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THE NUMBER OF KHALIMSKY-CONTINUOUS
FUNCTIONS ON INTERVALS

SHIVA SAMIEINIA

ABSTRACT. We determine the number of Khalimsky-
continuous functions defined on an interval and with values
in an interval.

1. Introduction. Digital geometry was developed as a geometry
for the computer screen, the elements of which are pixels organized in
a grid. It is natural to use pairs of integers as addresses of the pixels;
hence the use of Z2, or more generally Z", as the basic space.

Discretization in general is important in many other branches of
mathematics, one of them being analysis with a focus on continuous
functions. To define a continuous function we need a topological
structure on Z". Khalimsky et al. [5] defined a connected topology
on Z"™. We shall define here the Khalimsky topology in Section 1 in a
simple way just by using open subsets of Z and then going to higher
dimensions using a product topology. We shall discuss more about the
Khalimsky topology and Khalimsky-continuous function in Section 1
(for more information on these subjects, see Kiselman [6] and Melin
10, 11]).

A subject which has been studied extensively is the digital straight
line segment. (For more information about this topic see Kiselman [6],
Klette and Rosenfeld [7, 8], Melin [9, 10] and Samieinia [12].) The
pioneering combinatorial study on digital straight line segment was
made by Berenstein and Lavine [2]. They described in their common
work the number of discrete segments of slope 0 < o < 1 of length L.
Bédaride et al. [1] worked on the number of digital segments with given
length and height. Other combinatorial aspect in digital geometry is
the digital disc, i.e., the set of all integer points inside some given
disc. Huxley and Zuni¢ [4] studied the number of different digital discs
consisting of N points and showed an upper bound for it.
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In this paper we shall study the Khalimsky-continuous functions from
a combinatorial point of view. We shall determine the number of
continuous functions which are defined on an interval of the digital
line Z equipped with the Khalimsky topology and with values in
that line. We begin by recalling the definition and first properties
of the Khalimsky topology and then consider Khalimsky-continuous
functions. In Section 2, we consider these functions when they have
two points in the codomain. In this section we shall present a new
example of the classical Fibonacci sequence. In Sections 3 and 4, we
study the Khalimsky-continuous functions with three or four points in
their codomain, and as a consequence of these studies we find some
new sequences, the asymptotic behavior of which we investigate.

The Khalimsky topology. There are several different ways to
introduce the Khalimsky topology on the integers. We present the
Khalimsky topology using a topological basis. For every even integer
m, the set {m — 1, m, m + 1} is open, and for every odd integer n, the
singleton {n} is open. A basis is given by

{{2n+1},{2n —1,2n,2n + 1}; n € Z}.

It follows that even points are closed. A digital interval [a,b]z =
[a,b] N Z with the subspace topology is called a Khalimsky interval,
and a homeomorphic image of a Khalimsky interval into a topological
space is called a Khalimsky arc. On the digital plane Z?, the Khalimsky
topology is given by the product topology. A point with both coordi-
nates odd is open. If both coordinates are even, the point is closed.
These types of points are called pure. Points with one even and one odd
coordinate are neither open nor closed; these are called mized. Note
that a mixed point m = (my, m2) is connected only to its 4-neighbors,

(my £1,m2) and (mq,mq £1),
whereas a pure point p = (p1,p2) is connected to all its 8-neighbors,

(p1 £ 1,p2), (p1,p2 £ 1), (p1 +1,p2 £ 1) and (p1 — 1,pa £ 1).

More information on the Khalimsky plane and the Khalimsky topology
can be found in [6].
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Khalimsky-continuous functions. When we equip Z with the
Khalimsky topology, we may speak of continuous functions Z — Z,
i.e., functions for which the inverse image of open sets are open. It is
easily proved that a continuous function f is Lipschitz with constant 1.
This is however not sufficient for continuity. It is not hard to prove that
f1Z — Z is continuous if and only if (i) f is Lipschitz with constant
1 and (ii) for every =, z # f(z) (mod 2) implies f(z + 1) = f(z). For
more information see [9, 10].

