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PARTIALLY ORDERED GROUPS
WHICH ACT ON ORIENTED ORDER TREES

MATTHEW HORAK AND MELANIE STEIN

ABSTRACT. It is well known that a countable group ad-
mits a left-invariant total order if and only if it acts faith-
fully on R by orientation preserving homeomorphisms. Such
group actions are special cases of group actions on simply
connected 1-manifolds, or equivalently, actions on oriented or-
der trees. We characterize a class of left-invariant partial or-
ders on groups which yield such actions, and show conversely
that groups acting on oriented order trees by order preserving
homeomorphisms admit such partial orders as long as there is
an action with a point whose stabilizer is left-orderable.

1. Introduction. It is a well-known result that a countable
group admits a left- (or right-)invariant total order if and only if it
acts faithfully by orientation preserving homeomorphisms on R (see
Theorem 6.8 of [11] for a proof). Many groups that arise naturally
in topology are left-orderable, for example braid groups [7], certain
mapping class groups of Riemann surfaces with boundary [17], and
many 3-manifold groups. Boyer, Rolfsen and Wiest establish in [5]
that there are compact connected manifolds modeled on each of the
eight 3-dimensional geometries with both orderable and nonorderable
fundamental groups. The first examples of nonorderable hyperbolic 3-
manifold groups are given in [14], and the nonorderability of these
groups is established by showing that they cannot act via faithful
orientation preserving homeomorphisms on R. Now, R is a special
case of a simply connected 1-manifold, and in fact the paper shows that
these groups cannot act nontrivially on any oriented simply connected
1-manifold. For a simple example of a non Hausdorff simply connected
1-manifold, consider the disjoint union of two copies of [0, +0o0) and a
single copy of (—o0,0), in which both endpoints of the closed segments
are limit points of the sequence {—1/n}; (see also [2]). The points
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of oriented simply-connected 1-manifolds have a natural order, just
as the points of R do. In contrast to the total order of the points
on the real line, the points of these more general manifolds are in
general only partially ordered (see [14]). The goal of this paper is to
characterize the left invariant partial orders on groups that correspond
to group actions on oriented simply-connected 1-manifolds and their
generalizations, oriented order trees, and to prove the analogue of the
classical theorem relating left orderability of groups and faithful group
actions on R.

The paper is organized as follows. In Section 2, we recall some of
the relevant background information on simply connected 1-manifolds
and their generalizations, order trees. We also extend some basic ideas
about ends from Hausdorff trees to the more general setting of order
trees. In Section 3, we define the abstract partial orders we will be
concerned with, which we call partial orders with rectifiable simply
connected extensions (see Definitions 14 (simply connected posets),
15 (extensions) and 23 (rectifiable)). We establish certain properties of
sets equipped with such partial orders, which allow us to define a notion
of “betweenness” (see Definition 18) for arbitrary simply connected
posets that agrees with the natural notion of “between” for 1-manifolds.
We also show that, under a suitable convexity hypothesis on subgroups,
these orders naturally pass to both subgroups and quotient groups (see
Theorem 3). After Section 3, we have established the terminology
necessary to state both classification theorems, one for groups acting
on simply connected 1-manifolds and one for groups acting on order
trees.

Main theorem 1. If G is a countable group, the following are
equivalent:

(1) The group G admits a nontrivial left-invariant rectifiable simply-
connected partial order.

(2) The group G acts, minimally and without fizing a unique end, on
an oriented simply-connected 1-manifold T by orientation-preserving
homeomorphisms in such a way that some point of T has a trivial
stabilizer.

(3) The group G acts, minimally and without fizing a unique end, on
an oriented simply-connected 1-manifold T by orientation-preserving
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homeomorphisms in such a way that some point of T has a left-orderable
stabilizer.

Main theorem 2. If G is a countable group, the following are
equivalent:

(1) The group G admits a partial order with nontrivial left-invariant
rectifiable simply-connected extension.

(2) The group G acts, minimally and without fizing a unique end, on
an oriented order tree T by orientation-preserving homeomorphisms in
such a way that some point of T has a trivial stabilizer.

(3) The group G acts, minimally and without fizing a unique end, on
an oriented order tree T by orientation-preserving homeomorphisms in
such a way that some point of T has a left-orderable stabilizer.

The next four sections are devoted to the proof of the various
implications in the two main theorems. In Section 4, we prove the
implications (1) implies (2) in both main theorems in Theorem 4 by
using the extension of the partial order and its betweenness relation
to construct a suitable l-manifold 7" on which the group acts. In
Section 5, we prove Theorem 5, which establishes that (2) implies
(1) in Main theorem 1. In Section 6, we examine the necessity of
the assumption that there be a point with trivial stabilizer in the
hypothesis of Theorem 5. To motivate this section, consider the simple
example G = G xg G2, where G; and G5 are nonisomorphic finite
cyclic groups and H is a proper nontrivial subgroup of both. G acts
faithfully without fixing a unique end on a simplicial tree where every
point has a nontrivial stabilizer, but we will show in this section that it
does not admit a nontrivial left-invariant rectifiable simply-connected
partial order. Therefore, the trivial stabilizer condition in Theorem 5
cannot simply be dropped. By adapting the proof of Theorem 5,
we prove in Theorem 6 that the conclusion of Theorem 5 still holds
if we replace “trivial stabilizer” in the hypothesis by “left-orderable
stabilizer,” establishing (3) implies (1) of Main theorem 1. Since it
is immediate that (2) implies (3), this completes the proof of Main
theorem 1. Finally, the goal of Section 7 is to prove the analogues of
Theorems 5 and 6 (the stronger version established in Section 6) for
groups acting on general order trees, proving the remaining implications
necessary to establish Main theorem 2.
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The study of treelike structures is common throughout the literature,
in for example the theories of R-trees, A-trees, protrees, dendrons, pre-
trees, etc. A certainly nonexhaustive survey of the literature developing
the theories of such structures includes [1-4, 6, 8, 13, 16]. In partic-
ular, the notion of “betweenness” and the associated betweenness rela-
tion is central to the theory of pretrees. Bowditch and Crisp [3, 4] have
successfully used betweenness relations to generalize results for topo-
logical actions on R-trees to actions on pretrees. After we completed
the constructions of Section 4, it came to our attention that the con-
structions of Bowditch and Crisp are very similar to our constructions.
Indeed, our betweenness relation on a set with a simply connected par-
tial order does satisfy Bowditch’s notion of betweenness, and hence a
simply connected poset has the structure of a pretree. However, the
constructions in [3, 4] applied to one of our groups would give an action
on an R-tree without orientation, since the pretrees themselves have no
notion of order. One could give a proof of Theorem 4 by strengthening
the constructions of Bowditch and Crisp in the special case of a simply
connected partial order to carry the full poset information (referring
the reader to those constructions), and then orienting the resulting R-
trees and proving that their actions preserve the orientations. However,
including the extra structure on the poset from the beginning allows
for a more straightforward construction. Hence, for reasons of both
completeness and readability, we include in Section 4 a self-contained
exposition of our construction.

2. Background information. An order tree T [10] is a set T
together with a collection S of linearly ordered subsets called segments.
If o is a segment then —o denotes the same subset with reverse order.
The segments satisfy:

e Each segment ¢ has distinct least and greatest elements, which
we will denote by i(c) and f(o), respectively. (We also write o =

[i(o), f(o)].)
o If o is a segment, so is —o.

e A closed nondegenerate (i.e., containing more than one element)
subinterval of a segment is a segment.

e Any two elements of 1" can be joined by a sequence oy,...,0 of
segments such that f(o;) =i(oj41) for all j.
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e Given a word oyo7 -+ - 0,—1 with i(o;) = f(oj41) for all 7,0 < j <
k—2, and f(ok_1) = i(09p), there is a subdivision of the o’s py - pn_1
so that when adjacent pairs (p)(—p) are canceled, we have the trivial
word.

o If f(01) = i(02) = 01 N o2, then o1 U oy is a segment.
An R-order tree [9] is an order tree satisfying also:
e Fach segment is order isomorphic to a closed interval in R.
e T is a countable union of segments.
An orientation of an order tree is a choice of subset S; C S such that
e S N(=8;) =9, where —S; = {—0cl|o € S;}.
e A closed nondegenerate subinterval of a segment in S} is in Sy.

e Any two elements of T can be joined by a sequence o1,...,0 of
segments in Sy U (=S ) such that f(o;) =i(o;41) for all j.

e Ifoy,09 € S+ and f(O'l) = i(O’Q) =01 Nog, then 01 Uoy € S+.

Since there are no nontrivial cyclic words, orientations always exist.

Remark. For simplicity of exposition, we will take all order trees to
be R-order trees. Thus, unless otherwise noted, any order tree will be
assumed to satisfy the above two R axioms.

Some special cases of order trees include R-trees with countably
many branch points and simply-connected (not necessarily Hausdorff)
1-manifolds. In the case of a simply-connected l-manifold there are
exactly two possible orientations, whereas for a general order tree there
may be many more. Any nontrivial orientation preserving group action
on an oriented R-order tree canonically induces an action on a related
simply connected 1-manifold. The full details of the construction of this
1-manifold (a Denjoy blow-up of the original) appear in [14, Section 5],
but for ease in reference later on we summarize the construction here,
including some details.

First, we recall the notion of incidence for order trees. We remark
that the definition of incidence or branching degree extends to arbitrary
order trees. Fix an orientation on T, and let * € T. Define an
equivalence relation ~; on the set S(z,f) = {0 € Si|f(0) = =}
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by o1 ~j o2 if and only if |63 No2| > 1. For each o € S(z, f),
let 7, = {r € S(z,f)|r =5 o} and call r, an incoming ray at
z. Let R(z,f) = {ro|loc € S(z,f)}. Call ng(x) = |R(z,f)| the
in degree at x. Similarly, define an equivalence relation =, on the
set S(z,0) = {0 € Stli(0) = z} by 01 ~, o2 if and only if both
i(o1) = i(o2) = =z and |oy Noa] > 1. For each o € S(z,0), let
re = {7 € S(z,0)|T =, o} and call 7, an outgoing ray at x. Let
R(z,0) = {rs|loc € S(z,0)}. Call n,(xz) = |R(x,0)| the out degree at
xz. We say that a segment o is incident to z if o € S(z,0) U S(z, f),
and we say that an incoming or outgoing ray r, is incident to x if
Te € R(z,0) UR(z, f). Call x € T regular if n,(x) = ny(x) = 1. Call
x € T a branch point if it is not regular, and let B denote the set of
branch points of 7. Note that if B = &, then T' can also be given the
structure of a simply connected 1-manifold.

Now consider an element z of B. If the out-degree n,(z) is equal
to 0 (in-degree ny(z) equals 0), call = a sink (respectively, source). If
no(z) = 1 and nyg(z) > 1, call the single element r, € R(z,0) the
distinguished ray at . Symmetrically, if ng(z) = 1 and no(z) > 1, call
the single element r, € R(z, f) the distinguished ray at x.

Lemma 1 (see [14, Lemma 5.9]). Let Ty be an oriented order tree
such that, at every x € B, there is a distinguished ray. Then any
nontrivial orientation-preserving action on Ty canonically induces a
nontrivial orientation preserving action on a related oriented simply
connected 1-manifold T'.

