GENERALIZED BASKAKOV-BETA OPERATORS

VIJAY GUPTA AND ALI ARAL

ABSTRACT. Very recently Wang [9] introduced the modified form of Baskakov-beta operators and obtained a Voronovskaja type asymptotic formula for these operators. We extend the study and here we estimate a direct result in terms of higher order modulus of continuity and an inverse theorem in simultaneous approximation for these new modified Baskakovbeta operators.

1. Introduction. For $f \in C_{\gamma}[0,\infty) \equiv \{f \in C[0,\infty) : f(t) = O(t^{\gamma})\}$ as $t \to \infty$ for some $\gamma > 0$ and $\alpha > 0$, Wang [9] introduced modified Baskakov-beta operators as

$$B_{n,\alpha}(f,x) = \sum_{k=0}^{\infty} p_{n,k,\alpha}(x) \int_0^{\infty} b_{n,k,\alpha}(t) f(t) dt = \int_0^{\infty} W_{n,\alpha}(x,t) f(t) dt$$

where

$$p_{n,k,\alpha}(x) = \frac{\Gamma(n/\alpha + k)}{\Gamma(k+1)\Gamma(n/\alpha)} \cdot \frac{(\alpha x)^k}{(1+\alpha x)^{(n/\alpha)+k}},$$
$$b_{n,k,\alpha}(t) = \frac{1}{B(n/\alpha, k+1)} \frac{\alpha(\alpha t)^k}{(1+\alpha t)^{n/\alpha+k+1}}$$

and

$$W_{n,\alpha}(x,t) = \sum_{k=0}^{\infty} p_{n,k,\alpha}(x) b_{n,k,\alpha}(t).$$

The norm- $||.||_{\gamma}$ on the class $C_{\gamma}[0,\infty)$ is defined as $||f||_{\gamma} = \sup_{0 < t < \infty}$ $|f(t)|t^{-\gamma}$.

As a special case $\alpha = 1$, the operators defined by (1) reduce to the well known Baskakov-beta operators [5]. Wang [9] recently obtained an asymptotic formula for the operators (1). In the present paper we

²⁰⁰⁰ AMS $\it Mathematics$ $\it subject$ $\it classification.$ Primary 41A30, 41A36. $\it Keywords$ and $\it phrases.$ Baskakov-beta operators, simultaneous approximation,

inverse theorem.

Received by the editors on November 13, 2006, and in revised form on April 19,

 $DOI: 10.1216 / RMJ - 2009 - 39 - 6 - 1933 \\ Copy right © 2009 Rocky Mountain Mathematics Consortium (Consortium Consortium (Consortium Consortium Consor$

establish an error estimation and inverse theorem in the simultaneous approximation for the unbounded functions of growth of the order t^{γ} . Also very recently Gupta [6] established some direct results for the generalized operators of Finta [2].

Throughout the present paper we denote by M the positive constant which has different meaning at each occurrence.

2. Basic results. In this section we mention certain lemmas which will be used in the sequel.

Lemma 1 [3]. For $m \in N \cup \{0\}$, if the mth order moment is defined as

$$U_{n,m,\alpha}(x) = \sum_{k=0}^{\infty} p_{n,k,\alpha}(x) \left(\frac{k}{n} - x\right)^m,$$

then $U_{n,0,\alpha}(x) = 1, U_{n,1,\alpha}(x) = 0$ and

$$nU_{n,m+1,\alpha}(x) = x(1+\alpha x)(U_{n,m,\alpha}^{(1)}(x) + mU_{n,m-1,\alpha}(x)).$$

Consequently, we have $U_{n,m,\alpha}(x) = O(n^{-[(m+1)/2]})$.

