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CHARACTERIZATION OF STRICT CONVEXITY
FOR LOCALLY LIPSCHITZ FUNCTIONS

KAREL PASTOR

ABSTRACT. The first goal of this paper is improvement
of our previous result (Nonlinear Anal. TMA 57 (2004),
85-97), i.e., the characterization of convexity for regularly
locally Lipschitz functions by means of the second-order upper
(Dini) directional derivative.

Using the (Dini) type of generalized second-order directional
derivative, we also provide the characterization of strict con-
vexity for locally Lipschitz functions. As application of this
characterization, we can obtain the second-order sufficient op-
timality condition introduced by Cominetti and Correa.

1. Introduction and preliminaries. Strict convexity plays a very
important role in mathematics. For example, it is a well-known fact
that it suffices to solve the inclusion 0 € Jf(x) to find a strict local
minimum of the strict convex real functionf defined on an open subset
of X, where Of(z) denotes the convex subdifferential of f at z [26] and
the symbol X is reserved for a real Banach space with the norm || - ||
in this paper.

We can give the following characterization of strict convexity by
means of classical second-order directional derivatives. This result
is proved, e.g., in [7] for X = R, but we note that the dimension
of X is not important in this case. By Sx, we will mean the set
{h € X :||h|]| = 1}. For z € X, (u,v) € X?, we denote

f”(I; u,v) — lim <Vf(l‘ + tu) — Vf(l‘)’ U>

t—0 t ’

where v/ f(z) is the symbol for the Gateaux derivative of f at .
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Theorem 1.1. Let U be an open convex subset of X and f : U — R
a twice differentiable function on U. Then f is strictly convex on U if
and only if both of the following conditions are satisfied.

(i) f"(z;hyh) >0, for all z € U, for all h € Sx.

(ii) the set {z : f"(z;h,h) > 0} is dense in I, , = {z+th:t € R}NU,
for every x € U and for every h € Sx.

The main aim of this paper is to generalize Theorem 1.1 via a
certain type of generalized second-order derivative. The reasons why
we consider just this type are given in Section 2. In Section 3, we
give the characterization of convexity for regularly locally Lipschitz
functions via the second-order upper (Dini) directional derivative. This
characterization is, in a certain sense, more precise than it was stated
before, cf. e.g., [2, 12, 15, 16, 29, 31], especially see comments and
historical remarks in [31, page 610] and [2, page 96].

Throughout this paper, we use the symbol (a, b) for the open interval
with endpoints a,b € X, a # b. In the case X = R, we assume that
a <b.

If A, B are subsets of R, then A < B means that a < b whenever
acAandbe B. A<B,A<c¢, A>c, A> c, where ¢ € R, have the
analogous meaning. For A,B C X, weset A—B:={a—b:a€ Abe
B}.

X* denotes a topological dual space of a Banach space X, and (z*, z)
is a canonical pair, where z* € X*, z € X.

The effective domain of the set-valued mapping F' : X — Y is denoted
by D(F), i.e., D(F)={z € X : F(z) # @}.

We recall several basic facts about set-valued mappings, above all
about their monotonicity. For more information, see e.g., [1, 26].

Let A be a subset of X. A set-valued mapping F : A — X* is said to
be monotone provided that

(:v"—y*,x—y} >

whenever z,y € A and z* € F(z),y* € F(y), and strictly monotone if
this inequality is sharp whenever = # y.

A monotone set-valued mapping is a special case of cyclically mono-
tone set-valued mappings.
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Let n be a positive integer, n > 2, and A a subset of X. A set-valued
mapping F : A< X* is said to be n-cyclically monotone provided that

Z (Ths Tk — Th-1) 2 0

1<k<n

whenever zg,21,...,2, € X, ©, = o, and x; € F(xy) for every
k=1,2,...,n.

We say that F' is cyclically monotone if it is n-cyclically monotone
for every n € N, n > 2.