Proof. The 1-manifold T is obtained from the order tree T' by blowing
up each branch point of T" into a set of endpoints for each ray except
the distinguished ray, which is left open. See [14] for full details. o

Proposition 1 [14, Proposition 5.10]. Any nontrivial orientation-
preserving action on an oriented order tree T canonically induces a
nontrivial orientation preserving action on a related oriented simply
connected 1-manifold T'.

Proof. Again, a full proof appears in [14]. At each branch point
with in- and out-degree greater than 1, a linear Denjoy blowup (as
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FIGURE 1. Blowing up at a branch point to construct a 1-manifold.

in Definition 9.1 of [14]) is performed to create a tree T in which
all branch points are sinks, sources or have distinguished rays. A
distinguished ray is then added at each sink and source, and then
Lemma 1 is applied to obtain the 1-manifold 7/. We show that any
nontrivial orientation-preserving action on an oriented R-order tree
T canonically induces a nontrivial orientation preserving action on
an oriented R-order tree T such that at every x € B, there is a
distinguished ray. Lemma 1 then applies. An example of this process is
illustrated in Figure 1, which shows the two steps required in the case
of a single branch point with in-degree and out-degree both greater
than one. O

In the construction described above, there is a natural map ¢ : T" —
T. This map collapses to a point each segment added during the Denjoy
blow-up of T" to Ty, collapses to the sink or source each segment added
to these points to give them distinguished rays and collapses all the
points in each set {x,_} added for each distinguished ray #,. We will
need to keep track of an important implicit subtree of T which maps
surjectively onto T, called the core of T".

Definition 1. The core of T" is the subset T of 7" consisting of
all points not in the union of open rays which are added to T at the
last step in forming Ty (in order to transform branch points which are
sources or sinks into branch points with a distinguished ray).

Next we recall from [15] some of the basics about the structure of
order trees.
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Definition 2. Let T be an order tree. A path from x € Ttoy € T
is a sequence of segments o - - -0, with f(o;) = i(oj41) for 1 <i < n
and i(o;) =z and f(o,) = y.

Definition 3. A standard geodesic from z to y is a path oy ---0,
from z to y satisfying:

eo;Noj=0if i —j| > 1L

e For all j, either o; Nojy1 = i(0j41) = f(oj) or 0; Nojy1 =
(1(05), ()] = (f(oj41), i(0j41)]-

Define the set S by

S={(o,7)|ce8,1eS8,(io), f(o)]
= (f(7),i(r)] and i(o) # f(7)}.

We define a relation on S as follows: ([z,z],[z,y]) = ([z, '], [/, y]) if
there exists an element r € (z,z] N (z, 2] so that the following hold,
where the segments [r, z] and/or [r, 2'| are understood to be empty if
r=zorr=2z.

The relation = is an equivalence relation.

Definition 4. A cusp is an equivalence class of pairs of segments in
S under the above equivalence relation =.

Notation. Note that a cusp represented by a pair ([z, 2], [2,y]) € Sis
determined by the pair of points = and y, for by axiom 5 in the definition
of the order tree, any other pair in S of the form ([z,2'],[2',y]) must
be in the same equivalence class. Hence, we will use the symbol [z, y]°
to denote the cusp. In this situation, we refer to the points z and y as
cusp points.

Then we have the following existence theorem.
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Theorem 1 (see [15, Theorem 3.4]). Let T be an order tree. Given
x andy € T, there exists a standard geodesic from x to y.

Remark. In particular, if a path satisfies the first condition in the
definition of a standard geodesic then no three segments in the path
have a nonempty intersection. Hence, each segment in a standard
geodesic is a part of a representative of at most one cusp, or in other
words it is never the case that (¢j,0j41) and (0j41,0;j42) are both
representatives of cusps.

Standard geodesic paths are not unique, but the lack of uniqueness as
a set of points is all due to the lack of uniqueness in the representation
of cusps as two segments. We make this more precise with the following
definition.

Definition 5. Let v be a standard geodesic from x to y. Define
GS(z,y), the geodesic spine of 7, to be the union of all segments of
which do not, together with an adjacent segment, give a representative
of a cusp, together with all of the cusp points of .

Although GS(, ) is defined as a set, it has a natural linear order
inherited from the geodesic . This order on a particular GS, ) will
not everywhere be compatible with the orientation of 7' in the sense
that the initial point of an oriented segment in G'S(, ,) may come after
the final vertex of that segment in this order. An example of this
can be seen by considering the geodesic spine between two cusp points
separated by more than one oriented segment in the implicit line in
Figure 2. Because of this natural linear order, we will sometimes abuse
language and call the geodesic spine a path, even though it has gaps
between cusp points. When a pair of segments representing a cusp
[p1,p2]¢ is on v, it is only p; and py which are on GS(, ,). However, we
will again sometimes abuse language and say that [p1, p2|®is on GS(, )

to stress the fact that p; and p; are cusp points.
As the notation suggests, the geodesic spine of v depends only on the

endpoints of the geodesic. It is independent of the particular choice
of the standard geodesic 7. The uniqueness of the geodesic spine of
a standard geodesic between = and y will follow from the following
theorem.
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FIGURE 2. An oriented order tree T' and implicit line [.

Theorem 2 (see [15, Theorem 3.6]). The geodesic spine of a standard
geodesic from x to y is the intersection of all paths from x to y.

The standard notions of trivial actions (ones with global fixed points)
and minimal actions (those with no proper invariant subtree) must be
modified slightly to suit the order tree situation.

Definition 6. If g € G where the group G acts on an order tree T,
we say that g has a generalized fixed point « € T if gz is not separated
from z (every segment containing z intersects every segment containing

gz).

An action of G on T is nontrivial if there is no point € T which
is a generalized fixed point for every element of G. Another type of
action which is trivial in spirit is an action with a unique fixed end. In
the case of an R-tree, an end can be defined as an equivalence class of
rays, where a ray is an embedding of [0, 00). We adapt the definitions
slightly to the case of a (possibly not Hausdorff) order tree.

Definition 7. A ray in an order tree T is a subset p of 1" that can
be written as an infinite increasing union of geodesic spines,

p= U GS(m,zz)a
i=1
with GS(z ;) C GS(z,¢;) if 1 < j. The ray p is said to be infinite if the
sequence {z;} does not converge in T.
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Definition 8. If the ray p is not infinite, we call a limit of the
sequence {z;} an endpoint of p. If T is not Hausdorff, a finite ray
may have multiple endpoints, but all endpoints of the same ray are
nonseparable from each other.

Lemma 2. If p is a finite ray starting at the point y of an order tree
T and a is an endpoint of p, then p = GS(4 ) — {a}.

Proof. Suppose that p has the expression, p = Uj2,GS(, ,.). First
suppose that & € GS(4,y) and a # a. If a = y then a € p. If a # y then
« separates y and a. All but finitely many y; lie in the neighborhood of
a consisting of the connected component of 7'— {a} that contains a. So
there is a j such that o does not separate y; from a, which implies that
o ¢ GS(a,y;)- Hence, a € GS, ,,), which implies that a € p. Thus, p
contains the entire set, GS(4) — {a}.

For the other inclusion, suppose that y; ¢ GS,,). Then a and y
lie in the same component of 7' — {y;}. But for j > 4, y; separates
y from y;, so y; does not lie in the connected component of T' — {y;}
that contains a. Since this is true of all y; with 5 > ¢, the sequence
{y:} cannot have a as a limit point, contradicting the fact that a is an
endpoint of p. So y; belongs to GS(,,,) for each i, and p is a subset of
GS(a,y)- Now, a ¢ p for otherwise a would have to lie in Gy, ,,) for
some ¢. In this case either a = y;, which is nonsense, or only finitely
many y; would lie in the connected component of T' — {y;} containing
a, namely y; with j <. Therefore, p C GS(4,y) — {a}. O

There is an equivalence relation on infinite rays in 7" given by p; ~ p2
if the intersection p; N p2 contains an infinite ray. Note that, since
geodesic spines are unique, whenever p; N p2 contains an infinite ray,
the two rays p; and ps eventually coincide. Additionally, if p; % p2,
then p; N p2 is contained in a finite geodesic spine, and the two rays p;
and py eventually separate.

Definition 9. An end of the order tree T is an equivalence class of
infinite rays in T'.
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Now, G acts on the set of infinite rays and for any g € G, p1 ~ po if
and only if gp; ~ gps. Therefore, G acts on the set of ends of T'.

And finally, the standard notions of invariant subtrees and minimal
actions must be adapted to this situation.

Definition 10. If T contains a G-invariant subset 7", with the
property that for any two points = and y of 7", we have GS(, ) CT",
we call T” an invariant implicit subtree. Of course, an invariant subtree
is one special case of an invariant implicit subtree. We call T an
invariant implicit line if T' admits a total ordering (without a greatest
or a least element) with the following property: Choose any z,y € T"
and let [z, y] denote the interval of 7" determined by the total ordering.
Then GS(, ) = [z, y] and furthermore, the natural ordering on GS(, ;)
agrees with the total order on [z, y].

Figure 2 shows an example of an order tree 7' and an implicit line [
inT.

Definition 11. Let a group G act on an order tree 7'. The action is
minimal if T contains no proper invariant implicit subtree.

Analogous to the case for Hausdorff trees, we have

Lemma 3. If G acts on the order tree T fixing two distinct ends,
then G fizes an implicit line l, the ends of which are fized by G.

Proof. Suppose that G fixes the ends ¢; and e3. Choose rays
p1 = U2 GS(a,e;,) and p2 = U2 GS4p,) representing ¢, and ez,
respectively. Now, p; and p, may coincide for a time, but since €5 # ¢4
the rays p; and ps eventually separate. Choose points ar and b; after
the point of separation. We define,

l:= < U GS((Ik,lli)) U (Gs(ambz)) U <U GS(b”bi)>'
i=k =l

Now, ! is an implicit line whose ends are fixed by G because one
represents €; and the other represents 5.

To see that [ is fixed by G, let p € [ and g € G. Then p separates [
into two infinite rays,
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a1 = U GS(p,pi)

=1

o0
a2 = U GSpa)

i=1
with «a; representing ¢;. Since G fixes €; and €2, ga; eventually
coincides with «; and gas eventually coincides with aj. Choose
Pm € gay Ny and ¢, € gas N as. Let o1 be the initial segment
GS(p,p,.) and oy the initial segment GS(p, 4,). Then oy N o2 = {p}, so
that go1 Ngos = {gp}. Since go; is an initial segment of ga;, the initial
segments GS(gp p,.) and GS(gp 4.y intersect only in the one point set
{gp}. Therefore, GS(p,, gp) Y GS(gp,q.) is the geodesic spine GS(;,. 4.)-
But GS(,,. 4. is contained in [. So

9P € GS(pp,9p) Y GS(gp,an) = GS(prm,gn) C 1,

showing that if p is in [ and g is in G, then gp is in [. Therefore, G
fixes the implicit line [. ]

3. Partial orders. The points of an oriented simply connected
1-manifold 7" are often considered to be partially ordered in a natural
way, by declaring two points to be comparable if and only if they lie in
a submanifold which is homeomorphic to R by orientation preserving
homeomorphism, and the smaller of a comparable pair of points is
determined by the orientation on the manifold. This partial order is
obviously preserved by all orientation preserving homeomorphisms of
T. There is an extension to this partial order, which is detailed in
[14, Definition 4.4]. This extension is also naturally inspired by the
orientation on the manifold, and it is also preserved by all orientation
preserving homeomorphisms of 7. In fact, it is a maximal such
extension. We review this order here. If x € T, let I, be an open
set in T containing = which is homeomorphic (as an oriented manifold)
to R. There is a total order on the points of I, which is induced by
the homeomorphism. Let I be the set of elements of I, — {z} which
are greater than z, and let I, = I, — (I U {z}). Now, T'— {z} has
exactly two connected components, and we let z+ be the component
containing I and let = be the component containing I7. A partial
order on the points of T is given by x < y if and only if y* C zt.
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Notation. For an arbitrary poset S and for z,y € S, if z and y are
not comparable, write z ~ y. If so, and they have a common upper
bound, write  ~, ¥y, and if they have a common lower bound write
x ~; y. In a general partial order, a pair of elements could have either
no common bounds, just a common upper bound, just a common lower
bound, or both types of common bounds.