For example, we observe that the following functions are continuous:
(1) Z >z — a € Z, where a is constant;

(2) Z >z — tx + ¢ € Z, where ¢ is an even constant;

(3) max(f,g) and min(f, g) if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval
can be obtained by a finite succession of the rules (1), (2), (3); see [6].

2. Continuous functions with a two-point codomain. We now
look at the functions which take their values in an interval consisting
of two points. It turns out that the number of such functions is given
by the Fibonacci sequence.

Theorem 2.1. Let a, be the number of Khalimsky-continuous
functions [0,n — 1]z — [0,1]z. Then a, = Fni2, where (F,)5° is
the Fibonacci sequence, defined by Fy =0, Fy =1, Fj, = F,_1 + F,_2,
n > 2.

Proof. Let a, = card ({f:[0,n — 1]z — [0,1]z; f(n — 1) = i}) for
1 =0,1, so that

(2.1) an = ad + ay,.
By the definition of the Khalimsky topology, we see that
(2.2) a%"“ s k2l

A2k 41 = A2k k=1
Moreover,
(2.3) ay, = ask1, k>1,

0 _ 0
Qg = A2k—1, k>1.



1670 SHIVA SAMIEINIA

Hence, using in turn (2.1), (2.2) and (2.3),
agk+1 = a3k+1 + aék“ = a2k + aék = agk + a2k-1,

which is the Fibonacci relation. Similarly, by using (2.1), (2.3) and
(2.2), we get

0 1 0
G2k = Qg + Qo = Qgp_1 + G2k—1 = A2—2 + A2k—1.
Now we need only observe that ay =2 = F3 and as = 3 = Fj. ]

We notice that Theorem 2.1 leads us to a new example of the classical
Fibonacci sequence. We list the number a,, of Khalimsky-continuous
functions for n = 1,...,14 in the next table.

n|1/2(3(4|5 |6 |7 89|10 |11 | 12| 13 | 14
an [ 2|35 |8 |13 |21 |34 |55|89 | 144 | 233 | 377 | 610 | 987

The asymptotic behavior of the number of continuous func-
tions with a two-point codomain. We consider two frequencies

po—
n - an’
and
P! = n
n o an‘
By (2.1),
(2.4) P’ + Pl =1.

We shall determine these frequencies asymptotically. First, we re-
call the interesting property of the Fibonacci sequence: the fraction
F,1/F, tends to o as n — oo, where a denotes the Golden Ratio
(v/5 +1)/2. Therefore F,,;1/F, 1 tends to o?. In the following theo-
rem we consider the frequencies for odd and even indices separately.
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Theorem 2.2. Let a, and ai, be as in Theorem 2.1 and define
Pi =d! /a, fori=0,1. Then as k — +oo we have that

1 1
0 0
P2k71—>avp2k—>§
and 1 1
1 1
Py_y — 27P2k_>a

where o = (v/5 +1)/2.

Proof. By (2.3) and (2.1),
ayy, = azgp_y + A1,

therefore we obtain another relation between frequencies and the values
of as, and agp_1 as

(2.5) Pyyasy, = Pay,_jask_1 + Pyj,_ja0k_1.
Then using (2.4) leads us to
Pyasy = agk—1.

Thus,

asgk_ 1
pL =221 2 as k — +oo.
agk (e

By Theorem 2.1,
ask — Piasy, = azy,—1,

SO
(2.6) Jo L — Ll
a2k
By using (2.1), (2.2) and (2.3),
(2.7) Aok — G2k—1 = A2k—2,
thus by (2.6) and (2.7),
A2k —2
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and so
1
0
sz—>§ as k — +oo.

As before, we can find
0 a2k
Pyppr = ——,
a2k+1
implying that

1
ng“—)a as k — 4o0.

