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GENERALIZED BASKAKOV-BETA OPERATORS
VIJAY GUPTA AND ALI ARAL

ABSTRACT. Very recently Wang [9] introduced the modi-
fied form of Baskakov-beta operators and obtained a Voronov-
skaja type asymptotic formula for these operators. We extend
the study and here we estimate a direct result in terms of
higher order modulus of continuity and an inverse theorem in
simultaneous approximation for these new modified Baskakov-
beta operators.

1. Introduction. For f € C,[0,00) = {f € C[0,00) : f(t) = O(t")
as t — oo for some v > 0} and o > 0, Wang [9] introduced modified
Baskakov-beta operators as

(1)
B, o(f x) = nk,a (T b k,a(t)f(t)dt = Wholz, t) f(t) dt
()Igpk()/o OY0 / (2, 1) £(8)

where
L(n/a+k) (cx)k
pn,k,a(x) = ' n/a)+k’
I'(k+ 1) (n/a) (1+ az)/o)+
1 aat)k
bn,k,a(t) = ]
B(n/a,k+1) (1 + at)n/etk+
and -
Wa(@,8) = Poka(@)bn,k,a(t).
k=0
The norm- ||.||, on the class C,[0,00) is defined as ||f||y = supgs« oo
[F (@B

As a special case a = 1, the operators defined by (1) reduce to the
well known Baskakov-beta operators [5]. Wang [9] recently obtained
an asymptotic formula for the operators (1). In the present paper we
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establish an error estimation and inverse theorem in the simultaneous
approximation for the unbounded functions of growth of the order ¢7.
Also very recently Gupta [6] established some direct results for the
generalized operators of Finta [2].

Throughout the present paper we denote by M the positive constant
which has different meaning at each occurrence.

2. Basic results. In this section we mention certain lemmas which
will be used in the sequel.

Lemma 1 [3]. For m € NU{0}, if the mth order moment is defined

as .
nma anka <——$> )
then Uy, 0.a(2) =1,Up 1,0(z) =0 and
”Un,m-I-l,a( z) =z(l + al‘)(Ur(zlr)n o(Z) + mUn,m—l,a(x))-

Consequently, we have Uy m o(z) = O(n~[m+1/2]),

Lemma 2. Let the function Ty, 1. o(z), m € N U{0}, be defined as

Toma(@) = Bua((t —2)™ anka /bm (t = o)™ dt.

Then

Tn,O,a( ) 1
Thia= ( —I—a:v)/(nfa),
Th2.0(r) = (2 a(n+ o)z +2(n + 2a)z +2)/((n — a)(n — 2a)),

and for n > (m + 1)a, the following recurrence relation holds

n — (m+ l)a]Tn,m+1,a(x)
= 2(1 + ax) | T, o (@) + 2mT m_1.0(7)]
+ [(m+ 1)(1 + 2az) — az]Th m,o(z).
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Corollary 3. Let § be a positive number and s =1,2,3,... . Then,
for every v > 0 and z € (0,00), there exists a constant M(s,x)
independent of n and dependent on s and x such that

H / Wh.a(z, t)t7 dt
|t—z|>d

< M(s,z)n"°.
Cla,b]

Lemma 4. There exist the polynomials Q; ;r.o(x) of degree at most
r in x and independent of n and k such that

{e(1+a2)} D [puka(@)] = Y 0k —n2) Qijural@)pnra(),
2i+j<r
,j>0

where D = d/(dx).

Proof. By simple computation, it is easily verified that z(1 +
oza:)ps;c o(@) = (k — nz)pnk,a(z). In order to prove the result, we
assume that the result is true for r = m; we can easily prove that it
is also true for r = m 4+ 1. Thus, by the principle of mathematical

induction, the lemma follows. O

By Cy, we denote the class of continuous functions on the interval
(0,00) having a compact support, and C§ is the class of r-times
continuously differentiable functions with Cj C Cy. The function f is
said to belong to the generalized Zygmund class Liz (3, k, a, b), if there
exists a constant M such that woy(f,8) < M§P*,§ > 0, where wor(f,d)
denotes the modulus of continuity of 2kth order on the interval [a, b].
The class Liz (8,1,a,b) is more commonly denoted by Lip*(8,a,b).
Suppose G(" = {g: g € C52, suppg C [a/,¥'] where [a’,b] C (a,b)}.
For r times continuously differentiable functions f with supp f C [a/, V'],
the Peetre’s K-functional is defined as