We observe that the poset of the points on a simply connected 1-
manifold satisfies the following properties, which a general poset may
or may not satisfy:

Definition 12. A poset S is strongly connected if for any pair of
noncomparable elements of the poset S, say x ~ y, either z ~, y or
r~y.

We remark that this is, as the name suggests, stronger than the stan-
dard definition of a connected poset. A poset is generally considered
to be connected if, given any pair of elements x,y € S, there is a finite
sequence r = agp, a1, ... ,a, = y in S such that a; is comparable to a; 1
for all 0 <4 < n (see [12]). Using this language, a totally ordered set
is a connected poset in which a sequence can always be chosen to have
n = 1, and a strongly connected poset is a connected poset where a
sequence can always be chosen with n < 2.

Definition 13. A poset S is acyclic if for any three elements
z,y,z€S,if x ~, yand x ~; 2z, then z > y.

Definition 14. A partially ordered set will be called simply con-
nected if it is both strongly connected and acyclic.

Note that, in particular, the partial order on the points of an oriented
simply connected 1-manifold is a simply connected partial order.

Remark. If two elements in a simply connected partially ordered set
S are not comparable, then acyclicity implies that it is not possible for
the pair to have both common upper and lower bounds, and strong
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connectivity implies that the pair must have one type of common
bound. Hence, for a pair of elements x and y in S with = # y, exactly
one of the four possible relationships hold; namely, one of z < y, > y,
x ~; y, and « ~, y holds. We note that this condition is weaker than
simple connectivity. Consider the example of a poset with six elements,
{a,b,c,z,y,z}, with the relationships y < b < z, z < ¢ <z, y < a, and
z < a. Here, each noncomparable pair has a common upper bound or a
common lower bound, but not both. However, this poset is not acyclic,
for a ~; b, b ~, ¢, and a ~; ¢, and hence it is not simply connected.

In order to characterize partial orders which groups acting (minimally
and without fixing a unique end) on simply connected 1-manifolds
must admit, simply connected partial orders are exactly the right
thing to consider. However, when considering actions on more general
order trees, it turns out that simply connected partial orders are too
restrictive. For a complete characterization, the notion of a formal
extension is necessary.

Definition 15. Let S be an acyclic partially ordered set. A formal
extension of the partial order is the set S along with the partial order,
with an additional structure as follows. Each pair of elements, z,y € S
with £ ~ y which has neither a common upper or lower bound is
formally assigned exactly one of the two types ~, or ~;, so that for
each pair x # y, exactly one of the four possible formal relationships
holds: z < y, *x > y, ¢ ~; y or ¢ ~, y. The formal extension is
said to be a simply connected extenston if the resulting set of formal
relationships, which by construction is strongly connected, also formally
satisfies acyclicity.

The necessity for this definition is seen in the following example:

Example 1. Consider the infinite dihedral group G = (s,t | tst~! =
s71,t2 = €). This group does not admit a left invariant simply-
connected partial order. However, it does have a partial order with
a simply connected formal extension. This order comes naturally from
an action of the group on the real line, where the real line is viewed as
an order tree T with maximal positively oriented segments o; = [i,7+1],
i € Z with o(0;) =i and f(0;) =i+1if i is even, and o(0;) =i+ 1 and
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T

FIGURE 3. An oriented order tree structure on R and associated 1-manifold.

f(o;) =14 if i is odd, as shown in Figure 3. Positive translations shift T
two units to the right, and reflections reflect about the integer points.
Note that the action of the dihedral group on 7 is minimal, while the
action on the associated non Hausdorff 1-manifold 7”7 stabilizes any
submanifold consisting of the horizontal geodesic spine together with
all the translates of any open proper subinterval at the bottom of a
single vertical edge. Therefore, the action of the dihedral group on 7"
is not minimal, nor does it contain a minimal G-invariant submanifold.
The group is embedded naturally in 7" by identifying it with the orbit
of a point with trivial stabilizer, and the simply connected partial
order on 7" induces a partial order on this orbit, and hence the group,
which is acyclic but is not even connected, let alone strongly connected.
However, the embedding in 7" gives a recipe for a formal extension of
the order structure which is simply connected.

Note that the partial order on any set in which nothing is comparable
to anything else always has a trivial simply connected extension defined
simply by declaring all pairs of elements to be the same incomparability
type. Hence we define:

Definition 16. A simply connected extension of a partial order is
trivial if at least one pair of elements is non-comparable, and all such
non-comparable pairs are of a single type.

Remark. A partial order which is already simply connected has a sim-
ply connected extension—the one in which no additional relationships
are assigned. Such a partial order may or may not be trivial in the
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above sense. From now on, when we say that a simply connected par-
tial order is trivial, we mean in the sense of Definition 16. In addition,
note that there are certainly groups which cannot admit nontrivial ex-
tensions; for example, a torsion group. More interesting examples from
the point of view of actions on trees appear in Section 6.

We record next a lemma about these partial orders.

Lemma 4. Let S be a set with a simply connected extension of a
partial order and let x,y,z € S. Then,

o ifx ~y andy < z, then x ~ z.
o Ifx~yyandy > z then x ~y 2.

Proof. First suppose that £ ~; y and y < z. Then x and y are
not comparable and have no common upper bound. Recall that z and
z always satisfy exactly one of the four relationships. We show that
x ~ z by eliminating the other three possibilities. First, x < z implies
that z is a common upper bound for z and y, which is impossible.
Second, > z implies that x > y, which is not true. Finally, if z ~,, z,
then by acyclicity it must be true that y > z, which is once again a
contradiction. Hence, it must be that x ~; z. The proof of the second
statement is similar. O

We will be interested in the special case where the partially ordered
set is a group and the order is left-invariant. In that setting, if g ~ h
in the original partial order, and the pair have neither an upper nor a
lower common bound, then no pair of translates fg ~ fh will either.
We will be interested only in extensions which are left-invariant.

Definition 17. Let G be a group with a left-invariant acyclic
partial order. We say that the partial order has a left-invariant simply
connected extension if it has a simply connected extension as a poset
which is left-invariant in the sense that g ~, h implies that fg ~, fh
for every f € G, and similarly for ~;.

For use in later sections, we investigate the properties of an acyclic
partial order on a set S, which we assume has a simply connected
extension. In what follows, we are always referring to the full set of
comparability relationships in a chosen simply connected extension of
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the given partial order, even in the special case that the partial order
is already simply connected and does not need to be extended.

First we define the notion of betweenness inspired by the geodesic
spines in R-order trees.

Definition 18 (Betweenness). Given two points a and ¢ with ¢ # a,

we say that b is between a and c if any of the following three conditions
holds:

(1) In the case that a < ¢, either a < b < ¢, or else both a ~, b and
b ~ C.

(2) In the case that a ~; ¢, either both a ~; b and b < ¢, or else both
c~yband b < a.

(3) In the case that a ~, ¢, either both a ~,, b and b > ¢, or else both
c~yband b > a.

Definition 19. For any a,b € G with a # b, we define the nonempty
set By by

B,y = {a,b} U {x |  is between a and b}.

We call a set of the form B, a between-set.

The following lemma, which can easily be proven by careful case-by-
case analysis, records some basic properties of between-sets.

Lemma 5. Let S be a partially ordered set with a simply connected
extension, and let a,b,c,d € S. Then,

(1) for any three elements, a,b,c we have B, C By .U Bep.
(2) ¢ € Bay if and only if Bap = Ba,c U Bep.

(3) If ¢ € Bayp, then Bq . N By = {c}.

(4) If b€ By and c € By g4, then b,c € Bg 4.

From this lemma, it is easy to see that each of these sets B, comes
with a natural total order. The only ambiguity is in declaring whether
a is the least or greatest element. As in the case of the total order on
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geodesic spines in an order tree, this partial order will not always agree
with the original partial order on S.

Definition 20. We define a total order, <, on the set B, ; as follows.
If  and y belong to Bgp, thenx K yifx € B,y and z = y if x € By
(Of course, here a is considered the least element and b the greatest).

Corollary 1. The order on B, is a total order.

Definition 21. A path from z to y in G is an ordered n-tuple of
the form (Bs, 4,,...,Bs,t,) With sy = z, t, = y, and t; = s;4; for
1<i<n-1

Corollary 2. B, , is the intersection of all paths from x to y.

Note that if the set S is the set of points on an oriented simply con-
nected 1-manifold with the order described earlier, then B, = G'S(4 p)-
Since these geodesic spines can always be expressed as finite unions of
oriented segments in order trees, our extensions of partial orders will
require a finiteness condition on the paths B, . To articulate this, we
define a relation on each set Bg p.

Definition 22. We define an equivalence relation O, on B, by
declaring that, for z and y in B, we have 2O,y if and only if B, ,
is totally ordered in the original order on the set S.

Lemma 6. The relation O, is an equivalence relation on Bg .

Proof. The relation O, is clearly reflexive and symmetric. Tran-
sitivity follows from the properties of the extension of the order on
S. o

It is now clear that the equivalence classes in a set B, ; are themselves
totally ordered in the original order, and that if z and y are in the
same equivalence class, then all points between z and y are also in that
equivalence class.
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Definition 23. We say that the simply connected extension of a
partial order on a set S is rectifiable if, for every two elements a and b
in S, the between-set B, is a finite union of equivalence classes under
the relation Og -

Partial orders with rectifiable simply connected extensions are nat-
urally inspired by the partial orders on simply connected 1-manifolds,
and they satisfy algebraic properties commonly found in the theory of
partially ordered groups. We now discuss a few of these. First, if a
group has such a partial order, then so does any subgroup (though the
order restricted to the subgroup may be trivial). Furthermore, these
orders also pass to appropriate quotient groups. It is a standard result
in the theory of partially ordered groups that, if G has a left invariant
partial order, and H is a normal, convex subgroup, then a partial order
is naturally induced on the quotient group G/H (see [12, subsection
1.6.3]). In the case of a simply connected partial order, or more gen-
erally a simply connected extension, the order on the quotient group
is of the same special type as long as we require a stronger version of
convexity for the subgroup, obtained by replacing the notion of totally
ordered sets by sets of the form B, .

Definition 24. Let G be a group with a left-invariant partial order
with left-invariant simply connected extension. Then a subgroup H is
called completely convez if for any pair of elements hy, hy € H, we have
Bhl,hz C H.

We have:

Theorem 3. Let G be a group with a left-invariant partial order
with left-invariant simply connected extension. Let H be a completely
convex normal subgroup. Then G/H also admits a left-invariant partial
order with left-invariant simply connected extension. Furthermore, if
the extension is rectifiable, then the extension induced on G/H is also
rectifiable.