Also,
1 A2k —1
P2k+1 =
a2k+1
which implies that
1 1
P2k+1—>§ as k — +oo0. O

In the next table we can see the values of al, al, a,, P°, and P! for
n==6,...,13.

n 7 8 9 10 11 12 13
ad 5 13 13 34 34 89 89 233
al 8 21 21 55 55 144 144
an 13 21 34 55 89 144 233 377

P2 | 0.3846 | 0.6190 | 0.3824 | 0.6182 | 0.3820 | 0.6181 | 0.382 | 0.618
Pl 1 0.6154 | 0.381 | 0.6176 | 0.382 | 0.618 | 0.382 | 0.618 | 0.382

3. Continuous functions with a three-point codomain. We
summarize the results for functions with up to three values.

Theorem 3.1. Let b, be the number of Khalimsky-continuous
functions [0,n — 1]z — [0,2]z. Then by =3, ba =5, and

bor = bog—1 + bog—2 + bag—3 = 2baj,_2 + 3bop_3, k >2,

bak—1 = bag—2 + 2bag_3, k>2

(3.1)
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Proof. Let bi, = card ({f:[0,n — 1]z — [0,2]z; f(n — 1) = i}) for
i =0,1,2. Therefore it is clear that

(3.2) b, = b)) + bl +b2.

From the properties of the Khalimsky topology we see that

b3y, = b9k 1, k>1,
(3.3) by =9 1 + by 1 + b3y, k>1,
b3 = b3k_1, k>1,

ok 1 =3 o+ b3 o k=2
(3.4) byj_1 = bp_o, k>2,
bor—1 = b3z +bap_o, k>2.

We assume that n = 2k — 1 in equation (3.2); then using in turn (3.4)
and (3.3) we obtain the equalities

(3.5) bok_1 = bog_o + 2b3;_o = bog_o + 2bag_3.

Now we need to do the same for n = 2k in equation (3.2); then using
in turn (3.3) and (3.4),

(3.6) bor = bop_1 + bgk,_l + bgk,_l =bop_1 + bap_2 + bék—z-
Now if we use equation (3.3) in (3.6) we can see the result for by, i.e.,
(3.7) bor = bop_1 + bag—2 + bag_3.

Another result for by, will be obvious if we put equation (3.5) into
equation (3.7), i.e.,

bok = bak—1 + bog—o2 + bog—3
= bag—2 + 2bok_3 + bor_2 + bar_3
= 2bok_o + 3bok_3. o

The Jacobsthal sequence is defined by J,, = J,,_1+2J, o with J; =0
and Jo = 1 (this is sequence number A001045 in Sloane’s On-line
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Encyclopedia of Integer Sequences), and the Tribonacci sequence is
defined by the formula T,, = T}, 1 + T),_2 + T}, _3 with initial values
1,1,1 (sequence number A000213); by Theorem 3.1 we see that b, is a
mixture between the Tribonacci and Jacobsthal sequences.

We give below the sequence (b,) forn =1,...,12.

n|1]2(3|4]|5]|6 7 8 9 10 11 12
by | 3|5 |11 |19 |41 |71 153|265 | 571 | 989 | 2131 | 3691

The asymptotic behavior of the number of continuous func-
tions with a three-point codomain. We shall now determine how
the number of continuous functions grows with the number of points
in the domain.

Theorem 3.2. Let b, be the number of Khalimsky-continuous
functions [0,n— 1]z — [0,2]z. Then there is a sequence (t,) tending to
a positive limit t = 1/2 ++/3/6 ~ 0.788675 as k — +oco and such that

Bk :tgk\/§(2+\/§)k, k> 2,

(3.8) )
bak—1 = tok—1 (2 + \/§> , k>2.

Proof. We define a sequence (t,,) by the following equations,

tor = b2k0_17_k7 k> 27

(3.9) )
tok—1=bor_17 F, k>2.

Thus, using (3.1) and (3.9),

tor =27 Mok + 3y 10 Man_s, k>2,

ton—1 =07 ‘top_2 + 2y “tok_s, k>2

(3.10)

With equation (3.10), we have the following equation for all 6, > 0,

(3.11) top —tok—1 = (277" — Oy tar_2+ (377107 — 2y )tay_s.
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While this formula is true for all values of v and 6, it is of interest
mainly when the two coefficients in equation (3.11) sum up to zero.
We therefore define v and 6 so that 2y~1 —y~1 +3y~ 1671 -2y~ = 0.
This implies 6 = /3.