Remark 1.1. Of course, in the case of one dimension, the notions
monotone mapping and cyclically monotone mapping coincide.

A set-valued mapping F' : A— X*, A C X, is said to be mazimal
monotone if it is monotone and the graph

Gr(F)={(z"z) e X* x X,z* € F(x)}

is maximal in the family of the graphs of monotone set-valued mappings
from A into subsets of X™*, ordered by inclusion.

Remark 1.2. Let X be an Hilbert space, and let U,V be subsets of
X. Then F : U<V is a (maximal) monotone if and only if F~! is a
(maximal) monotone.

Remark 1.3. Let (a,b) C R. If f: (a,b) — R is a nondecreasing and
continuous function, then f is maximal monotone.

A set-valued mapping F' from a topological space A into nonempty
subsets of a Hausdorff locally convex space Y is called cusco if F(t)
is compact and convex for each ¢t € A and F' is upper-semicontinuous,
ie., {t € A: F(t) C U} is an open subset of X for each open subset U
of Y). Further, F is said to be minimal cusco on A if its graph does
not contain the graph of any other cusco on A. Maximal monotone set-
valued mapping is the well-known example of minimal cusco mapping,
see e.g., [18, 26].
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Proposition 1.1 [25, Theorem 3.2]. Let A be a nonempty open
subset of X and F a set-valued mapping from A into nonempty subsets
of X* which is minimal weak™ cusco. If F possesses a densely defined
monotone selection, then F is monotone.

Now, we recall some assertions about the Clarke generalized gradient
which was introduced in [10] and about locally Lipschitz functions.

Let f : X — R be Lipschitz near x, and let v € X. The Clarke upper
and lower generalized directional derivatives of f at x in the direction
v are defined, respectively, by
fly+t) = f(y)

f°(z;v) = lim sup ,

y— t
10
° ’ y— t ?

t10
and the Clarke generalized gradient of f at x is defined by
Ocf(x) ={a* € X*: (x*,v) < f°(z,v), for all v € X}.

Proposition 1.2 [11, Proposition 2.1.1]. Let U be an open convex
subset of X, and let f : U — R be Lipschitz. Then the set-valued
mapping F : U— X* : x = 0.f(x) is cusco.

A function f : X — R is strictly differentiable at a point Z if
f@') = f(z) + (Vf(@), 2 —z) = o]z’ — z|)), ie.,

f(@) = f(z) = (Vf(2), 2" —z)

[l" — =]

—0 asa',x — T with 2’ # 2.

Proposition 1.3 [11, Proposition 2.2.4]. Let f : X — R be Lipschitz
near x € X. Then f is strictly differentiable at x if and only if 0.f(x)
s a singleton.

Proposition 1.4 [26, Proposition 3.26]. Let U C X be an open
convez set. If a set-valued mapping F from U into subsets of X* is
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mazimal cyclically monotone with D(F) nonempty, then there ezists a
proper convex lower semi-continuous function f : U — R* = RU{+o0}
such that F = 0.f(= 0f).

Proposition 1.5 [11, Proposition 2.2.9]. Let U C X be an open
convez set and f : U — R a locally Lipschitz function. Then f is
(strictly) convez if and only if the set-valued mapping © — 0.f(x) is
(strictly) monotone.

2. Choice of the type of derivative. First, we note that for a
set-valued mapping F': R— R, we define

hraz)an(t) = lug%)nfmf{a ca € F(t)},

etc.

In [22], the following generalized second-order directional derivatives
were introduced for a function f : X — R which is Lipschitz near x:

! . I EIN <acf(x + tu) — 8cf(l‘),1)>
f" (@ u,v) = lim inf - :
<6cf(m + tu) - acf(m)v U>

; .