Lemma 2. Let the function $T_{n,m,\alpha}(x)$, $m \in N \cup \{0\}$, be defined as

$$T_{n,m,\alpha}(x) = B_{n,\alpha}((t-x)^m, x) = \sum_{k=0}^{\infty} p_{n,k,\alpha}(x) \int_0^{\infty} b_{n,k,\alpha}(t) (t-x)^m dt.$$

Then

$$T_{n,0,\alpha}(x) = 1,$$

 $T_{n,1,\alpha} = (1 + \alpha x)/(n - \alpha),$
 $T_{n,2,\alpha}(x) = (2\alpha(n + \alpha)x^2 + 2(n + 2\alpha)x + 2)/((n - \alpha)(n - 2\alpha)),$

and for $n > (m+1)\alpha$, the following recurrence relation holds

$$[n - (m+1)\alpha]T_{n,m+1,\alpha}(x)$$

$$= x(1+\alpha x) \lfloor T_{n,m,\alpha}^{(1)}(x) + 2mT_{n,m-1,\alpha}(x) \rfloor + [(m+1)(1+2\alpha x) - \alpha x]T_{n,m,\alpha}(x).$$

Corollary 3. Let δ be a positive number and $s=1,2,3,\ldots$. Then, for every $\gamma>0$ and $x\in(0,\infty)$, there exists a constant M(s,x) independent of n and dependent on s and x such that

$$\left\| \int_{|t-x|>\delta} W_{n,\alpha}(x,t)t^{\gamma} dt \right\|_{C[a,b]} \le M(s,x)n^{-s}.$$

Lemma 4. There exist the polynomials $Q_{i,j,r,\alpha}(x)$ of degree at most r in x and independent of n and k such that

$$\{x(1+\alpha x)\}^{r} D^{r} [p_{n,k,\alpha}(x)] = \sum_{\substack{2i+j \le r \\ i,j \ge 0}} n^{i} (k-nx)^{j} Q_{i,j,r,\alpha}(x) p_{n,k,\alpha}(x),$$

where $D \equiv d/(dx)$.

Proof. By simple computation, it is easily verified that $x(1 + \alpha x)p_{n,k,\alpha}^{(1)}(x) = (k - nx)p_{n,k,\alpha}(x)$. In order to prove the result, we assume that the result is true for r = m; we can easily prove that it is also true for r = m + 1. Thus, by the principle of mathematical induction, the lemma follows. \Box

By C_0 , we denote the class of continuous functions on the interval $(0,\infty)$ having a compact support, and C_0^r is the class of r-times continuously differentiable functions with $C_0^r \subset C_0$. The function f is said to belong to the generalized Zygmund class Liz (β, k, a, b) , if there exists a constant M such that $\omega_{2k}(f,\delta) \leq M\delta^{\beta k}$, $\delta > 0$, where $\omega_{2k}(f,\delta)$ denotes the modulus of continuity of 2kth order on the interval [a,b]. The class Liz $(\beta,1,a,b)$ is more commonly denoted by Lip* (β,a,b) . Suppose $G^{(r)} = \{g : g \in C_0^{r+2}, \text{ supp } g \subset [a',b'] \text{ where } [a',b'] \subset (a,b)\}$. For r times continuously differentiable functions f with supp $f \subset [a',b']$, the Peetre's K-functional is defined as

$$K_{r}(\xi, f) = \inf_{g \in G^{(r)}} [||f^{(r)} - g^{(r)}||_{C[a',b']} + \xi\{||g^{(r)}||_{C[a',b']} + ||g^{(r+2)}||_{C[a',b']}\}],$$

$$0 < \xi \leq 1.$$

For $0 < \beta < 2$, $C_0^r(\beta, a, b)$ denotes the set of functions for which

$$\sup_{0<\xi\leq 1}\xi^{-\beta/2}K_r(\xi,f)< M.$$

Theorem 5 [9]. Let $f \in C_{\gamma}[0,\infty)$. If $f^{(r+2)}$ exists at a point $x \in (0,\infty)$, then

$$\lim_{n\to\infty} n[B_{n,\alpha}^{(r)}(f,x) - f^{(r)}(x)]$$

$$= \alpha r^2 f^{(r)}(x) + [(1+r) + \alpha x(1+2r)]f^{(r+1)}(x) + x(1+\alpha x)f^{(r+2)}(x).$$

Further if $f^{(r+2)}$ exists and is continuous on $(a-\eta,b+\eta)\subseteq [0,\infty), \eta>0$, then the above limit holds uniformly on [a,b].