Kr(ga f) :geigfi‘r)ﬂ ‘f(T)fg(T)”C[a’,b’] +§{| |g(T)||C[a’,b’] +||g(T+2) | ‘C[a’,b’}}]a
0<¢<
For 0 < 8 < 2, C§(B, a,b) denotes the set of functions for which

sup & PPK,(¢,f) < M.
0<€<1
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Theorem 5 [9]. Let f € C,[0,00). If fU*2) exists at a point
€ (0,00), then
Jim a[B{)(f,2) — £ ()]
= ar?fO (@) + [(1+7) + ax(1420)] f (@) + (14 az) fF T+ ().
Further if f"+2) exists and is continuous on (a—n,b+n) C [0,00),1 >

0, then the above limit holds uniformly on [a,b].

Lemma 6. Let 0 < 8 <2,0<a<d <a’"<b' <V <b<oo. If
f € C§ with supp f C [a",b"], |f(t)] < MtY for some M >0, v >0

and ||BIL(f,) = FO|can) = O(n8/2), then

K. (€, ) < M{n™%"% + ngK,(n"", )}.
Consequently, K,(&, f) < MEP/2, M > 0.

Proof. Tt is sufficient to prove

K, (& f) < M{n™P” + n¢K,(n7", f)},

for sufficiently large n. Since supp f C [a”,b"], there is an h € G(")
(see also [8]), such that

HBr(;)a(fa °) — h(i)HC[a’,b’} <Mn7', i=r, r+2.
Therefore,

Kr(é.a f) S 3Mn71 + HBr(Lr()x(fa.) - f(T)HCa’ b]

)

4 e {IBELL et + B (o) e}

Next, it is sufficient to show that there exists an absolute constant M
such that, for each g € G(")

(2)

1B (f, )l caren < Mn{[1F") = ¢ oarpy + 77 g oo}

By the linearity property, we have

LB .ty < D st B . ol
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Applying Lemma 4, we get

e o] 8r+2
/0 an,a(w,t) dt

j Ql,],T a >
< Z Z n |k — nx| |( " aw()})r|+2pn . a( ) /0 bn,k,a(t) it

2i+j<r+2k=0
4,7 >0

Therefore, by the Cauchy-Schwarz inequality and Lemma 1, we obtain
(4) IBUL(f = 9, 9)lcare) < MonllFT) — ¢ olar v,

)

where the above constant M is independent of f and g. By Taylor’s
expansion, we have

T ) (g 2
o) =3 T -y + - o,

where £ lies between ¢ and x. Using the above expansion we get
(5) NBYZP(9,9)lofar b

9 r+2
< M]jgtt )||C[a.bq.H

an,a(mv t) (t — CU)T+2 dt

Cla’,b']
Also by Lemma 4 and the Cauchy-Schwarz inequality, we have
(6) IBTED(g,0) o v < Mg | ofar v-

Combining the estimates of (3)—(6), we get (2). The other consequence
follows from [1]. This completes the proof of the lemma. O

Lemma 7. Let 0 < 3 <2,0<a <d’' <b'"<b <b< o and
) € Cy with supp f C [a”,b"] and, if f € C5(B,a’, V), then we have
f) € Lip*(B,d', V).

Proof. Let g € G") and |h| < §. Then, for f € C5(3,1,d’,b'), we
have
AL (@) < AR = g (@) + |25 ()]
<22 f" = g o p1 + B39 | Glar i
< MK, (12, f) < MhP,
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which implies that

wa(f1,8) = sup [AR ) (2)] < M6P.
Ih| <8

Thus, (" € Lip*(B,a’,b'), which completes the proof of the lemma
(see [7] also). u]

Lemma 8. If f is r times differentiable on [0,00), such that
fO=D =0(t"), v >0 ast — oo, then forr =1,2,3,... andn > y+r
we have

B (f,)

= F(n/a + T)F(n/a — T) io:prrkocr,k,oc(a?) /Oobnfar,ker,a(t)f(r) (t) dt.
k=0 0

(C(n/a))?