(x5 u,0) = li%%nf

Let us recall that a locally Lipschitz function f is said to be regular
at z provided that for every v € X the directional derivative f'(z;v) =
lim o(f(z + tv) — f(z))/t exists, and moreover f'(z;v) = f°(x;v) for
every v € X. Note that if f : X — R is a regularly locally Lipschitz
function near x, then it holds [2]:

f'(@ + thih) — f'(;h)

11 ; 1 .
(1) Y (zih,h) = lug%)nf , )

Further, because a continuously differentiable function at the point
x is strictly differentiable at this point, see e.g., [11, Section 2.2], we
have by Proposition 1.3 that if f : X + R is a C1! function near z,
i.e., f is differentiable with a locally Lipschitz derivative near x, then

Wi o) = L inf VS (& tu) = Vf(2),0)
(2) _ﬁ(m, u,v) = hrﬁ%)nf ; .
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Theorem 2.1 [22, Theorem 1.3]. Let U C X be an open convez set
and f : U — R a locally Lipschitz function. Then the following are
equivalent:

(i) f is convex.
(i) f"'(z;h,h) >0, for all z € U, for all h € Sx.
(iif) f¥(z;h,h) >0, for all z € U, for all h € Sx.

Theorem 2.2 [23, Theorem 3]. Let f: R™ — R be a Cb! function
near z. If 7f(z) = 0, and fﬁ(m;h, h) > 0, for all h € Sg~, then f
attains a strict local minimum at x.

Analogously, we can define for a function f : X +— R which is
Lipschitz near x the “upper” form of the previous notions, i.e.,

f,U (z;u,v) := lirtn_il)lp (Ocf(z + tu)t_ Ocf(z),v)
fg_U (x; u, ’U) = lintlﬁ)up <acf(l‘ + tu)t* 5cf(1‘), v> ‘

I

Motivated by (1), in [2] we introduced the following generalized
second-order directional derivative for a function f : X — R which
is regularly locally Lipschitz near z € X, (u,v) € X x X, by

/ tu: _ ! .
fi (25 u,v) = limsup flz+ u,z;) / (m,v)'
tl0

We notice that because of possible sharp inequality f*(x;h,h) <

"V (x; h, h) (for example, considering a function f : R — R : f(z) =
|z|, then f*(0;1,1) = 0 < +oo = fIU(0;1,1)), it is necessary to
distinguish the notions of f'V(wz;h, h) and fi*(z;h, h).

Thanks to the same arguments as preceded formula (2), for a function
f: X — R which is C'! near z, we have

. o (Vf(z+tu) — v f(z),v)
[ (xyu,0) = hntlisoup ;

= (x5 u,v).

Since

(7f)ll(x;uav) = 7flu(x;uav)’ and (7f){|l—(x7u7 U) = *ff(l‘;u, U)a
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it is easy to derive the characterization of the concavity for a locally
Lipschitz function in terms of f'V(z;h,h) and f\V(z;h,h) (compare
with Theorem 2.1), and a sufficient optimality condition for a strict
local maximum for a C'! function with f\“(z;h,h) (compare with
Theorem 2.2).

The minimal cusco structure of the set-valued mapping = < 0. f(z)
of regularly locally Lipschitz functions (for more details see [6, 21])
yields [2, Theorem 3.2] the following result.

Theorem 2.3. Let U C X be an open convez set and f: U — R a
regularly locally Lipschitz function. Then f is convex if and only if

fi¥(x;h,h) >0,  forall xe€U, forall heSx.

Various other generalized second-order directional derivatives have
been introduced and deeply studied during the last 25 years, see e.g.,
[4, 8, 9, 12, 14-17, 20, 27, 29-31 and references therein]. In
terms of many of them, characterizations of convexity and second-order
optimality conditions (both sufficient and necessary) were stated.

Therefore, much attention was focused, in [2, 3, 22, 24], on rela-
tions between them and a (Dini) type of directional derivative which
was mentioned in this section (in particular, for the discussion on Theo-
rem 2.3, see [2, Section 5]). We hope that these considerations together
with relatively comfortable calculus explain our choice of directional
derivatives enough.