Lemma 6. Let $0 < \beta < 2$, $0 < a < a' < a'' < b'' < b' < b < \infty$. If $f \in C_0^r$ with supp $f \subset [a'', b'']$, $|f(t)| \leq Mt^{\gamma}$ for some M > 0, $\gamma > 0$ and $||B_{n,\alpha}^{(r)}(f,.) - f^{(r)}||_{C[a,b]} = O(n^{-\beta/2})$, then

$$K_r(\xi, f) \le M\{n^{-\beta/2} + n\xi K_r(n^{-1}, f)\}.$$

Consequently, $K_r(\xi, f) \leq M \xi^{\beta/2}$, M > 0.

Proof. It is sufficient to prove

$$K_r(\xi, f) \le M\{n^{-\beta/2} + n\xi K_r(n^{-1}, f)\},\$$

for sufficiently large n. Since supp $f \subset [a'', b'']$, there is an $h \in G^{(r)}$ (see also [8]), such that

$$||B_{n,\alpha}^{(i)}(f,\bullet) - h^{(i)}||_{C[a',b']} \le Mn^{-1}, \quad i = r, \quad r+2.$$

Therefore,

$$K_r(\xi, f) \le 3Mn^{-1} + ||B_{n,\alpha}^{(r)}(f, \bullet) - f^{(r)}||_{C[a',b']}$$

+ $\xi \left\{ ||B_{n,\alpha}^{(r)}(f, \bullet)||_{C[a',b']} + ||B_{n,\alpha}^{(r+2)}(f, \bullet)||_{C[a',b']} \right\}.$

Next, it is sufficient to show that there exists an absolute constant M such that, for each $g \in G^{(r)}$,

$$||B_{n,\alpha}^{(r)}(f,\bullet)||_{C[a',b']} \le M.n\{||f^{(r)} - g^{(r)}||_{C[a',b']} + n^{-1}||g^{(r+2)}||_{C[a',b']}\}.$$

By the linearity property, we have

$$(3) \\ ||B_{n,\alpha}^{(r+2)}(f,\bullet)||_{C[a',b']} \le ||B_{n,\alpha}^{(r+2)}(f-g,\bullet)||_{C[a',b']} + ||B_{n,\alpha}^{(r+2)}(g,\bullet)||_{C[a',b']}.$$

Applying Lemma 4, we get

$$\int_0^\infty \left| \frac{\partial^{r+2}}{\partial x^{r+2}} W_{n,\alpha}(x,t) \right| dt$$

$$\leq \sum_{\substack{2i+j \leq r+2 \\ i,j \geq 0}} \sum_{k=0}^\infty n^i |k - nx|^j \frac{|Q_{i,j,r,\alpha}(x)|}{\{x(1+\alpha x)\}^{r+2}} p_{n,k,\alpha}(x) \int_0^\infty b_{n,k,\alpha}(t) dt.$$

Therefore, by the Cauchy-Schwarz inequality and Lemma 1, we obtain

(4)
$$||B_{n,\alpha}^{(r)}(f-g,\bullet)||_{C[a',b']} \le M.n||f^{(r)}-g^{(r)}||_{C[a',b']},$$

where the above constant M is independent of f and g. By Taylor's expansion, we have

$$g(t) = \sum_{i=0}^{r+1} \frac{g^{(i)}(x)}{i!} (t-x)^i + \frac{g^{(r+2)}(\xi)}{(r+2)!} (t-x)^{r+2},$$

where ξ lies between t and x. Using the above expansion we get

(5)
$$||B_{n,\alpha}^{(r+2)}(g,\bullet)||_{C[a',b']}$$

$$\leq M||g^{(r+2)}||_{C[a',b']} \cdot \left\| \frac{\partial^{r+2}}{\partial x^{r+2}} W_{n,\alpha}(x,t)(t-x)^{r+2} dt \right|_{C[a',b']}.$$