Next we consider the equation for tor1 — to,

togr1 — tok = 0y Mtor, + 2y M top 1 — tox,

(3.12) B B
= Oyt — Dtog + 2y Moy

In the same way we consider the special case of equation (3.12) when the
coefficients have zero sum, and therefore we obtain v = 2+6 = 2++/3.
By using induction in equation (3.11),

k—1
(3.13) top — top_1 = <%> (tz - tl):

and for equation (3.12),

-2
tok+1 — tok = (tor — tak—1)

2+3
_ _ k—1
(R

Since (2 = v/3)/(2+ v/3)| < 1, equations (3.13) and (3.14) lead us to
the same limit ¢, 0 < ¢ < +oo for the sequence (t,) as k tends to
infinity.

(3.14)

To determine the limit ¢, we shall use matrices, inspired by the
treatment in Cull et al. [3].

Formula (3.1) can be written in matrix form as follows:

X, =AX,_1 where X,, = bon and A = 2 3 .
bon—1 1 2

With initial condition X; = (2) we have X,, = A™~! (i) The matrix

A has characteristic polynomial

chA(a:)—det(2Ix 2:) —(2-2)?-3
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and has distinct eigenvalues, \; = 2 + V3and \y =2 — \/§, and this
implies that A is diagonalizable. With a simple computation, we can
see that A = PDP~!, where

D:(2+\/§ 0 )

0 2-1/3
P= (\f _1/§>
and
pt= L ( 1 */§> )
2v/3\ -1 V3
Therefore

_oan—1 (9 _ n—1p—1[9
ot (5) < pip1 ()

1 ( (5v3+9)(2+ v3)" 1 + (5v/3-9)(2 - V3)" ! )

T3\ (332 + V) (-5 +3V3)(2 - V3T
?3.15) 1
ban = 5= ((6v3+9)2+v3) ™+ (5v3 - 9)(2 - V3)").

Inserting the values already found for 6 and v into (3.9),

ton = %((5ﬁ+9)(2+x/§)1+(5\/§9)<%> 7 (2+\/§)1>,

proving that t,, tends to 1/2++/3/6 ~ 0.7886751, and so t,, converges
to this number. O

Proposition 3.3. Let b, be the number of Khalimsky-continuous
functions [0,n — 1]z — [0,2]z, let b%, be the number of Khalimsky-
continuous functions [0,n — 1)z — [0,2]z satisfying f(n — 1) = i for
i=0,1,2, and define Pi = bi /b, fori=0,1,2. Ask tends to infinity,

1

1 1 1
P22k:P20k—>———\/§a P22k—1:P20k—1—>§\/——2

2 6



KHALIMSKY-CONTINUOUS FUNCTIONS 1677

also 1
Ph — — PL_, —2-V3.

\/gv

Proof. Using the Khalimsky topology,

bgk = bgkfb k Z 27
(3.16) by, =209 1 + by 4, k>2,
b3y, = b3k _1, k> 2,

and
bop—1 = b2+ b3, k>2,
(3.17) by | = by o, k>2
b3k 1 = b3 o+ b3p_o, K
Let
Pt = b—" for i =0,1,2.

n
n

Also we can see easily that P) = P2, so by using (3.2) we get

(3.18) 2P + Py = 1.

It is obvious that the frequencies for odd and even indices are different
but there is a relation between them. We shall study them separately.
By (3.16),

s [T
(1- 2P20k)b2k = 2P20k71b2k_1 +(1- 2P20k71)b2k_1.
We solve equation (3.19) and obtain
bak — bak—1 bak — bak—1
P =" " and PY,_, = — "
2k or 2k-1 ST

Therefore, by Theorem 3.2, we see that, as k — oo,

-1 1 1
P55 —5 7Y%
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and

Also, by using (3.18) and a simple calculation,

Py, — and Py, — 2—/3. o

1
V3

In the following table we can see some values of P} for i = 0,1, 2.

n 6 7 8 9 10 11 12

0 15 56 56 209 209 780 780
bl 41 41 153 153 571 571 2131
b2 15 56 56 209 209 780 780
bn, 71 153 265 571 989 2131 3691