Proof. First we define four possible relationships between cosets in
G/H. Given two cosets g1 H # goH, define
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(1) g1H < goH if there exists an element h € H such that g1 < gah.
(2) g1 H > g2H if there exists an element h € H such that g; > gsh.
(3) g1 H ~,, g2H if there exists an element h € H such that g; ~,, gah.
(4) g1 H ~ goH if there exists an element h € H such that g; ~; g2h.

Since H is normal in G and the partial order is left invariant, if a pair
of cosets satisfies one of the above conditions for a particular choice
of coset representatives, then they will satisfy that condition with any
choice of coset representatives. Also, for any pair of distinct cosets gy H
and goH, exactly one of the relationships, g1 < g2, 92 < g1, 91 ~u g2
or g ~; g2 holds since we have a full extension of a partial order in
G. So each pair of distinct cosets will be related in at least one of the
above ways. In addition, it is clear that these relationships are invariant
under left multiplication by elements of G.

We now prove that the relationships defined above satisfy the follow-
ing property:

Property 1. For g1,92,93 € G,

(1) if g1H < goH and goH < g3H, then g1H < g3H.
(2) If 1 H ~y g2H and goH ~; g3H, then gsH < g2 H.
(3) If g1H ~.,, g2H and gsH < g2H, then g1H ~,, g3H.
(4) If g1 H ~; goH and goH < gsH then g1H ~; g3H.

Proof. The proofs of the four statements are nearly identical to each
other. In each case, the normality of H gives the desired relationship
as long as g1 H # g3H, and the complete convexity of H implies that
the two cosets cannot in fact be the same. We provide the explicit
argument for the first statement. If g1 H < goH and go H < g3H, then
g1 < goh and go < g3h' for some h,h’ € H. By the normality of H,
goh < gsh” for some h” € H. Therefore, g < g3h'”, which implies
that g1 H < gsH, the desired conclusion, as long as g1 H # g3H. But
gsH = giH implies that g; lg3 € H. Notice that, translating the
above relationships by g; ', we see that g;'g; < g5 'g2h < h". But

this implies that g;lgzh € Bg—1g1 > Which in turn is contained in H
3 91,

by the complete convexity of H. Hence, g5 lgo € H, or equivalently
gsH = g2 H, which is ruled out by the assumption that goH < g3H. O
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We now prove that a given pair of distinct cosets can satisfy at most
one of the four possible relationships. By symmetry, there are only four
possibilities which must be eliminated for the pair gs H # g2 H.

(1) Suppose that g1 H < g2H and g2H < g1 H. Then by the first part
of Property 1, g1 H < g1 H, which is impossible.

(2) Suppose that g1 H ~, goH and g2 H ~; g1 H. Then by the second
part of Property 1, g1H < g1 H.

(3) Suppose g1H ~, g2H and ¢g1H < g2 H. Then by the third part
of Property 1, g1 H ~, g1 H, which is impossible.

(4) Suppose g1 H ~; goH and goH < g1 H. Then by the fourth part
of Property 1, g1H ~; g1 H.

At this point, we see that we have defined a partial order and a
formal set of relationships ~, and ~; which satisfy all the properties of
a simply connected extension. Finally, to ensure that this structure is
really an extension of the partial order, we must check that the formal
relationships ~, and ~; actually agree with any existing relationships
based on common bounds. Suppose that g H and go H are two distinct
cosets which are not comparable according to the above definition of
comparability, but do have a common upper (respectively lower) bound.
We show that in the above formal assignments, it is indeed the case
that g1 H ~,, goH (respectively g1 H ~; goH). We argue the case of an
upper bound. Suppose that g3 H is this common upper bound. Then
g1 < gsh and g < gsh' for some h,h’ € H. Hence, by normality of H,
goh'" < gsh for some ' € H, so g, and goh” share an upper bound
in G. Now if g; and goh” were comparable in G, then g1 H and g.H
would be comparable in G/H. Hence g; and goh" are not comparable,
and g; ~, g2h” in G. This implies that g1H ~, ¢goH in G/H. The

argument for lower bounds is the same.
To complete the proof of Theorem 3, we now show that if the original

extension is rectifiable, then so is the induced extension of the order
on G/H. Suppose towards a contradiction that the extended order
on G/H is not rectifiable. Since the order is left-invariant, we may
assume that, for some g € G, there are infinitely many equivalence
classes in Byg,g under the relation Ogzy . It follows that we may
choose a sequence of cosets {gyH = gH, g1 H, g5H, g5H, ...} such that
the following hold:
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g;H 7& Ha g;H € ngilH,Ha g:H € ngle,g;_HHa

and g;H is not comparable to g;_;H for all ¢ > 1. From this we
will inductively construct a sequence {g = go,91,92,..- and h € H
satisfying

giH = QQH, gi € Bgi,l,ha gi € Bg,-,l,gi.Ha

and such that g;—1 is not comparable to g; for any ¢ > 1. This is
impossible, because all of the {g;} lie in By 1, yet they all are in distinct
equivalence classes under Og 3, violating the fact that the extension of
the order in G is rectifiable. Before constructing the sequence, we state
an easily verified lemma:

Lemma 7. Suppose that gH € Bfgrm where g, f,k € G. Then
there are elements h and h' in H such that gh' € By kp,.

To construct the desired sequence, first note that g1H € Byu u.
By Lemma 7, g{hi belongs to By for some h,hy € H. Set g1 =
gih1. Now, g1 € By, and g1 is not comparable to gy as desired.
For the inductive step, suppose that we have already constructed
{91,92,--. ,9n} with the desired properties. Since g, H belongs to
By, g, Lemma 7 yields hypq1,h’ € H so that g), hni1 € By, nr-
Again, let gni1 = g),41hnt1. We have already that g, H = g, 1 H,
and also that g,4+1 € By, n.

Now, by the complete convexity of H, we have that By, is contained
in H, which implies that g,,+1 ¢ Bp p since g, +1 ¢ H. Hence it must
be that g, 41 € By, 1 as desired, for if not, g,+1 ¢ Bp ' U By, », which
contradicts the fact that

In+1 € By, ' C Bpp U Bg, k-

In addition, it is clear that g, € By, 4., , and g,y1 and g, are
noncomparable. So we have inductively constructed the sequence
needed to complete the proof. o

Next, in the theory of left-invariant partially ordered groups, the pos-
itive cone is an important tool, and there is an analogous structure for
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left-invariant simply connected extensions. In a left-invariant partially
ordered group G, the positive cone is the subset P = {g € G | e < g}.
The positive cone satisfies the two conditions

(3.1) PNP =0
P-PCP,

where P~! = {#7! | z € P}. The importance of the positive cone
comes from the fact that any subset P C G satisfying conditions 3.1
and 3.2 defines a left-invariant partial order on G by the equation g < h
if and only if g~'h € P. The partial order defined by P is a total order
if and only if G = PUP 1 U {e}. Many other properties of partially
ordered groups may be defined and studied via P. For example, a
partially ordered group is said to be directed up if any two elements of
the group share an upper bound, which is equivalent to the condition

G=PUP'u(P-P").

Similarly, partially ordered groups with left-invariant simply connected
extensions may be classified in terms of the positive elements and the
elements sharing lower or upper bounds with the identity.

More precisely, if G has a simply connected extension of a partial
order, then we make the definitions:

P={gle<g}, U={gle~ug}, L={g|e~ig}

For each of these sets, we define:

Pl={g9eGlg'eP}
Ut ={g eGlg " euy},
L'={geG|gteL}

Various properties of these sets follow from the formal properties of the
partial order. For instance, if h € L, then h ~; e. Since the order is
left-invariant, it follows that e ~; h~1, and hence h € £~!. Therefore,
we have £ = £~ !. Also, if g €U and h € L, then since h ~; e and the
order is left-invariant, it follows that gh ~; g. Now acyclicity implies
that gh € P, and therefore ¢/ - £L C P. As in the case of a general
partial order, these sets characterize the order here as follows:
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Proposition 2. The group G has a left-invariant partial order with
simply connected extension if and only if there exist subsets P, L and
U of G such that:

HPNPl=g, L =L U =U.

We remark that the disjointness of the union of item (6) would follow
from items (1)—(5) if we added the assumption that neither &/ nor £
contains the identity. The proof of this proposition is similar to the
proof for ordinary left-invariant orders. If G has a simply connected
extension of a partial order, one checks that the remaining properties
also follow from the properties of the partial order. Conversely, if such
sets P, L and U exist, then we define:

g<hifgtheP, g~ hifgtheld, g~ hifg thelL.

Condition (5) is essentially acyclicity and (6) is strong connectivity.

Just as in the cases of other kinds of partial orders, many properties
of simply connected extensions may be stated in terms of these sets.
For example, the partial order on G given by P is simply connected
and needs no extension whenever G is equal to the union,

G=PUuPtuP-PHu(P*.P).

4. Groups with partial orders act on order trees. In this
section we consider groups with partial orders which have left-invariant
rectifiable simply connected extensions. We will prove the following
theorem, which proves that (1) implies (2) in both main theorems.

Theorem 4. If G is a countable group which admits a partial order
with a nontrivial left-invariant rectifiable simply connected extension,
then G acts faithfully, minimally and without fizing a unique end by
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orientation preserving homeomorphisms on an oriented order tree T'.
Moreover, T can be chosen to have a point x with trivial stabilizer
so that identifying G with the orbit Gz in the associated 1-manifold
induces the original partial order on G. In the case that the partial
order was simply connected (needing no extension), the induced action
on the simply connected 1-manifold will also be minimal.

We will prove this theorem by constructing an oriented order tree T°
on which the group acts by orientation preserving homeomorphisms.
In the construction, a subset of T' will be labeled by group elements,
and distinct elements of the group will label distinct points of T, so
the action will be faithful. We model our construction on the proof
of Theorem 6.8 of [11], in which points on the real line are labeled
by the elements of G in order to construct the desired action. In the
construction, we express G as a union of sets of the form B, ,,, and
T will be a quotient space of the union of compact subintervals of
the real line, one called I; for each set B, ,,. In order to specify
how to glue the intervals together to form a tree as well as to obtain
the G-action, we will label points on each interval I; by the group
elements in B,, ,,. Since each set B,, ., is the union of equivalence
classes under the relation O, ,,, each such equivalence class will label
points on a subinterval of I;. Since each equivalence class has a total
order induced by the partial order on G, these orders will be used to
orient the labeled subintervals of I,,. The only difficulty here is in the
case that an equivalence class consists of a single element. To avoid this,
we simply blow up G to a larger set GT by adding formal elements g
and g_ for each element g of G. We extend the order and the G-action
in a natural way to the set G, so that former singleton equivalence
classes under O, ,, of the form {g} will now have two additional formal
elements, allowing us to orient the corresponding labeled subinterval.

Definition 25. Let G be a partially ordered group. Define the
induced poset G with a G action as follows:

(l) As a set, Gt = {gag—ag+|g € G}
(2) (G action on G*.) For g,h € G, define an action of G on G via

g(h) =gh, g(h-)=(gh)-, g(hy)=(gh)+.

(3) (Order on G*.) For each z € G, z_ < z < x4 and if z < y then
Ty <Y-.
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It is not hard to see that Definition 25 gives G a left-invariant partial
order. If the partial order on G has a simply connected extension, the
induced partial order on GT can be extended following the manner
in which the order on G is extended. To define this extension, let
ge, hs € Gt where € and § are +, — or absent. Note that if g. ~ hs,
then g ~ h in G and, furthermore, if g. and hs share an upper or lower
bound in G if and only if g and h share one in G.