Also by Lemma 4 and the Cauchy-Schwarz inequality, we have

(6)
$$||B_{n,\alpha}^{(r+2)}(g,\bullet)||_{C[a',b']} \le M ||g^{(r+2)}||_{C[a',b']}.$$

Combining the estimates of (3)–(6), we get (2). The other consequence follows from [1]. This completes the proof of the lemma. \Box

Lemma 7. Let $0 < \beta < 2$, $0 < a' < a'' < b'' < b' < b < \infty$ and $f^{(r)} \in C_0$ with supp $f \subset [a'', b'']$ and, if $f \in C_0^r(\beta, a', b')$, then we have $f^{(r)} \in \text{Lip}^*(\beta, a', b')$.

Proof. Let $g \in G^{(r)}$ and $|h| < \delta$. Then, for $f \in C_0^r(\beta, 1, a', b')$, we have

$$\begin{split} |\triangle_h^2 f^{(r)}(x)| &\leq |\triangle_h^2 (f^{(r)} - g^{(r)})(x)| + |\triangle_h^2 g^{(r)}(x)| \\ &\leq 2^2 ||f^{(r)} - g^{(r)}||_{C[a',b']} + h^2 ||g^{(r+2)}||_{C[a',b']} \\ &\leq M K_r(h^2, f) \leq M h^\beta, \end{split}$$

which implies that

$$\omega_2(f^{(r)}, \delta) = \sup_{|h| < \delta} |\triangle_h^2 f^{(r)}(x)| \le M \delta^{\beta}.$$

Thus, $f^{(r)} \in \operatorname{Lip}^*(\beta, a', b')$, which completes the proof of the lemma (see [7] also). \square

Lemma 8. If f is r times differentiable on $[0,\infty)$, such that $f^{(r-1)} = O(t^{\gamma}), \ \gamma > 0$ as $t \to \infty$, then for $r = 1, 2, 3, \ldots$ and $n > \gamma + r$ we have

$$B_{n,\alpha}^{(r)}(f,x) = \frac{\Gamma(n/\alpha + r)\Gamma(n/\alpha - r)}{(\Gamma(n/\alpha))^2} \sum_{k=0}^{\infty} p_{n+\alpha r,k,\alpha}(x) \int_0^{\infty} b_{n-\alpha r,k+r,\alpha}(t) f^{(r)}(t) dt.$$

3. Rate of approximation. In this section we present the following results.

Theorem 9. Let $f \in C_{\gamma}[0, \infty)$, and suppose $0 < a < a_1 < b_1 < b < \infty$. Then, for all n sufficiently large, we have

$$\|B_{n,\alpha}^{(r)}(f,\bullet)-f^{(r)}(.)\|_{C[a_1,b_1]}\leq M.\big\{\omega_2(f^{(r)},n^{-1/2},a,b)+n^{-1}\|f\|_{\gamma}\big\}.$$

Proof. For sufficiently small $\delta > 0$, we define a function $f_{2,\delta}(t)$ corresponding to $f \in C_{\gamma}[0,\infty)$ by

$$f_{2,\delta}(t) = \delta^{-2} \int_{-\delta/2}^{\delta/2} \int_{-\delta/2}^{\delta/2} \left(f(t) - \Delta_{\eta}^2 f(t) \right) dt_1 dt_2,$$

where $\eta = (t_1 + t_2)/2$, $t \in [a, b]$, and $\Delta_{\eta}^2 f(t)$ is the second forward difference of f with step length η . Following [3], see also [8, page 325], it is easily checked that:

(i) $f_{2,\delta}$ has continuous derivatives up to order 2 on [a,b],

(ii)
$$||f_{2,\delta}^{(r)}||_{C[a_1,b_1]} \le M\delta^{-r}\omega_2(f,\delta,a,b),$$

(iii)
$$||f - f_{2,\delta}||_{C[a_1,b_1]} \le M\omega_2(f,\delta,a,b),$$

(iv)
$$||f_{2,\delta}||_{C[a_1,b_1]} \leq M||f||_{C[a_1,b_1]} \leq M||f||_{\gamma}$$
.