3. Convexity of regular functions. Using a certain condition for
a real function of a real variable to be nondecreasing (Lemma 3.4) and
some properties of regularly locally Lipschitz functions, we improve our
previous (see Theorem 2.3 in this paper) characterization of convexity
for regularly locally Lipschitz functions via fi“(x;h, h).

Lemma 3.1 [2, Lemma 2.1]. Let f : X — R be a regularly
locally Lipschitz function and z,y € X, © # y. Then, the function
g : (0,1) = R defined by g(t) = f(z + t(y — z)) is regularly locally
Lipschitz, and

0:9(t) = (0. f(x +t(y — ),y —x), forallte (0,1).
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Lemma 3.2 [19]. Let f : X — R be a Lipschitz function on an
open set containing the line segment [x,y]. Then there exists a point
u € (z,y) such that

f(y) = f(z) € (0cf(u),y — ).

Lemma 3.3. Let f : X — R be a reqularly locally Lipschitz function,
and let t € X, h € Sx. Then

(3) limsup f'(z + th; h) < f'(z;h) = limsup f'(z + th; h).
10 t40

Proof. Because of the upper semi-continuity of the mapping z —
f°(z; h) and regularity of f, it holds that

limsup f'(x + th; h) < limsup f°(y; h) < f°(z; k) = f'(x;h),
t1T0 Yy—T

and

limsup f'(z + th; h) < f'(z; h).
t10

Thus, for the proof of formula (3), it suffices to show that

(4) f'(z;h) <limsup f'(z + th; h).
t10

Thanks to Lemma 3.2, for every s > 0 there exists a t € (0,s)
satisfying

flex S};) “IE) ¢ (Gef (a4 th) B < o+ thih) = F(o + th ).

Limiting for s | 0, we obtain inequality (4). i

In the following lemma, we denote the Dini right upper derivative of
function f : R— R at z € R by f/(z), i.e.,

f'(z) = limsup —f(m +t) - f(2)
10 t '
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Lemma 3.4 [28, page 135]. Suppose that the function f: R — R
satisfies the following conditions:

(1) at each point x,

limsup f(z + 1) < f(2),
t10

(2) f'(z) > 0 almost everywhere (in the Lebesgue sense),

(3) f'(z) > —oo everywhere except possibly at the points x of a
denumerable set, at each point of which the inequality

f(x) < limsup f(z +t)
t10

holds.

Then f is nondecreasing.

Theorem 3.1. Let U C X be an open convez set and f: U — R a
regularly locally Lipschitz function. Then f is convez if and only if for
everyx € U and h € Sx, the set I, ={y € X : y =x+th,t € R}NU
satisfies the following conditions:

(1) fi(y; hy k) > 0 almost everywhere on I, p,

(i) fi*(y;h,h) > —oo everywhere except possibly at the points of a
denumerable subset of I p.

Proof. First, if f is convex, then the set-valued mapping x < 0. f(z)
is monotone on U. Since f'(z+th; h) € (0.f(x+th),h), for every t € R
satisfying « + th € U, f\*(y; h,h) > 0 for every y € I, , and therefore
conditions (i) and (ii) are satisfied.

Conversely, it suffices to show that f is convex on I; ;, for every x € U
and h € Sx.

We take arbitrary € U and h € Sx, and let us consider a function
g:(a,b) = R:g(t) = f(z+th), where (a,b) ={t e R:z+the U}.
Due to Lemma 3.1, g is regularly locally Lipschitz. Hence,

9°(t1) =g'(¢;1) = f'(z + th;h), forall t € (a,b).
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Then
/ 1Y Al (4
glf(t;l,l) = limsupg (t+71)—g'(t1)
710
(5) . Fl@+th+rhih) — f'(z + th; h)
= lim sup ’
710 T

for all t € (a,b).