3. Rate of approximation. In this section we present the following
results.

Theorem 9. Let f € C,[0,00), and suppose 0 < a < a; <by <b<
00. Then, for all n sufficiently large, we have

IBYA(f59) = £ Ollctan ) < MAwa (£, 0742, 0,0) + 07 £

)

Proof. For sufficiently small § > 0, we define a function f5 (%)
corresponding to f € C,[0, 00) by

52 5/2
fas(t) = 672 / / (F(8) — A2£(2)) dty dts,

—5/2J-5)2

where 1 = (t1 +t2)/2, t € [a,b], and A2f(t) is the second forward
difference of f with step length n. Following [3], see also [8, page 325],
it is easily checked that:

(i) f2,s has continuous derivatives up to order 2 on [a, b],
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(i0) 15 N tar,o) < MO~ ws(f, 8, a,b),
(iii) £ = fasllcfar b < Mws(f,6,a,b),
(i) 26l ctasin) < MUl Gtar s < M-
We can write
1BEL(f,0) = £l car,b)
<|IBUL(F = foss @)l ctanon) + 1BUA(F2.5:9) = £33l Cla

+ ||f(r) - fz(:s)HC[al,bl]
=: Hy + Hy + Hjs.

Since f2(:;) = (f")2.5(t), by property (iii) of the function f, 5, we get
Hs < Mw?(f(T)a(sv a, b)

Next, on an application of Theorem 5, it follows that

r4+2
Hy < Mo S 19 0tas ).

j=r

Using the interpolation property due to Goldberg and Meir [4], for each
j=r,r+1,r+ 2, it follows that

j r+2
||f2(,J($)HC[a17b1] <M {Hf2,5”C[a1,b1] + ||f2(,6+ )HC[al,bl]} .

Therefore, by applying properties (ii) and (iv) of the function f3 g,
we obtain

Hy < M {|Iflly + 6 2w2(f, 6,0,0)}.

Finally we shall estimate Hy, choosing a*, b* satisfying the conditions
0 <a<a*<a <b <b <b< co. Suppose ¢(t) denotes the
characteristic function of the interval [a*, b*], then

Hy <|[|IBULW @) (£(E) = f2,6(8), ) cla o]

+ IBEAL = 9O (f (1) — f2,5(1)), ®)l|0far ]
= H4 + H5.
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Using Lemma 8, it is clear that
B (0(8)(f(t) = f2,5(1)), z)

P(n/a+r)T(n/a—r)
ST W

x / e e (OB A (FO () — £I(1)) dt.

Hence,

IBEL @O () = F25(0)), ®)lIctas by < MIF = b
Next, for © € [a1,b1] and ¢ € [0,00) \ [a*,b*], we choose a §; > 0
satisfying |t — x| > §;.

Therefore, by Lemma 4 and the Cauchy-Schwarz inequality, we have

I=BIL((1 =) ()~ f25(t), )

and
fs 3w e S -
CL’ oz:c
2i+5<
;)jJZOT

[ baald@ SO0 - fas ) .
[t—z|>81

Thus, by property (ii) of f2 ¢, we have

1] < M fllcnn) 3 n an o kmv/ ke
t—x|>01

2i4j<r =
4,50

1/2
<M||f|‘76_2m Z anka |k_nm|]</ bnka >

2i4j<r =
y < / boeee(£) (£ — ) dt>
0

1,720
) oo ] 1/2
< M||fll60m S nl{zpn,k,m)(k—m)%}
k=0

2i+j<r
1,520

1/2

y { gjo Poa(®) /0 T bea ()t — 2)"m dt}l/z.
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Hence, by using Lemmas 1 and 2, we have
1] < M||f[|,6, " O(nEFE2=m) < M4 £,

where ¢ = m — (r/2). Now, choosing m > 0 satisfying ¢ > 1, we obtain
I < Mn~1||f]|,. Therefore, by property (iii) of the function f, 5(t), we
get

Hy < M||F") = {7l ofar by + Mn I £l

S MwZ(f(T)aévavb) +Mn71”f|||’)’

Finally, combining the estimates of H; — Hs, we get

HBr(::L(f: .) - f(T)(')HC[ahbﬂ < ng(f(r),(s, a, b)
+ Mn || flly + 6 Pwa (£, 6,a,b)}
+ Mw2(f(r)a67 a’vb) + Mn71|‘f|‘|’)’7

and choosing § = n~/2, we get the desired result. This completes the
proof of the theorem. i

4. Inverse theorem. This section is devoted to the following inverse
theorem in simultaneous approximation:

Theorem 10. Let 0 < 8 <2,0<a; <az <by <by <00, feC]
and f(t) = O(t7). Then in the following statements (i) = (ii)
(i) [1BS2(f,8) = FOOllctayon] = O(n™F/)
(i) f(") € Lip*(B, a2, bs).