We can write

$$\begin{aligned} |||B_{n,\alpha}^{(r)}(f,\bullet) - f^{(r)}||_{C[a_1,b_1]} \\ &\leq ||B_{n,\alpha}^{(r)}(f - f_{2,\delta},\bullet)||_{C[a_1,b_1]} + ||B_{n,\alpha}^{(r)}(f_{2,\delta},\bullet) - f_{2,\delta}^{(r)}||_{C[a_1,b_1]} \\ &+ ||f^{(r)} - f_{2,\delta}^{(r)}||_{C[a_1,b_1]} \\ &=: H_1 + H_2 + H_3. \end{aligned}$$

Since $f_{2,\delta}^{(r)}=(f^{(r)})_{2,\delta}(t)$, by property (iii) of the function $f_{2,\delta}$, we get

$$H_3 \leq M\omega_2(f^{(r)}, \delta, a, b).$$

Next, on an application of Theorem 5, it follows that

$$H_2 \le M n^{-1} \sum_{j=r}^{r+2} \|f_{2,\delta}^{(j)}\|_{C[a_1,b_1]}.$$

Using the interpolation property due to Goldberg and Meir [4], for each j = r, r + 1, r + 2, it follows that

$$||f_{2,\delta}^{(j)}||_{C[a_1,b_1]} \leq M \left\{ ||f_{2,\delta}||_{C[a_1,b_1]} + ||f_{2,\delta}^{(r+2)}||_{C[a_1,b_1]} \right\}.$$

Therefore, by applying properties (ii) and (iv) of the function $f_{2,\delta}$, we obtain

$$H_2 \le M.n^{-1}\{||f||_{\gamma} + \delta^{-2}\omega_2(f^{(r)}, \delta, a, b)\}.$$

Finally we shall estimate H_1 , choosing a^*, b^* satisfying the conditions $0 < a < a^* < a_1 < b_1 < b^* < b < \infty$. Suppose $\psi(t)$ denotes the characteristic function of the interval $[a^*, b^*]$, then

$$H_{1} \leq \|B_{n,\alpha}^{(r)}(\psi(t)(f(t) - f_{2,\delta}(t)), \bullet)\|_{C[a_{1},b_{1}]} + \|B_{n,\alpha}^{(r)}((1 - \psi(t))(f(t) - f_{2,\delta}(t)), \bullet)\|_{C[a_{1},b_{1}]} =: H_{4} + H_{5}.$$

Using Lemma 8, it is clear that

$$\begin{split} B_{n,\alpha}^{(r)} \big(\psi(t)(f(t) - f_{2,\delta}(t)), x \big) \\ &= \frac{\Gamma(n/\alpha + r)\Gamma(n/\alpha - r)}{\Gamma(n/\alpha))^2} \sum_{k=0}^{\infty} p_{n+\alpha r, k, \alpha}(x) \\ &\times \int_{0}^{\infty} b_{n-\alpha r, k+r, \alpha}(t) \psi(t)(f^{(r)}(t) - f_{2,\delta}^{(r)}(t)) dt. \end{split}$$

Hence,

$$||B_{n,\alpha}^{(r)}(\psi(t)(f(t)-f_{2,\delta}(t)),\bullet)||_{C[a_1,b_1]} \leq M||f^{(r)}-f_{2,\delta}^{(r)}||_{C[a^*,b^*]}.$$

Next, for $x \in [a_1,b_1]$ and $t \in [0,\infty) \setminus [a^*,b^*]$, we choose a $\delta_1 > 0$ satisfying $|t-x| > \delta_1$.