It is obvious that f is convex on the line I, if and only if g is
convex. Following Lemma 3.3, formula (5) and conditions (i) and (ii),
we obtain that a function ¢t — ¢°(¢;1) is nondecreasing by Lemma 3.4.
Because of ¢°(t;1) = max0.g(t), a function t — g°(¢,1) is a selection
of 0.g(t). Since the set-valued mapping ¢ < J.g(t) is minimal cusco,
Proposition 1.1 yields that this mapping is monotone. Proposition 1.5
completes the proof. i

Corollary 3.1. Let U C X be an open convez set and f: U — R a
reqularly locally Lipschitz function. Then f is convex if and only if

“(zsh,h) >0

holds for every [z,h] € U x Sx except possibly at the points [x,h]| €
U x Sx of a denumerable set.

4. Strict monotonicity. In order to obtain our main result
(Theorem 4.2), we derive the characterization of strict monotonicity
for set-valued mappings in terms of the following derivatives.

Definition 4.1. Let F : X — X* be a set-valued mapping, x,u,v €
X. Then

(F(z + tu) — F(z),v)

F!(x;u,v) := lim inf
=0

t )
F - F
Fl (z;u,v) == 1i%nf (F(z + t“)t (), v>,
(6)
F - F
FL(z;u,0) == liy it (F(z+ tU)t (z), v>,

F*(z;u,v) := limsup (F(z + tu) — F(ac),v>-
t—0 t
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For a single-valued version of Lemma 4.1, see e.g., [28, page 134].
The proof of Lemma 4.1 uses the ideas of the proof of Lemma 2.1 in
[24].

Lemma 4.1. Let (a,b) C R, and let F : (a,b) =R be a set-valued

mapping. Then F is monotone if and only if

(7) Fl(z) = FY(2;1,1) >0, for all = € (a,b).

For the proof of Lemma 4.1, we will use the following well-known
fact:

Fact 4.1. Let B € R, and let M C R, M < 3 be a set satisfying
(i) M # o,
(ii) (for allx € M) (z < B = (there exists y € M), y > x),
(iii) sup M € M.
Then B € M.

Proof of Lemma 4.1. 1. We suppose that the set-valued map F' is
monotone. We fix € (a,b) and consider an arbitrary t € R, t # 0,
satisfying © + ¢ € (a,b). Then, for any ¢ € F(xz + t) and for every
p € F(x),

(¢—p)t 0.
Therefore,
q—p >0
— 2
Hence,
Fl(z) > 0.

2. We suppose that condition (6) is true. Consider arbitrary
a, B € (a,b), a < B. Fix an arbitrary € > 0, and put

(7) M:={z€a,p]: F(z) — F(a) > —¢(z —a)}.

Due to condition (6), for each z € (a,b), there exists a d, > 0 such
that, for every 0 < t < 4§,

(8) F(z+t)— F(z) > —ct
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and

(9) F(z) — F(z —t) > —et.

Now we show that M satisfies the conditions of the previous fact.
Setting © = « in (8), it is straightforward to verify condition (i). For
condition (ii), we fix £ € M with # < 8. Due to inequalities in (7) and
(8), we obtain, for 0 < t < §,,

Fz+t)— F(a) C(F(x+t)— F(z)) 4+ (F(z) — F(a))
>—ct—ce(z—a)=—c(z+t—a).

Finally, put x = sup M. By the property of the supremum, we can find
0 <t < 0, satisfying x —t € M. Then by (9) and (7),

F(z)— F(a) C (F(z) —F(z—1t))+ (F(z —t) — F(a))
> —¢t—¢e(z—t—a)=—c(z—a).

It means that « € M and also condition (iii) of Fact 4.1 is verified.
Thus,

F(8) - F(a) > —<(B - a).

Since ¢ was arbitrary, we have F(8) > F(«). u]
In an analogous way, we can obtain the “upper” form of Lemma 4.1:

Lemma 4.2. Let (a,b) C R and F : (a,b) >R be a set-valued
mapping. Then F(x) > F(y) for every z,y € (a,b) satisfying v < y if
and only if

FY(z) = F*(z;1,1) <0, for all z € (a,b).

