27|
and purely cubic [5, 44] function fields. Arithmetic for the general case
was given in [23], and a more geometric approach was taken in [34], but
it is unclear how well these methods perform in actual implementations
on very large function fields. Clearly, this is a subject of much needed
future research.
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