Definition 26. For hs and g. as above, define a formal extension of
the order on G by declaring g. ~, hs if g ~,, h in the extension of the
order on G and g. ~; hs if g ~; h in the extension of the order on G.

Lemma 8. If G is a group with a rectifiable simply connected
extension of a partial order, then the natural order on GT also is a
rectifiable simply connected extension of the corresponding order on G™T.
In addition, the left G-action preserves the extended partial order, and
for any x and y in G with x # y, no Oy, class consists of a single
point.

Proof. The only change in structure is that any time b appeared in a
set B, C G, the triple b_ < b < b, appears in the corresponding set
B, C G*. So in particular, the number of equivalence classes under
Og,y does not change, and there are no equivalence classes consisting
of only one point, except possibly at the endpoints if z or y belongs to
GT — G. As previously mentioned, the G-action clearly preserves the
order. o

We now record an easily verifiable lemma which holds in the setting
of the previous lemma.

Lemma 9. If G is a group with a partial order with left-invariant
simply connected extension, and GT 1is the poset with extension de-
scribed above, and a,b € G, then

a<b < {a+,b,} - Ba,,bJr
ar~y b= {a4,by} C B,
a~ b= {a_,b_} C B

ag by
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Definition 27. Let R be the relation on the augmented group G
defined by: zRy if B,, = {z,y}, where z,y € G* — G, and zRz if
z €q.

Lemma 10. R is an equivalence relation, and the equivalence classes
are all of order one or two.

Proof. The relation R is clearly reflexive and symmetric. Further-
more, the only nontrivial case to check for transitivity is that gsRh;
and h Rf, where g,h, f € G and s,t,r € {+,—} and g5 # h¢, hy # fr.
Now,

B!]wfr C B!]sﬁt UBhtvfr = {gsahtaf?"}a

and we claim that the only possibility is for gs = f,.. This then implies
that gsRf., showing that R is transitive. Moreover, this implies that
equivalence classes containing elements of GT — G have at most two
elements, while for g € G, the equivalence class of g is always the
singleton set {g}. To verify the claim that g, = f,., note first that
if g # f, then by Lemma 9, By, ;. contains at least four elements of
G, which is impossible as we saw above that it can contain at most
three elements. Hence, it must be that f = g, but if also r # s, then
By,.s. = Bg,q4. = {9s,9,9-}, which is also impossible since we saw
above that it contained no elements of G. O

We now construct an oriented order tree on which the group acts.
We follow the ideas in [9, Section 3], in which order trees are described
as countable increasing unions of segment which intersect in a very
restricted way. We begin by constructing a decomposition of the group
into a countable union of subsets, which will guide the construction of
the tree.

Since G is countable, G can be expressed as a countable union of sets
of the form B, 3, where a and b are elements of G. We claim the union
can be chosen to be of a certain type.

Lemma 11. Let G be a countable group with a left-invariant partial
order with rectifiable simply connected extension. Then, for some
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choices of x;,y; € G, we have

G = U B;, where B; = By, 4,
i=1
and, in addition, if we set G,, = U}, B;, then
(1) Gn N Bpy1 # 2.
(2)
(3)

For every a and b in G, we have B,y C Gy.

G, N B, t1 contains x,4+1 and has one of the two following forms:
(@) Gn N Bny1 = {@n41}
(b) G, N By11 is half open and totally ordered in G,,.

Proof. Choose an arbitrary element of G, and call it ;. Now
arbitrarily enumerate the elements of G — {z1} as {y;}$2,, and let
B; = By, ,y,- Then G is certainly the union of the sets B; as desired,
and property (1) is satisfied. Moreover, property (2) follows from the
properties of the sets of the form B,; developed in Section 3. We
claim that, by changing some of the sets in the union, we can ensure
that property (3) holds as well. Notice that if y,41 is in G, then
G, = Gpn41 since the entire set By, is contained within G,,. So after
eliminating such indices we can re-index so that G,, N B,,+1 contains x
and has one of the following forms:

(].) Gn n Bn+1 = {wl}

(2) G, N By is half open, i.e., has more than one element, but is
not of the form (3).

(3) Gn N Bty = By, ., for some 2,41 € Gy,

If the intersection is of the first form, it already satisfies condition (a).
Now if the intersection is of the third form, just replace Bpi1 =
By, o bY B:, 1 y,..1, Which reduces the form of the intersection to
condition (a). If the intersection is of the second type, recall that
the equivalence classes of By, 1 under the equivalence relation Og, ...,
are linearly ordered. If we consider the smallest class to be the one
containing ;1 and the largest class to be the one containing y,1, then
choose any element from the largest equivalence class which contains
elements from G, say z,11. If we then replace B,1; by B, ..,
as in case (3), the intersection is totally ordered in G, since it is
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completely contained in a single equivalence class along B., _; y,..-
Hence, it satisfies condition (b). Furthermore, these replacements did
not interfere with conditions (1) or (2) of the lemma. O

We will now use this expression of G as the union of the sets B;
to construct a tree T' with a labeling by v : G — T as follows. T
will be the quotient space of a disjoint union US2,I; modulo a set of
identifications {R;}$2,, where each I; is a compact subinterval of the
real line, and the identification R; identifies one endpoint of I; with one
point in the disjoint union UZ:OI k. The set T, will be defined as the
quotient space UP_I; /{R1,... ,Rp}, so that T41 = (T, Ul41)/Ruy1.
Then, for any n, T' = (T, UU2,, 1 I;) /{Ri}§2,, 1. Thus, to define T, it
suffices to construct 7Ty and then inductively construct 7;, 1 from T,.

To define the labeling function v, we let G} = {g9+,9,9-|9 € G.},
and we will label a subset of points in I,, by G;" —G;/_,. Apart from a
technical detail, this will be the temporary labeling 7,, defined below.
Since G is the disjoint union of all these subsets, we let v be the
labeling of T by GT obtained by defining v restricted to each disjoint
subset G} — Gjl_l to be the appropriate labeling map above, and we
define v,, to be the labeling of T,, obtained similarly. Finally, each tree
T,, will naturally be homeomorphic to a subtree of both 7,; and T,
and we will sometimes abuse notation and refer to all of these copies
by the same name, T,.

The inductive construction of T. Let G be a group with a
left-invariant rectifiable simply connected extension of a partial order.
Express the group as a union of the form:

G= U B;, where B; = By, ,
i=1

as in Lemma 11.

Base step. Let Ty = Iy be a copy of the unit interval, and define
vo : {(z1)-, 21, (z1)+} — To

by
1/0((371),) = 0, 1/0(1'1) = 0.5, 1/0((:171)+) =1.
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Inductive step. Suppose T, has been constructed, along with
Vo :+ G — T,. We must label a closed segment of the real line,
I.+1, by the elements of G, 1 G, and then specify the identification
R,41 to construct T,,4+1. The new labeling v,41 : G: 11— Thpa will
be defined to be the map v, restricted to G;} and the labeling specified
below of I,;1 restricted to G}, | — G;}. The details will depend upon
the form of G,, N By 41.

Case 1. B,y1 NG, = {zny1}. To simplify notation, suppress
subscripts and abbreviate z,+1 by z and y,+1 by y. Now suppose B,, ;1
is made up of k equivalence classes under O, ,; each is totally ordered
with respect to the partial order on G, and the set of equivalence classes
has a natural linear order along B, ,. We index these equivalence
classes by ¢ where 1 < ¢ < k, where we take the first class, or
t = 1, to be the one containing x. We construct a labeling of a copy
of [0,k] € R. For each index i, augment the equivalence class by
adding, for each g in the class, g and g;. First, identify pairs of
elements which are equivalent modR. The resulting set is still totally
ordered. Now define (v,41); from this totally ordered set of labels
to [i — 1,4] as in the classical construction in the proof of Theorem
6.8 of [11], which lays a totally ordered set down on the real line.
If this modified equivalence class happens to have least (or greatest)
elements, label ¢ — 1 (or %, respectively) by these elements. If not,
the endpoints 7 and ¢ + 1 receive no labels, but will be limit points
of labeled points. Notice that since no augmented equivalence class
has only one element, there is never confusion about whether to label
i1—1 or i by a given extremal element of the modified equivalence class.
Since Bp1+1 NG, = {z}, if we take U, 1 to be the union of all these
maps, the domain of 7,11 intersects the domain of v, only at the triple
x_,x,z4+. Exactly one of these augmented elements x_,z is between
z and y, for ease of discussion suppose it is z_. Then, on the interval
[0,1], 0 = Upy1(24+) < Upt1(x) < Upg1(z-) < 1, and furthermore, the
open segments (0, ,,11(z)) and (Vn41(2), Upt1(z-)) contain no images
under 7,,41. We remove the segment [0, 7, 4+1(2_)) from [0, k], leaving
just [Upy1(x_), k]. This segment, [V, 11(2-), k], is the segment I, ;. It
is possible that 7,11 (z—) = 1 in the case that there were no other group
elements besides z in the equivalence class of z along B, 1. Otherwise,
Fl7n+1(£l?,) < 1.
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k= Vn+1(ye)

FIGURE 4. T, 41 after the gluing of B, 41, Case 1.

To define the gluing relation R, 1, identify the point 7, 1(z_) to
the point v, (z_) in T, to form T,,1;. That is, we define T, by,

Top1 = (Tn Ulpnga(z-), k) / (g (z-) = vn(2-)),

and we define v,y : G:{H — Thy1 as just v, restricted to G and
Un1 restricted to Gt ., — G}, as in Figure 4. Notice that the domains
of Up41 and v, intersect in precisely the element xz_, and the relation
R, 11 identifies Uy, 41 (2 ) with v, (2_).

Case 2. B,;1 NG, is half open and totally ordered in G. Now,
B, +1 NG, is a totally ordered set of group elements, and z is either
the greatest or the least of them. For ease of discussion, assume it is
the least, so that there is no greatest element. Choose a countable,
increasing subsequence {a;} C Bp+1 NG, which is not bounded above
(with respect to the total order) by any element in B,1 N G,. These
group elements label points in T}, and since T}, is a finite union of
compact intervals, there is some limit point ! of the sequence {v,(a;)}
in T;,. Now consider the set B, 11 — (G, N By4+1), which intersects only
finitely many (say k) of the equivalence classes in B,,;1. Label a copy of
[0, k] by elements in G}, | — G} as in Case 1, with either 7, 1(y_) =k
or Vp41(y+) = k. In this case, the segment [0, k] is I,,41. If an element
g € Bny1 — (Gn N Bpy1) closest to z exists, then let 7,41(gs) = 0,
s € {+,—}, where g € B; g4 in the augmented group. If no such
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kE=vnt1(ye)

FIGURE 5. Tp41 after the gluing of By41, Case 2.

g exists, 0 remains unlabeled. For every other h in that equivalence
class, points in (0, 1] are labeled by h_, h, h; as usual. Finally, define
the gluing relation R, 11 by identifying the point 0 € I,,;; to the point
l € T,,. That is, we define T},11 by

(T, UI41)

Tn = )
+ 1=0

and we define v, 11 : G;’{ 11 = Thy1 to agree with v, when restricted to
G} and 7,41 restricted to G, — G}, as in Figure 5.