The following lemma follows immediately from Lemmas 4.1 and 4.2:

Lemma 4.3. Let (a,b) C R, and let F : (a,b) =R be a set-valued
map satisfying
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Fl(z) >0 and F“(z) <0, for everyz € (a,b).

Then F is a single-valued constant function.

Now, let us give the characterization of strict monotonicity for set-
valued mappings from R into subsets of R at first.

Proposition 4.1. Let (a,b) C R, and let F : (a,b) >R be a set-
valued mapping. Then the following conditions are equivalent

(i) F is strictly monotone.
(ii) F'(x) > 0 for every z € (a,b), and {z : F*(x) > 0} is dense in
(a,b).
(i) @ < B = sup F(a) < inf F(B) for every o, B € (a,b).

Proof. The implication (iii) = (i) is clear. It suffices to show (i) =
(i) and (i) = (iii).

(i) = (ii). If F is strictly monotone, then F'(z) > 0 for every
x € (a,b). Suppose now that there exists an open interval (¢, d) C (a, b)
with the property F“(z) < 0 whenever z € (c¢,d). Lemma 4.3
implies that F is a single-valued constant function on (c,d), but it
is a contradiction. Hence, the set {z : F“(z) > 0} is dense in (a,b).

(ii) = (iii). Since F'(z) > 0 for every = € (a,b), Lemma 4.1 implies
that F' is monotone. Fix arbitrary «,8 € (a,b), a < . Using the
density of {z : F*(z) > 0} in («, B), we obtain 21,22 € (a, ), 21 < 22
and u € F(z1), v € F(z2) such that u < v. Subsequently,

Fla) <u<uv < F(p).

Thus, sup F(«) < inf F(8). o

In higher dimensions, the characterization of strict monotonicity for
set-valued mappings can be expressed as follows.

Proposition 4.2. Let U C X be an open convex set, and let
F : U= X" be a set-valued mapping. Then F 1is strictly monotone
if and only if both of the following conditions are satisfied.
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(i) F'(x;h,h) >0, for all x € U, for all h € Sx,

(ii) the set {z : F*(z;h,h) > 0} is dense in I, , = {x +th:t €
R} NU, for every x € U and for every h € Sx.

Proof. We fix arbitrary * € U and h € Sx, and consider the
corresponding set I, ;. Let all ¢ € R which work in I, form an
interval (a,b). Since z € U and h € Sx are arbitrary, it suffices to
show that, for every t,s € R satisfying t € (a,b) and (t + s) € (a,b),
we have

(10) s(F(z+ (t+ s)h) — F(x +th),h) >0
if and only if

(11) F'(x +th,h,h) >0, foralltc (a,b)
and the set

(12) {t € (a,b) : F*(x + th, h, h) > 0} is dense in (a,b).

Consider G : (a,b) = R defined by G(t) = (F(x + th),h) for every
t € (a,b). Due to Proposition 4.1, G is strictly monotone, i.e.,
inequality (10) holds, if and only if G'(t) > 0 for every t € (a,b),
i.e., condition (11) is satisfied, and the set {t € (a,b) : G*(t) > 0} is
dense in (a,b), i.e., condition (12) is satisfied. u]

We notice that
F'(z;h,h) = min{F" (z; h, h), F' (z; h, h)},
and
F! (z;—h,—h) = F' (z;h,h), forallz € U, for all h € Sx.

Then, due to the symmetry of Sx, condition (i) in Proposition 4.2 is
equivalent to the following condition:

F'(z;h,h) >0, forallz €U, forall h € Sx,

and we have
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Theorem 4.1. LetU C X be an open convex set, and let F : U — X*
be a set-valued mapping. Then F is strictly monotone if and only if
both of the following conditions are satisfied.