P? | 0.2113 | 0.36601 | 0.21132 | 0.36602 | 0.21132 | 0.36602 | 0.21132
Pl 1057746 | 0.26797 | 0.57736 | 0.26795 | 0.57735 | 0.26795 | 0.57735
P2 | 0.2113 | 0.36601 | 0.21132 | 0.36602 | 0.21132 | 0.36602 | 0.21132

4. Continuous functions with a four-point codomain.

Theorem 4.1. Let ¢, be the number of Khalimsky-continuous
functions f:[0,n—1]z — [0, 3]z, and let ¢, be the number of Khalimsky-
continuous functions f:[0,n — 1]z — [0,3]z such that f(n — 1) =1 for
i=0,1,2,3. Thencl=c2=1,¢c3="7, c3 =15 and

(4.1) Cn=Cno1+2ch_a+c_s+c2_s.

Formula (4.1) together with formulas (4.3) and (4.4) below determine
the value of ¢,.

Proof. We have by definition

(4.2) Cn=Cc 4l +c2+c3.
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Using properties of the Khalimsky topology, we see that

0 0 1
Cok41 = Cok T Cops k=>1
1 1
Cop+1 = Cags k>1,
(4.3) 2 _ 1 2 3 p>1
Cok41 = Cop T Cop + Cop,
E>1

3 _ 3
Cok+1 = Caks 21,
and

0 _ 0
Cor = Cop—1,

k>1
(4.4) ok = oy F by F By k21
Cor = C2k—1) E>1
Cop = Chy 1 + Cop 1, E>1

If we insert (4.3) into (4.2),

(4.5) Coky1 = Cak + 2¢3, + Cop..

By using (4.4),

(4.6) 23y, + € = 2C2k—1 + Cop_1 — Cop_1-

But the equations in (4.3) give us

2
Cop—1 =
(4.7)
Cgk—1 = Cgk—2-

1 2 3
Cop—2 T Cop_g + Cop_o,

Now, we need just to consider the equations (4.5), (4.6) and (4.7) to
have the result for odd n, n = 2k + 1. Next we proceed in the same
way for n = 2k. Using properties of the Khalimsky topology we see
that, if we add equation (4.4) to equation (4.2), we have

(4.8) Cok = Cak—1 + 2C3 1 + Cop_1-
Therefore, by (4.3) we have

2 o _ 1 0
(4.9) 2051 + Cop_q = 2C2p—2 + Cop_g — Cop_o-
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Also, (4.4) gives us

1 0 1 2
[ =c +c +c

2k —2 2k—3 2k—3 2k—3
(4.10) ’

oz = Coye
We insert (4.10) and (4.9) into (4.8) to get the result for even n. O

We present in the following table the sequence with four values in the
codomain and n < 10 points in the domain.

n|1{2|3]|4]5 6 7 8 9 10
cn | 4| 7| 15|31 |65 136 | 285|597 | 1251 | 2621

The asymptotic behavior of the number of continuous func-
tions with a four-point codomain.

Theorem 4.2. Let ci, be the number of Khalimsky-continuous
functions f:[0,n—1]z — [0, 3]z such that f(n—1) =i fori=0,1,2,3,
and let ¢, be their sum. Then

cntCp chtCh
I 5 5 =— as well as
Ch—1 + Cn—1 Cn—1 + Cn—1 Cn—1

1 \/
= \/ 145 ~ 2.0952 )
SV 7+ V5 +1/38 + 145 ~ 2.095293985

Proof. Let us fix a positive number + (to be determined later) and

c
™ tend to

define sequence ti, for i = 0,...,3 by the following equation
(4.11) ch o=ty

Let

(4.12) tn =10+t +12 4+ 3.

Then (4.3) and (4.11) yield

o1 =7 (t9% + tag),
toprr =7 o

e =7t + 3k + 131,

3 1,3
g1 =7 tog

(4.13)
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By (4.4) and (4.11) we obtain

top =7 't 1,

tog =7 (k1 + top_1 +ta_1),
e =7 M3 1

the =7 (t3h_1 + tak_1)-

(4.14)

We now define a sequence (X,,) as follows:

tO
A
(4.15) X, = tg ,
B
and introduce the two matrices
1 0 0 O 1 1 0 0
1 110 01 0O
(416)  Aw=1, o 1 o] Awa=|g 1 1 1
0 0 1 1 0 0 01

By using (4.13), (4.14), (4.15) and (4.16) we can see easily that
(4.17) X, =~7'4,X,_1 forn>2.