One shows inductively that T}, has the following properties:

Lemma 12. In the construction above, for each n we have:
(1) T,, is a tree.

(2) The connected components of the complement of the closure
of v (G)) are precisely the intervals of the form (vn(9),vn(g9-)) or
(vn(9),vn(94)), for some g € Gr.

(3) For all a,b € G, the unique interval [v,(a), v, (b)] in T, contains
points, labeled in the natural order by the elements of the set B, C Gy
Furthermore, no other elements of G can label these points, and if an
element ¢, € (G} — Gy) N Bay labels a point along [v,(a), v, ()] both
of the following conditions are satisfied:
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(a) Either c;Rds for d € Ba . N Bay C Gy, or v, (ct) is a limit point
of points labeled by elements of Bq N By .

(b) Either c;Rfs for f € By N Bayp C GF, or vy(ct) is a limit point

n’

of points labeled by elements of By N Byp.
(4) For all z,y € G}, vn(x) = v (y) if and only if zRy.

(5) If a point x € T, is not an element of v,(G}), then either
z € (Un(h),vn(hs)) for some h € G, and s € {+,—}, or else for
all z € T, with z # x, the point x is a limit point of points in
[z,2) N v, (G)).

Figure 6 is an illustration of one of the possibilities described in
condition (3). In this case, ¢; = ¢4, and for both parts (a) and (b)
of condition (3), the condition not involving limit points holds, with
ds = dy in part (a) and f; = f_ in part (b).

Note that the first property shows that the space 1" is simply con-
nected. The fourth will ensure that the labeling by G, though not
injective, induces an injective map from G*/R to T, so that in par-
ticular distinct group elements label distinct points of T. The second
and third properties will ensure that the natural action of G on the
set of labeled points extends to an orientation preserving action on the

space 1.
We now prove the following proposition, which proves all assertions

of Theorem 4 except for the last two sentences, and directly establishes
that implication (1) implies (2) of Main theorem 2:

Proposition 3. The space T constructed above has the following
properties:

(1) T has the structure of an oriented order tree.

(2) The group G acts faithfully on T by orientation preserving home-
omorphisms.

(3) The action is minimal.
(4) G does not fix a unique end of T.

Proof. We prove the four properties of T listed above:
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vn(d-)  vn(d)  vn(cy) = vn(dy) vn(f) vn(f+)
:Vn(f*)

FIGURE 6. One possibility for multiple labelings in Property 4.

Property (1). To see that T has the structure of an oriented order
tree, consider the set of the images of the closed segments [, j+1] C I;
for all integers i,j7 > 0. Recall that in Case 1 of the construction,
the interval [0, k] was shortened by removing an open subinterval and
leaving I; = [V;(x_), k]. Therefore, the initial subinterval of I; that we
wish to consider in Case 1 is [7;(x_), 1], rather than [0, 1]. For the rest
of the proof, we will abuse notation by referring to the left endpoint
of any such interval, [V;(z_),1], by 0. Denote by o the image in T
of one of the above closed intervals [j,j + 1]. By construction, each
of these has at least one interior point labeled by a group element g.
If g_ labels a point in [f,v(g)), let i(c) be the endpoint j, and let
f(o) be j 4+ 1. On the other hand, if g labels a point in the image
of (v(g),7 + 1], let i(o) be j + 1 and let f(o) be j. Note that this
definition is independent of the choice of g, since the group elements
which are labels in [j, j + 1] are totally ordered. Let S be the set of all
such o, together with their closed subsegments and unions of any pairs
{o1,02} where 01 No2 = f(01) = i(02) (with the obvious assignments
of initial and final endpoints). This set of positively ordered segments
gives T the structure of an oriented order tree.

Property (2). To establish the action we will use the labeling v : Gt —
T. Note that, for any g and h in G, if v(g) = v(h) then g = h, and that
the set v(G™) spans T. We term a branch point any point in the tree
which was the image of an integer point or an endpoint of I,, for some n.
Branch points, by construction, are always either labeled by elements
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of Gt — G or are limit points of labeled points. Note that this set of
branch points includes all points where the tree genuinely branches,
in addition to any point where the orientation changes. Hence, if a
connected subset of T contains no branch points, it is homeomorphic
by order preserving homeomorphism to an interval of the real line.

To see that the group acts on T, let L be the subset of T which is
labeled by elements of G*. Consider the complement of the closure of
L. Since the complement of the closure of L contains no branch points,
any connected component of this complement is an open interval of
the form (p,q). We claim that (p,g¢) has the form (v(f),v(fs)) for
some f in G and s € {4, —}. For suppose that z € (p,q). Then
z € (Wn(f),vn(fs)) for some f € G, and s € {+, —}. But note that, in
Ty +i, points in the segment (Vy,4:(f), Vnti(fs)) can never be labeled,
for by Property 3 of the construction, they could only be labeled by
elements in GT — G,/ if they were limit points of labeled points, or
if they were already labeled. So since (v(f),v(fs)) is contained in
the complement of L, and both v(f) and v(fs) are in L, it follows
that (v(f),v(fs)) is a connected component of the closure of L which
happens to contain x. Therefore, the intervals (p,q) and (v(f),v(fs))
are the same. Hence, since v(f) and v(fs) belong to L, we have
(b,9) = (W), ¥(£.)).

Now since G acts on G respecting the relation R, G clearly acts on
L, and we would like to extend this action continuously to the closure
of L. Let x be a point in this closure but not in L. We may have
many segments of the form [a, z], any two of which intersect only at z,
each containing an increasing (in the total order on [a, z] with z being
greatest) sequence of labeled points converging to z. Suppose [a, z] and
[b, ] are any two such segments, and let {v(a;)} and {v(b;)} be the two
sequences of points. Note that for some n, [a,z] U [z,b] is contained
in T,,. Now let g be an arbitrary group element, and we worry about
ambiguity in defining gz. The worry is that after transforming by the
group element g, the two sets of points {v(ga;)} and {v(gb;)} along
[v(ga),v(gb)] will have different limit points, say =, and .

We claim there can be no labeled points in the open segment (z4, zp).
If there were, then that label (say h) would lie in the subset Byq, gp; of
Gt for every i and j. But applying ¢! we see that g 'h € Ba, b,
for every i and j. Therefore, g-'h must label a point along [a,?b]
between the points v(a;) and v(b;) for every i and j. However,
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is the only such point, and it is unlabeled by hypothesis. So z, and x}
must be endpoints of some connected component of the complement of
the closure of L; hence, they are actually labeled points. Since they
are different points, the labels are distinct, and not even equivalent
modulo R. But then, applying g—! again, we produce distinct labels
not equivalent modulo R which are between a; and b; for any ¢ and j;
hence, they label distinct points in [v(a;), v(b;)] for every ¢ and j. But
this is nonsense, as there is only one point between [v(a;),v(b;)] for
every ¢ and j. So the group action may be extended continuously to
the closure of L. Since the complement of the closure is a disjoint union
of open intervals, extend the action to all of T by extending linearly
across these intervals. The action clearly preserves the orientation since
g(h_) = (gh)_ and g(h+) = (gh)+ for any elements g and h of G. Since
the labeling v restricted to G is injective, the action is faithful.

Property (3). The fact that the action is minimal follows from the
nontriviality of the extension of the partial order. First, suppose to the
contrary that T” is a proper invariant subtree of T. We claim that T’
can contain no points in ¥(G*). There are three important G-invariant
subsets of v(GT), namely,

S={v(g) | ge€G},
Sy ={v(g") g€ Gy,

and

S ={v(g7) |ge G}

If T" contains all three subsets, then 7" contains the span of v(G™1),
which is all of T'. So since T” is a proper subtree, it is missing at least
one subset. If 7" contains neither S; nor S_, then it cannot contain
S either, since [v(g),v(h)] always contains some element of either S_
or S;. But if 77 does not contain S; and does contain S_, then it
follows that g ~; h for all g and h in G. Similarly, if 7" does not
contain S_ but does contain S, then g ~,, h for all g, h in G, both of
which contradict the nontriviality of the partial order. We claim that,
additionally, T’ cannot contain any points in the complement of the
closure of L either, for if x € T" is such a point, then z € (v(hs),v(h))
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for some h € G, s € {+,—}, which implies that gz € (v((gh)s),v(gh))
for every element g in G. Now [z, gx] is contained in 7", and since
(v(hs),v(h)) and (v((gh)s),v(gh)) contain no branch points, if z # gz,
at least one of the points v(hs), v(h), v((gh)s), v(gh) must be in T".
This is impossible as we just showed that 7" contains no labeled points.
Therefore, it must be that x = gx, which implies that gh = h, so g = e.
This is impossible, because the argument holds for every element in G.

Therefore, T’ can contain only limit points of the set of labeled points
which are themselves unlabeled. If x is such a point, we claim that
gr = z for every g € G. For, if not, consider [z,gxz] € T'. Then by
Property 5 of Lemma 12, [z, gz) must contain labeled points, another
contradiction. So T” must be just the single point z. We claim that this
forces the extension of the partial order to be trivial. For, choose any
group element g € G, and consider the segment [v(g), z]. If [v(g), z] is
not an oriented segment of T, because there are at most finitely many
switches in orientation along it, we may re-choose g so that [v(g), ]
is oriented. But, given any other h € G, since g(h~!) fixes z and
preserves orientation, [v(h),z] must also be an oriented segment, and
[v(h), z] and [v(g), ] are either both oriented towards or away from x.
Hence, all segments of the form [v(h), z] must be either oriented towards
x or oriented away. But then, given elements f and h of G, since the
interval [v(f),v(h)] is contained in [v(f), ] U[v(h), z], and since labels
along these segments correspond to between-sets in G, either f and h
are comparable, or f ~, h (in the case z > v(g) for every g € G) or
f ~i h (in the case that z < v(g) for all g € G). Note that, since x
is a limit point of labeled points, by construction there must be two
elements g and h in G such that = € [v(g),v(h)], so that g ~ h, and
hence the extension is trivial.

Property (4). Next we must show that there is no unique fixed end.
Suppose to the contrary that the action has a unique fixed end e. For
an arbitrary element g, choose a ray p from v(g) representing e. If
v(g—) € p, we say that v(g) points towards the end e represented by p,
and if v(gy) € p we say v(g) points away from e. Since the group acts
transitively on itself but fixes the end e, for any group element h, v(h)
will point the same way with respect to e as v(g). If both v(g) and
v(h) point towards e, either g and h are comparable, or g ~; h; and if
both v(g) and v(h) point away from e, they are either comparable, or
g ~y h. So all noncomparable pairs must be of the same type. Notice
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that there is at least one such pair, for if not, G is totally ordered, and
then 7' = R, and e is not the unique fixed end. So the extension is in
fact trivial if there is a unique fixed end. i

Remark. The proof of Proposition 3 established all of the conclusions
of Theorem 4 except for the last two claims, so we verify them here.