(i) Fi(@;h,h) >0, for all x € U, for all h € Sx,

(ii) the set {z : F"(2;h,h) > 0} is dense in I, = {z +th :t €
R} NU, for every x € U and for every h € Sx.

Setting F' = O.f in Theorem 4.1 and following Proposition 1.5, we
obtain the generalization of Theorem 1.1:

Theorem 4.2. Let U C X be an open convez set, and let f : U — R
be a locally Lipschitz function. Then f is strictly convex if and only if
both of the following conditions are satisfied.

(i) f_’if(x,h,h) >0, forall z € U, for all h € Sx,

(ii) the set {z : f'V(z;h,h) > 0} is dense in I, = {x+th:t €
R} NU, for every x € U and for every h € Sx.

As an application of Theorem 4.2, we can obtain the following
second-order sufficient optimality condition which was introduced in
[12, Proposition 5.2] (see also, e.g., [8, Proposition 6.2], [30, Theorem
5.1(ii)], [81, Theorem 4.2(ii)]).

Corollary 4.1. Let f : R® — R be a C%! function near z. If
vf(z) =0, and

fL (z; by h) = liminf vy +th) —viy)

y—z,t0 n >0, forall h € Srn,

then f attains a strict local minimum at x.

Proof. The function (y,h) — fL(y;h,h) is lower semi-continuous
on W x R™ [30, Proposition 2.3], where W is an open neighborhood
of = such that f satisfies the C1'! property there. Then, for every
h € Smn, there exist an open neighborhood U(h) C R™ of z and an
open neighborhood V' (k) C R" of h satisfying /' (y; b/, k') > 0 for every
y € U(h) and for every A’ € V(h). The compactness of Sg~ yields that
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there exist points hy, ho,...,hr € Srn such that Sg» C U7_;V(h;).
Then, for every y € NF_,U(h;) and for every h € Sgn, we have

"!(y; h, h) > 0 and thus f is strictly convex due to Theorem 4.2. Since
0 € 0.f(z), f attains a strict local minimum at x. O

Remark 4.1. Of course, Corollary 4.1 follows immediately from
Theorem 2.2, but the second-order condition in terms of f.(z;h,h)
in Corollary 4.1 ensures strict convexity of f near x in contrast to the
second-order condition in terms of f/(;h, h) in Theorem 2.2.

5. Discussion of Theorem 4.2. In this section, we will discuss
whether or under which next assumptions conditions (i) and (ii),
respectively, in Theorem 4.2 could be weakened.

5.1. Condition (i). There arises the question of whether or
not f_’if(x; h,h) can be replaced by fj_U(x; h,h) in condition (i) of
Theorem 4.2.

Of course, the necessary condition of strict convexity is then also
satisfied, but the following example shows that there is a nonconvex
function satisfying the replaced condition (i) in terms of f\V(w;h,h)
and condition (ii) of Theorem 4.2.

Example 5.1. Consider a function f : (0,+00) — R such that for
every n € NU{0} we have f(z) = (z —n)? +n whenever z € (n,n+1].
Then f\V(z;1,1) = fIY (2, ~1,-1) = 2 for every z € (0,+00), but f is
not convex.

It remains an open question whether ’l(:c;h, h) can be replaced
by f\V(z;h,h) in condition (i) of Theorem 4.2 for regularly locally
Lipschitz functions. Nevertheless, for this class of functions, we are
able, thanks to Corollary 3.1, to state a tighter form of Theorem 4.2
(note that f(z;h,h) < fi¥(z;h, k) < fV(x;h,h)):

Theorem 5.1. Let U C X be an open convex set, and let f : U - R
be a regularly locally Lipschitz function. Then f is strictly convex if
and only if both the following conditions are satisfied.
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(i) fi*(z;h,h) > 0, for all [x,h] € U x Sx except possibly at the
points [z, h] € U x Sx of a denumerable set,

(ii) the set {z : f'V(z; hyh) > 0} is dense in I, j, = {z+th : t € R}NU
and for every h € Sx.