Let B be equal to Asj1Aak, which is independent of k. Then

O = = N
O = ==
[ N i
—_—0 O

This matrix is symmetric, so there exists a diagonal matrix D whose
diagonal entries are the eigenvalues of B and a matrix P such that each
column of P is an eigenvector of B with B = PDPYT. The columns of
P form an orthogonal set, so PPT = PTP. We shall now determine
the eigenvalues and eigenvectors of the matrix B. It has the following
characteristic function:

(4.18) det(B — zI) = z* — 72® + 132> — Tz + 1.
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The symmetry of the coefficients in this equation implies that, if \ is
an eigenvalue then also 1/ is an eigenvalue. Thus we can find the four
eigenvalues of equation (4.18) by starting with a = A + (1/X\o) and
B = A1+(1/A1). Then we get a+f = 7and aff = 11,50 a = (7 4 /5)/2
and B = (7 —+/5)/2 and therefore

Ao = 7+\/_—\/438+14\/5 and Ag = 1/)\0 _ 7+\/5+\/43s+14\/5,

(4.19)
A = 7+\/_—\/438—14\/5 and Ay = 1/)\1 _ 7+\/5+\/438—14\/§'

Let P = (Po PL P, P5), where P; is an eigenvector with respect to the
eigenvalue \; for ¢ = 0,...,3. Therefore, BP; = \;P;. Now we shall
solve the following system of equations:

2¢ +y+ 2z = Az,

=
(4.20) rryTE=A,
r+y+3z+1t= Az,
z+t= M,

where A is one of the eigenvalues );, and where P; = (zy=¢)" for
1 =0,...,3. Therefore,

A—1 A2 -3\ +1 A2 -3\ +1
x, 2= ——2, t= ————=.

A AA—1)

We choose for convenience z = A(A — 1); thus
y=A—-172 2=\ =3\+1DA-1), t=X-3\x+1.

From now on, let A = A3 and (z,y, z,)T be the eigenvectors related to
As. Since we need to consider B¥ as k — 0o, we need not consider the
powers of A\; for i = 0,1,2. Hence, the powers of B that we need to
consider are as follows:

Mex? Negy  Nexz Negt
Nezy  Ney2  Neyz Nyt
Nexz  MNeyz  Aez2 0 Nt
Neat  Neyt  Nezt AFe2

BF =



KHALIMSKY-CONTINUOUS FUNCTIONS 1683

Equation (4.17) and the previous calculation lead us to

xztg + xyt% + :cztg + xttg
oyt + y2il + 2yt + tytd
T2td + yot + 222 + tztd
oitd + ytts + 2t + 23

(4.21) sz,1 = (’7_2)\)k_3

Let o = xtd + ytl + 2t2 + tt3. Thus by (4.14) and (4.21),

top =7 (19 1 4 tag 1 + 13 1)
= (v 2A) 37 z+y+2)a
( )(k 3

1=

We now define v = VA, the positive square root of the largest eigen-
value, and find that (y~2)X)*~3 tends to 1 as k — +o00. We claim that
v~z + y + z) = z, or, equivalently, that

0=y Hzt+y+2)—2
A—1 A2-3x+1 A2 —3\+1
:m[’y_l(l—i— + ha >— * }

A A A
We need to show that
FEHA=DA= (A2 =31 +1)=0.
Since A is the largest root of equation (4.18),
0=X"—7A+ 13\ —7A+1
(4.22) =T —6A3 1IN —6A+1— A% +20% — A
= (N =3x+1)" = A(A - D)%

The equations in (4.22) imply that

A2 (A —1)7
(A2 =31 +1)*

Therefore,
1 A2P=3a+1

7 A(A—1)
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This proves our claim. Hence the sequences t}, and t3, ; are identical,
and therefore they tend to the same limit za as k& — oo. Similarly, we
can prove the corresponding result for some other sequences as follows:

thy =tap_, —> za as k — oo,

(4.23) > 1

top, = top—1 —ya as k — oo,
and
(4.20) t3, =19 |, — za as k — oo,

t =ta | —ta as k — oo.