First we check that there is a point with trivial stabilizer, and that
there is a natural order induced on that orbit which recovers the order
on G. Let z = v(e), and denote the orbit of  in T by O. Since
gv(h) = v(gh), we have O = {v(g) | g € G}, and since v(h) = v(g)
if and only if g = h, the stabilizer of any element of O is trivial. As
described in Proposition 1, one can blow 1" up to an oriented non
Hausdorff 1-manifold 7" on which the group acts. Since branch points
of T were never labeled by group elements, there is a labeling of T”
by G, also denoted by v, that retains the properties that each group
element labels a distinct point and that each point of O has a trivial
stabilizer. The orientation on 7" induces an extension of a simply
connected partial order on O, as described at the beginning of Section 3,
and this naturally induces an order on G by identifying v(g) with g.
Since the original order on G was characterized in Lemma 9 in terms
of between-sets in G, and since property (3) of Lemma 12 insures
that the labels on shortest paths in 7" between elements of v(G)
are essentially the same as the corresponding between-sets in G, the
induced order on G is the order with which we began.

Finally, we check that in the case that the partial order is simply
connected to begin with, the action on 7" is minimal. If there is a
branch point in 7" which is a sink or a source, then there is a pair
of noncomparable elements in G which do not have a common lower
or upper bound in G. Therefore, if the original order was simply
connected, there will be no branch points in 7" which are sinks or
sources. Thus, no rays need to be added in the process of blowing up
to a 1-manifold. This implies that the resulting action is still minimal.
This establishes that implication (1) implies (2) of Main theorem 1 as
well.

5. Groups acting on simply connected 1-manifolds have
simply connected partial orders. The goal of this section is to



1566 MATTHEW HORAK AND MELANIE STEIN

prove the converse to Theorem 4, thus proving that implication (2)
implies (1) in Main theorem 1, stated in the introduction, for groups
acting on simply connected 1-manifolds. Namely, we prove:

Theorem 5. If a countable group G acts minimally, and without
fixing a unique end, on an oriented, simply connected 1-manifold T by
orientation preserving homeomorphisms and there is some point in the
manifold with trivial stabilizer, then G admits a nontrivial left-invariant
rectifiable simply connected partial order.

Definition 28. For an oriented non Hausdorff simply connected 1-
manifold 7', we say that x points at y if y € ~, and x points away
fromyify € zT.

Throughout the rest of this section, whenever we have a group G
acting on an order tree, T, we will denote the orbit under G of the
element of x € T by O(z).

Lemma 13. Let T be an oriented non Hausdorff simply connected
1-manifold, and suppose that G acts minimally on T. If the elements x
and y in O(v) are not comparable and share a lower bound in T, then
x and y share a lower bound in O(v), and if x and y share an upper
bound in T, then x and y share an upper bound in O(v).

Proof. We consider only the case of lower bounds; the case for upper
bounds is similar. First we claim:

Claim. Suppose that points x and y in O(v) are not comparable and
share a lower bound in T, but share no lower bound in O(v). Then
there is a point a of T — O(v) such that every point of O(v) points at a.

If the claim holds, then consider the element a € T. Since every
element of O(v) points at a, every element of O(v) points at every
element of O(a). Let A be the set

A= | GSqap):
a,B€0(a)
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Now, A is a G-invariant implicit subtree, but no element of O(v) can
be in A, since it would have to point at both ends of some geodesic
spine GS(q,5). This contradicts the fact that the action is minimal,
and therefore it must be the case that x and y in fact do share a lower
bound in O(v).

To prove the claim, suppose that z and y are noncomparable and
share a lower bound in 7" but share no lower bound in O(v). Recall
that the geodesic spine G'S(; ) contains finitely many cusp pairs. If
an interior segment of GS(,,) contains a point z of O(v) that is
noncomparable either to x or to y, then z shares a lower bound in
T with this element, and is less than the other one. Suppose that z
shares a lower bound with y and is less than z. Any lower bound of y
and z is also a lower bound of z and z. Therefore, by possibly replacing
x and y with other elements of O(v) on the segment of GS; ., we may
assume that no interior segment of G5, ,) contains points of O(v).

Let ¢ be the first point in a cusp pair along GS, ,) on the way from
x to y. Choose an open neighborhood N’ of ¢ homeomorphic to R.
Let N be the open segment of N’ not contained in GS, ). Then N is
directed away from both z and y, so N can contain no points of O(v).
Finally, since no interior segment of GS(, . intersects O(v), every point
of GS(,,,) N O(v) points at every point of N.

Let a € N. We will show that everything in O(v) points at a.
Since we already have everything in O(v) N GS(,,) pointing at N,
let 2 € O(v) — GS(g,y)- Since z does not lie in N or GS(, ), the three
elements z, y and a all lie in the same component of T' — {z}. There
are two cases to consider.

Case 1. z € 7 Ny~ . This case is illustrated in Figure 7. Since x
and y share no lower bound in O(v), z,y € z~, for otherwise we would
have ¢ > z and y > z. Therefore, a must also lie in z~, which means
that z points at a.

Case 2. z ¢ z~ Ny . This case is illustrated in Figure 8. We
consider the case that z € 2; the case z € y is handled similarly. We
wish to show that z points at # and hence at a. Choose g € G with
w := gz in the component of T' — a that is contained in z~ Ny~. By
Case 1, a € w~. And, since z € 2™, we have gz € w'. Therefore, a
and gz lie in opposite components of T'— w, so a and w lie in the same
component of T' — (gz).
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FIGURE 7. Case 1, z€x~ Ny .

Now, w € x~ Ny~ so wh C x~ Ny~, for otherwise we would have
w~ Czx~ Ny~ forcing w to be a lower bound for = and y. Therefore,

grEwt Cxz Ny,

and by Case 1, a € (gz)~. Since a and w lie in the same component
of T — (gz), we have w € (gz)~. In other words, gz € (gz)~ so that
x € 27. Since z € z (by the assumption for Case 2), we have = C 27
Since a € x~, we have a € z~ showing that z points at a. Therefore,
every element of O(v) points at a, and the claim is proved. O

We now prove Theorem 5.

Proof of Theorem 5. Since T is an oriented simply connected 1-
manifold, T is a simply connected poset. Choose x € T such that
Stab (z) is trivial. By Lemma 13 the subposet O(z) is strongly
connected. Since O(x) is a subposet of the acyclic poset T', O(z) is itself
acyclic. Therefore, the partial order of O(z) is simply connected. Also,
since the poset T is rectifiable, so is O(x). Therefore, the left-invariant
partial order given to G by identifying it with O(z) is rectifiable and
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FIGURE 8. Case 2, z ¢ 2~ Ny~.

simply connected. The rest of the proof is devoted to proving that
the simply connected partial order of O(z) (and therefore of G) is
nontrivial.

We will show that the assumption that the order is trivial leads to a
contradiction. This is done by showing that, under this assumption, T’
is homeomorphic to R. Since G acts faithfully on 7', this shows that
the order on O(z) is total, and hence nontrivial.

Assume towards a contradiction that the order on O(z) is trivial.
Since a total order is not trivial, O(x) must contain noncomparable
pairs of elements. Moreover, all noncomparable pairs must be of the
same type; either all such pairs satisfy ~; or all satisfy ~,. We consider
only the case in which each two noncomparable elements z,y € O(z)
satisfy & ~; y, because the case for x ~, y is similar.

Our first step towards proving that 7" is a line is to show that there
exists a pair of comparable elements in O(z). Suppose not. Then,
y ~; z for any y,z € O(x). Therefore, for any elements y and z in
O(z), we have O(z) N By,. = {y, 2}. But GS(, .) N O(x) = By ., so no
element of O(z) ever separates two other elements of O(z). Therefore,

the set
I:= < U Gs(y,z)> — O(z)

y,2€0(x)
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is a G-invariant implicit subtree of 7". Since the G acts minimally on
T, I = @, which implies that GS(, .y = {y,2} for any y,z € O(x).
Therefore, no two points of O(z) are separable, so that O(z) itself
is a proper G-invariant implicit subtree of T', again contradicting the
minimality of the action. Thus, there must be at least two comparable
elements of O(x).

Now, for y € O(z), we consider the set
L, :={weO0(z)|w<y},

which by the above paragraph and the transitivity of the action of G
on O(z) must contain at least one element other than y. Again, by
transitivity, L, cannot have a minimal element. Therefore, L, must
be infinite. Additionally, each pair of elements in L, — {y} has y as
an upper bound, so by the assumption that no pair of noncomparable
elements in O(x) share an upper bound, L, must be totally ordered.
Therefore, the set

(5.1) Py = U GS(%w)

WE Ly,

can be written as an infinite increasing union of geodesic spines, so it
is a ray.

We claim that, for any elements s and ¢ in O(z), the intersection
ps N pt contains p,, for some w € O(x). To prove this, there are three
cases to consider: first s < t, second ¢ < s, and third s ~ ¢. In the first
case, ps C ps N p; and in the second case, p; C ps N p;. In the third
case, s ~ t since we assumed that x ~; y for every noncomparable pair
z ~ y in O(zx). Since O(z) is strongly connected, s and ¢ share a lower
bound in O(z), say w. In this case, p, C ps N pt, proving the claim.

Let R be the set of rays of the form given in equation (5.1). We now
prove that every ray in R is infinite. Note that, for any ¢ € G, we
have gL, = Lg.,, S0 gpy = pg.y, and G transitively permutes the set R.
Therefore, either all rays in R are infinite or all are finite. Suppose that
they are all finite. Since every two rays in R eventually overlap, every
two rays in R have exactly the same set of endpoints. Let E be the
set of endpoints of any (hence every) ray in R. Then G permutes the
components of T — E. Only one component contains points of O(z),
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and G must fix that component, which is therefore an invariant implicit
subtree. Since G acts minimally on 7', this is impossible, so the rays of
R must be infinite.

Since all rays in R are infinite and any two eventually overlap, they
all define the same end ¢, which is fixed by G. Since we assumed G not
to fix a unique end of 7', G must fix another end § of 7. By Lemma 3,
G fixes the implicit line defined by € and ¢ which, by the minimality of
the action, must be the entire manifold. Therefore, T'~ R, and G acts
faithfully on R. Thus, the order on O(z) is a total order, and we have
reached our desired contradiction. o

6. Left-orderable stabilizers. The following proposition shows
that we cannot completely drop the condition in Theorem 5 that some
point have a trivial stabilizer.

Proposition 4. There exists a countable group which acts faithfully
and minimally, without fixing a unique end, on an oriented order
tree, yet does not admit a partial order with left-invariant nontrivial
rectifiable simply connected extension.

Proof. Let G; = (g1) and Gy = (g2) be nonisomorphic finite cyclic
groups each containing a proper subgroup isomorphic to the group
H. Form the free product of G; and G2 amalgamated along H;
G = (1 *g G2. Standard Bass-Serre theory yields a simplicial tree T'
with a G action. The quotient of T by G is a graph with two vertices, vy
and vo, and one edge, e. If we orient e arbitrarily and lift the orientation
to a G-equivariant orientation of 7', then 7" has the structure of an
oriented order tree and the action of G is by orientation-preserving
homeomorphisms. Moreover, the action is faithful, nontrivial and fixes
no unique end. However, G cannot admit a partial order with nontrivial
rectifiable simply connected extension, which can be seen as follows.

Suppose that G does admit a partial order with nontrivial rectifiable
simply connected extension. Theorem 4 then applies to G, so we may
let T' be the tree constructed in that theorem. Recall from [14] that,
if an element g € G has no fixed point in 7", then g acts as translation
along some axis, so no nonzero power of g has a fixed point. Since g;
and gy are torsion elements in GG, we may choose fixed points = and y
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of g1 and g, respectively. The points x and y are fixed by all of G;
and G, respectively, because g; generates G;. Since H is contained in
the intersection, Gy N G2, it must stabilize the geodesic spine G'S(; ).
We will show that the action on the interior of this geodesic spine is
faithful. Since the interior of GS(, ,) is homeomorphic to R, this will
show that H has a faithful action on R. Such an action is impossible
since it would induce on H a total order, as in [11, Theorem 6.8], but
a finite group cannot admit a total order. Therefore, G cannot admit
a partial order with nontrivial rectifiable simply connected extension.