Proof. If f is strictly convex, then conditions (i) and (ii) are satisfied
by means of Corollary 3.1 and Theorem 4.2, respectively.

If condition (i) holds, then f is convex by Corollary 3.1. So, it suffices
to show that the convexity of a locally Lipschitz function f together
with condition (ii) imply strict convexity of f. But the last follows
immediately from Proposition 1.5. |

5.2. Condition (ii). There is also a question whether f'V(z;h,h)
can be replaced by f’!(z; h, k) in condition (ii) of Theorem 4.2. Because
of f'V(z;h,h) > fﬁ (z; h, h), the sufficient condition of strict convexity
is immediately satisfied.

On the other hand, we will prove that there exists a strictly convex
function for which fﬁ(-; 1,1)=0.

At first, we show that there is a strictly monotone set-valued mapping
satisfying Fi(, 1,1)=0.

Example 5.2. Let us consider a function g : R — R,

c(x) ifxel0,1],
ooy = {4 el
x otherwise,

where ¢ is the Cantor function, see for example [13, Chapter 8,
Example 1]. We recall some properties of g.
1. g maps the Cantor set C' on the segment [0, 1].

2. x© € C if and only if we can express x in ternary expansion as
follows:
l‘ZO,blbzbg"' 5

where b; is either 0 or 2 for every ¢ € N. Then

is the expression of g(z) in binary expansion.
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3. Since g is a nondecreasing and continuous function, g is a maximal
monotone due to Remark 1.3.

Now we consider a set-valued mapping F defined by Gr(F) =
(Gr(g))~!. Property 1 of g implies that D(F) = R.

Using Property 2 of g, we describe the set-valued map F more exactly
on the open interval (0,1). For this, we determine a maximal selection
u of F.

For every = € (0,1), we can find a sequence {d,(z)}> with the
properties

(a) dn(z) € {0,1} for every n € N.

(b) & = 3,23 (dn(2)/2").

(¢) My(z) ={n € N:d,(z) =0} is an infinite set.
Define

and set
Mi(z) =N\ My(z)(={n € N,d,(z) = 1}).
According to the properties of M;(x), we have
(A) If My(z) is an infinite set, then F(x) = {u(z)}.
(B) If My(z) is a finite set, then F(z) = [u(z) — (1/3™®)), u(z)],
where n;(z) = max M (z).
Since F~! is a function, one has that F is strictly monotone on (0, 1).
We show that F)(z) = F.(z;1,1) = 0 on (0,1). Thanks to the
monotonicity of F, it suffices, for every z € (0,1) and for every
0<e<1-uz, tofind z. € (z,1) such that z. — x < ¢, and
u(z) — u(z)
Te—T

Fix £ € (0,1) and 0 < &€ < 1 — z. Then there exists a k € My(z),

L <2 2 k<8
2k 3 '

<eg
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Define z. = = + (1/2%); then u(z.) = u(x) + (2/3%). Hence, z. —z < ¢,
and

u(we) — u(@) _ 23" _ 2(2)k <,

r.—x  1/2k 3

which is what we wanted.

So, F“(z;h,h) cannot be replaced by Fi(z, h,h) (and thus not
even by F'(z;h,h)) in condition (ii) of Theorem 4.1. Deeper insight
into Example 5.2 demonstrates that the corresponding change, i.e.,
fﬁ(z, h,h) instead of f'V(z;h,h), is not possible in condition (ii) of
Theorem 4.2 (recall that Theorem 4.2 is a special case of Theorem 4.1).

Example 5.3. We follow Example 5.2. Property 3 of g and
Remark 1.2 imply that F' is maximal monotone. By Remark 1.1, F
is also maximal cyclically monotone. Applying Proposition 1.4, we
obtain a proper convex lower semi-continuous function f : (0,1) — R*
such that F = df. Since D(0f) = (0,1), f is a real function in fact.
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