If we sum the two limits in (4.23),

(4.25) (t- +t2) tends to (y + z)a as n — oo.
Analogously, (4.24) shows that

(4.26) (t% +3) tends to (z +t)a as n — oo.

We now easily conclude that the sum of these two sequences, i.e., (¢,),
converges to (z +y + z + t)a. Since the sequence (t. + t2) converges,
we see easily that

1 2
¢, + ¢,

- — —— 7Y asn—-x
1 2 )
cn71+cn71

and also the convergence of the sequence (t° + t3) leads us to

0 3
c, t+c,

% — —— 7Y asn — +oo.
0 3
Cn—1 +Cn71

We have the same result for ¢, /c, 1 because, as we found, the sequence
(t,,) converges to some real number, so

Cn

—> 7y asn — +0o0. O
Cn—1

We shall now investigate frequencies in the case of a four-point
codomain.
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Proposition 4.3. Let c, be the number of Khalimsky-continuous
functions f:[0,n—1]z — [0, 3]z, and let ¢, be the number of Khalimsky-
continuous functions f:[0,n — 1]z — [0, 3]z such that f(n — 1) =i for
i=0,1,2,3. If p, = ¢} /e, fori=0,1,2,3, then

P} oand PO,_, — — % ~0.258582;
2k 2k—1 CU+y+Z+t
-y
ct+ty+z+t
PL and P%_, — — = ~0.418335;
2k 2k—1 ZU+y+Z+t
t

P). and P§,_, — ———————— ~0.123402;
2k 2k—1 :v+y+z+t

P}, and Py,_, — ~ 0.199679;

(4.27)

as k — oo, where x,y,z,t are the numbers which were defined in the
proof of Theorem 4.2. As a consequence, if we add these numbers in
pairs, the different parities play no role, and we obtain that

y+z
r+y+z+1
t
PPypPd s TTL 0381984
r+y+z+1

pPl+pP: — ~ 0.618014

(4.28)

as n tends to infinity.

Proof. By the proof of Theorem 4.2 we know that the sequence (¢,)
converges to the number (z + y + z + ¢t)co. This fact and (4.23) imply
that

P:andPL_, — —2  ~0.199679 ask — oo
(129) TH+y+z+t
PLoand Pi_, — — = ~0.418335 as k — co.
r+y+z+t

Analogously, by using (4.24) we conclude that

P oand Py | — —— ~0.258582 as k — oo;
r+y+z+t
(4.30) ;
PYoand P3| — ——— ~0.123402 as k — oo.

r+y+z+t
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It is obvious that if we sum up the limits in (4.29),

y+z

Pl+p? o ' °
nt T+y+z+t

~ 0.618014 as n — oo,

similarly if we sum the limits in (4.30),

t
P4 pd T 0381984 asn—oco. O
zH+y+z+1t
In the next table we can see the values of P! for i = 0,...,3 and the

sums of some of the frequencies.

n 6 7 8 9 10
& 17 74 74 324 324
cl 57 57 250 250 1097
2 27 119 119 523 523
el 35 35 154 154 677
cn 136 285 597 1251 2621
P 0.125 0.259649 | 0.123953 | 0.258992 | 0.123616
P} 0.419117 0.2 0.418760 | 0.199840 | 0.418542
P2 0.1985294 | 0.4175439 | 0.19933 | 0.4180655 | 0.1995422
p3 0.2573529 | 0.122807 | 0.2579564 | 0.1231015 | 0.2582984
PO 4+ P3| 0.3823529 | 0.382456 | 0.3819094 | 0.3820935 | 0.3819144
Pl + P2 | 0.6176464 | 0.6175439 | 0.61809 | 0.6179055 | 0.6180842

Conclusion. In this work we studied Khalimsky-continuous func-
tions from a combinatorial point of view. We considered the graphs
of these functions as paths between two points with special proper-
ties depending on the topological structure. Based on these proper-
ties, we investigated some problems and determined the number of
Khalimsky-continuous functions with arbitrary domain of definition
and with codomain containing up to four points.
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