To show that the action of H on the interior of GS(, ) is faithful, it
will suffice to show that the interior of GSS(, ,) contains a point labeled
by an element of G, since the stabilizer of such a point is trivial. Note
first that since both endpoints have nontrivial stabilizers, neither x nor

y can be labeled by an element of G, so if one is labeled, the label must
belong to GT — G. On the other hand let,

A= U gGS(wyy).

geG

Now, any g has a decomposition g = hikihsks - - - hopk,, with h; € Gy
and k; € G2, which produces a path

hGStey)s Mk1GS(ey)s hikihaGSiay)s- - hiki - hmkmGS(ay)

from GS; ) to gGS(;,)- Therefore, A is a connected G-invariant
subset of T”, so it is an invariant subtree. Since the action is minimal,
A must be all of T". But, 7" contains points labeled by elements in G,
and this set of points is invariant under the action of GG. Since neither x
nor y is labeled by an element of G, none of their translates are. Hence,
G-labeled points must lie in the translates of the interior of GS(, ),
and so a G-labeled point must lie in the interior of GS,,,) itself. |

Note that, in the example above, the groups G; and G stabilize the
points v; and vo, which are lifts of the vertices v; and v, to T'. In fact,
every point of T has a nontrivial stabilizer. This illustrates the fact
that a nonleft orderable stabilizer constitutes a major obstruction to
defining an extended simply connected partial order on G by using its
action on 7.

Although we are unable to entirely omit restrictions on the stabilizer
of the point x we choose, we can replace it by the condition that
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there exists a point in 7" with left-orderable stabilizer, proving that (3)
implies (1) in Main theorem 1, completing the proof of the classification
theorem for groups acting on simply connected 1-manifolds.

Theorem 6. If a countable group G acts minimally and without
fixing a unique end, on an oriented, simply connected I-manifold T
by orientation preserving homeomorphisms, and there is some point
x € T where Stab (z) is left-orderable, then G admits a nontrivial left-
invariant rectifiable simply connected partial order.

Proof. By the same reasoning in Theorem 5, we see that the left cosets
of Stab () admit a rectifiable simply connected partial order. This
extends to an order on the group G as follows. Choose g1 # g2 € G.
If g7 'go ¢ H, then g1 H # goH, and we assign g1 < go if g1 H < go H
in the partial order on the cosets, and similarly g2 < g7 if go H < g1 H.
Note that, if such a pair has not been assigned to be comparable, then
the cosets are also not comparable, so they have either an upper or a
lower bound, which in turn provides g; and go with common upper or
lower bounds. On the other hand, if gflgz € H, then either e < gflgz
ore > gl_lgg. In the first case we set g1 < g2 and in the second case we
set g2 < g1. It is easy to see that the result is a left invariant rectifiable
simply connected partial order. It cannot be trivial, since already at
the level of cosets the order was not trivial. O

7. Oriented order trees. We have seen that groups that act mini-
mally on oriented simply connected 1-manifolds have simply connected
partial orders. The goal of this section is to show that although groups
acting on more general order trees do not always admit such partial
orders, they do always admit partial orders with simply connected rec-
tifiable extensions. The group theoretic motivation for this distinction
can be seen in Example 1 in Section 3. This example shows an ac-
tion of the infinite dihedral group on an order tree that gives rise to
an acyclic (but not strongly connected) partial order with rectifiable
simply connected extension. Moreover, this action induces an action
on a simply connected 1-manifold which we have shown is not minimal,
and has no minimal invariant submanifold, corresponding to the fact
that the infinite dihedral group cannot admit a full simply connected
partial order.
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In the case of 3-manifold groups, this distinction has a natural
topological interpretation. Namely, if a 3-manifold contains a minimal,
codimension-1 foliation, then the space of leaves is a simply connected
1-manifold T, and the induced action of 71 (M) on T is a minimal action
[15, 8.3]. However, if the foliation is not minimal, then the action will
not necessarily be minimal.

As we did for groups acting on 1-manifolds, we first consider an action
with a trivial stabilizer in Theorem 7, proving that (2) implies (1)
in Main theorem 2 and then extend to actions with a left orderable
stabilizer in Theorem 8, proving that (3) implies (1) in Main theorem 2.

Theorem 7. If a countable group G acts minimally and without fiz-
ing a unique end on an oriented order tree T' by orientation preserving
homeomorphisms, and there is some point with trivial stabilizer, then
G admits a partial order with nontrivial left-invariant rectifiable simply
connected extension.

First, we have two lemmas necessary for the proof of Theorem 7.

Recall the map, ¢ : 7" — T mentioned after the proof of Proposition 1
and the notions of incoming and outgoing rays at a branch point of an

order tree.

Lemma 14. Let Z be an oriented order tree, let T' be the associated
1-manifold, and let T be the core of T'. If x € T and X, is a component

of T' — {x}, then o(X1) £ T.

Proof. Since T is a simply connected 1-manifold, the point x
disconnects 7" into two components X; and X5. Let y = ¢(z). We
first claim that X» ¢ ¢~!(y). There are two possibilities for y. Either
y is a branch point or a regular point of 7. If y is regular, then ¢ =1(y)
is the single point x, so Xo ¢ ¢ (y). If y is a branch point, then the
preimage of y depends on the in-degree ny(y) and the out-degree n(y).
We consider the case ng(y) = 0 and ns(y) > 2, that is, y is a sink. The
other cases are similar. As in [14, Section 5], nf(y) = |R(y, f)| > 2,
where R(y, f) is the set of incoming rays at y, where such a ray is an
equivalence class of segments o with f(o) = y and where o1 &~ o9 if
and only if {y} g o1 Nas. Now, ¢~ 1(y) consists of an entire open ray
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oy (the distinguished ray) and a set of points {z,,}, where r, ranges
over all of the rays in R(y, f). Since ns(y) > 2, there are at least two of
these points, one x = x,, and one z,_ # x, where o and 7 are segments
representing r, and r,, respectively. Then o — {z} and 7 lie in different
connected components of 7 — {z}, so X, contains either ¢ — {z} or
7. But both ¢ — {z} and 7 contain points not in ¢ !(y), so in the
case that no(y) = 0 and ns(y) > 2, we have Xo ¢ ¢ 1(y). The other
possibilities for ny(y) and ns(y) are similar.

Now suppose towards a contradiction that ¢(X;) = T, and let
a € X5. Then there exists 8 € X; such that ¢(8) = p(«). Since
¢ Y(p(a)) is an implicit subtree of 7" and, since o and 3 belong to
¢ Hp(a)), we have GS(a,p) C ¢ (p(a)). Since z € GS(4,p), we have
¢(a) = ¢(z) = y. This is true for any point of Xs, so Xa C ¢~ (y),
contradicting the previous claim. O

Lemma 15. Suppose that G acts minimally on the oriented order
tree T, and let T' be the associated 1-manifold with the G-action. Every
nonempty invariant implicit subtree of T' contains the core T.

Proof. 1f I is an invariant implicit subtree that does not contain f,
choose x € T—I. Then I is contained in one component X; of T —{z}.
Since ¢(X1) # T, p(I) # T. But, ¢(I) is an invariant subtree of T,
contradicting minimality of the action of G on T. i

We now are in a position to prove Theorem 7.

Proof of Theorem 7. Choose a point « € T with trivial stabilizer.
Blow T up in the usual way to an oriented 1-manifold 7" on which G
acts. In the process, some points of T" may be split apart, and new
rays and open intervals may be added. The points of T’ form a simply
connected partially ordered set. Since ¢(7') = T, we may choose a
point # € T such that ¢(z) = a and « has trivial stabilizer. As in
Theorem 5, we define a left-invariant partial order on G by identifying
it with O(z). It may be the case that some noncomparable pairs in O(z)
have no common bounds in O(z), but they can be assigned the type ~,
or ~; according to how they relate in 7”. The resulting extension will
clearly satisfy both Definitions 12 and 13, so it is a simply connected
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extension. Since the poset T” is rectifiable, the partial order of O(z) is
as well. The rest of the proof is devoted to showing that this extension
is nontrivial.

We follow the proof of Theorem 3, using Lemma 15 instead of
minimality to show that if the order is trivial, there must be two
comparable elements of O(x). Again, we then consider the set R of
rays of the form of equation (5.1) and note that G acts transitively on
R, so either all rays are infinite or all are finite.

The fact that, unlike in Theorem 5, G need not act minimally on
T’, will complicate the rest of the proof. Suppose that all the rays are
finite, and let E denote the set of endpoints of any (hence every) ray
in R. Now, E is G-invariant, and if no two points of E are separable
from each other, F itself is an implicit subtree of T'. In this case, E
certainly cannot contain all of T', contradicting Lemma 15. If there are
two separable points in F, then as in Theorem 5, the set

I:= < U Gs(a,b)> ~ O()

a,beE

is a G-invariant implicit subtree of T”. Since 7' contains all of O(z), the
set I does not contain f, again contradicting Lemma 15. Therefore,
all rays of R must be infinite and, as in Theorem 5, they all define the
same end &', which is fixed by G.

We now use &’ to find an invariant implicit subtree or a fixed end of
T. First note that if w is a geodesic spine in 77, then ¢(w) is a single
point or a geodesic spine in T'. Since ¢ maps points of O(z) to distinct
points in T, ¢(py) is a ray for any p, € R. Since any two rays in R
eventually overlap, the same is true of any two rays of the form ¢(p,).
Moreover, G transitively permutes the rays ¢(py). So, either all are
infinite or all are finite. If they are finite, they all have the same set of
endpoints, say F, which is a proper G-invariant implicit subtree of T'.
Therefore, all rays ¢(p,) are infinite, and they all define the same end
e, which is fixed by G.

Since G was assumed not to fix a unique end of 7', there must be
another fixed end §. By Lemma 3, G fixes the implicit line [ defined by
¢ and 6. Since G does act minimally on 7', [ must be the entire tree, 7.
Therefore, T~ R, and we have reached our desired contradiction. O
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As in the case of a minimal action on a simply connected 1-manifold,
the assumption on the stabilizer of x can be weakened. The proof is
essentially the same as for Theorem 6.

Theorem 8. If a countable group G acts minimally and without fix-
ing a unique end on an oriented order tree T by orientation preserving
homeomorphisms, and there is some point x € T where Stab (z) is left-
orderable, then G admits a partial order with left-invariant nontrivial
rectifiable simply connected extension.

Remark. We have restricted ourselves to R-order trees, but with some
technical improvements Theorems 7 and 8 can be extended to arbitrary
order trees. This is achieved by replacing “simply connected oriented
1-manifold” by “oriented order tree without branching” in Theorems 5
and 6 and defining the geodesic spine GS(, ) to be the intersection of
all paths from z to y. The technical improvements involve dealing with
the facts that, in an arbitrary order tree, a finite ray need not have any

endpoint and a geodesic spine may not decompose into a disjoint union
of segments. Indeed, the definition of finite ray would be changed to

include any ray that is contained in some finite geodesic spine.
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