Proof. Let us choose a’,a”,b',b" in such a way that a; < a’ < @’ <
az < by < b < b < by. Also, suppose g € C§° with suppg € [a”,b"]
and g(z) = 1 on the interval [az, b2]. For z € [a’,b'] with D = d/dx, we
have
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Using Leibniz’s formula, we have

w0 (0)lg() — g(@)] dt
_Z< )/ Wial 6Trfi[f<t)<g<t>—g<x>)]dt

_ —Z( )g“ (@) B, (1,2)

=0

Applying Theorem 9, we have

r—1

s=- 3 (1) @@ + 0 ),

=0

uniformly in z € [a’,b']. Applying Theorem 5, the Cauchy-Schwarz
inequality, Taylor’s expansions of f and g and Lemma 2, we are led to

= i: g(i)g'm()f(r—i)(m)r! N o(n_1/2)

2 — !
=3 (1) st 0w ot

uniformly in z € [a’,']. Again using Leibniz’s formula, we have

2

Ja=)_

=0

s |l

T
r
1
r
1
r
1

K2

i
> (
4

I
S

n=h/2)

)
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uniformly in = € [a’,b']. Combining the above estimates, we get
1B (fg,9) = (f9)™|otar s = O(n™#/2).

Thus, by Lemmas 4 and 6, we have (fg)(") € Llp*(ﬂ,a',b’) and also
g(z) = 1 on the interval [ag,bg] which proves that f(") € Lip*(8, ag, b2).
This completes the validity of the implication (i) = (ii) for the case
0 < B8 < 1. To prove the result for 1 < 8 < 2 for any interval
[a*,b*] C (a1,b1), let a},b5 be such that (ag,b2) C (a},b3) and
(a3,b3) C (af,b}). Let § > 0. We shall prove the assertion 8 < 2.
From the previous case this implies that f(") exists and belongs to
Lip (1 — d,af,b7). Let g € C3° be such that g(z) = 1 on [az, b2] and
supp g C (a3, b3). Then with X2(t) denoting the characteristic function
of the interval [a}, b}], we have

||Br(zr,2x(fga ‘) - (fg)(r)”C[a;,b;]
<D [Bn,a(g() (£ () = f()), o)l crag bz1
+ D" [Br,a(f()(g(t) = 9())s O)lllcrag 651
=: P+ Ps.

To estimate P;, by Theorem 9, we have

P1=||DT [Bralg()(f(8), )] = (£9)"lclaz 31

( >9(T D()BU(f,0) = (fg)”

Claj,b3]
( ) 9" = (f9)” +0(n™7%)
i= Claj,b3]
(n o).
Also by Leibniz’s formula and Theorem 5, have
~(r (r—i)
) (7)o" 0 Bualro

+BUL(F()(9() = 9(-)Xa(2), ») +0(n™)

Cla3,b5]

=:||Ps + Pullcrag b3 + O(n71).
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Then by Theorem 9, we have
r—1 7‘
- (r—i) (@) -B/2
P=3 (1) @0 + o),

=0

uniformly in z € [a,b3]. Applying Taylor’s expansion of f, we have
[ WD 0a0) - ol )a(0)
-y 5 / Wi, 0)(t - 2 (o(0) — o(a) d
/ ) UO =IO

7!
= g(@))x2(t) dt,

where £ lies between ¢ and x. Next by Theorem 9, the first term in the
above expression is given by

r

> (1) #0140,

m=0

uniformly in x € [a},b5]. Also by the mean value theorem and using
Lemma 4, we can obtain the second term as follows:

(r)
/W(T (z,1) (5) f ())(t )" (g(t) —g(x))Xa(t) dt|| craz bs]
< > oamt

‘Qm,sma |/ Wi.olz, bt w|5+7‘+1

2m+s<r 1 + 0423
m,s>0
FOE) — F) (&
o SO = TN ) e a
T Cla,b3]
= 0(n™%?),

choosing § such that 0 < § < 2 — 8. Combining the above estimates,
we get
1B (£9,0) = (£9) 7l cpag b = O(n™P/?).
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Since supp fg C (a3, b3), it follows from Lemmas 4 and 6 that (fg)™) €
Lip*(83, a%,b%). Since g(x) = 1 on [ag, by], we have f(") € Lip*(3, az, by).
This completes the proof of the theorem. o
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