Therefore, by Lemma 4 and the Cauchy-Schwarz inequality, we have $I \equiv B_{n,\alpha}^{(r)}((1-\psi(t))(f(t)-f_{2,\delta}(t),x)$

$$|I| \leq \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \frac{|Q_{i,j,r,\alpha}(x)|}{\{x(1+\alpha x)\}^{r}} \sum_{k=0}^{\infty} p_{n,k,\alpha}(x)|k - nx|^{j}$$

$$\times \int_{|t-x| > \delta_{1}} b_{n,k,\alpha}(t)(1 - \psi(t))|f(t) - f_{2,\delta}(t)| dt.$$

Thus, by property (ii) of $f_{2,\delta}$, we have

$$|I| \leq M||f||_{C[a_{1},b_{1}]} \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \sum_{k=0}^{\infty} p_{n,k,\alpha}(x)|k - nx|^{j} \int_{|t-x| \geq \delta_{1}} b_{n,k,\alpha}(t) dt$$

$$\leq M||f||_{\gamma} \delta_{1}^{-2m} \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \sum_{k=0}^{\infty} p_{n,k,\alpha}(x)|k - nx|^{j} \left(\int_{0}^{\infty} b_{n,k,\alpha}(t) dt\right)^{1/2}$$

$$\times \left(\int_{0}^{\infty} b_{n,k,\alpha}(t)(t-x)^{4m} dt\right)^{1/2}$$

$$\leq M||f||_{\gamma} \delta_{1}^{-2m} \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \left\{\sum_{k=0}^{\infty} p_{n,k,\alpha}(x)(k - nx)^{2j}\right\}^{1/2}$$

$$\times \left\{\sum_{k=0}^{\infty} p_{n,k,\alpha}(x) \int_{0}^{\infty} b_{n,k,\alpha}(t)(t-x)^{4m} dt\right\}^{1/2}.$$

Hence, by using Lemmas 1 and 2, we have

$$|I| \le M||f||_{\gamma} \delta_1^{-2m} O(n^{(i+(j/2)-m)}) \le Mn^{-q}||f||_{\gamma},$$

where q = m - (r/2). Now, choosing m > 0 satisfying $q \ge 1$, we obtain $I \le M n^{-1} ||f||_{\gamma}$. Therefore, by property (iii) of the function $f_{2,\delta}(t)$, we get

$$H_1 \leq M||f^{(r)} - f_{2,\delta}^{(r)}||_{C[a^*,b^*]} + Mn^{-1}||f||_{\gamma}$$

$$\leq M\omega_2(f^{(r)}, \delta, a, b) + Mn^{-1}||f||_{\gamma}.$$

Finally, combining the estimates of $H_1 - H_3$, we get

$$||B_{n,\alpha}^{(r)}(f,\bullet) - f^{(r)}(.)||_{C[a_1,b_1]} \le M\omega_2(f^{(r)},\delta,a,b) + Mn^{-1}\{||f||_{\gamma} + \delta^{-2}\omega_2(f^{(r)},\delta,a,b)\} + M\omega_2(f^{(r)},\delta,a,b) + Mn^{-1}||f|||_{\gamma},$$

and choosing $\delta = n^{-1/2}$, we get the desired result. This completes the proof of the theorem. \Box

4. Inverse theorem. This section is devoted to the following inverse theorem in simultaneous approximation:

Theorem 10. Let $0 < \beta < 2$, $0 < a_1 < a_2 < b_2 < b_1 < \infty$, $f \in C_0^r$ and $f(t) = O(t^{\gamma})$. Then in the following statements (i) \Rightarrow (ii)

(i)
$$||B_{n,\alpha}^{(r)}(f,\bullet) - f^{(r)}(.)||_{C[a_1,b_1]} = O(n^{-\beta/2})$$

(ii)
$$f^{(r)} \in \text{Lip}^*(\beta, a_2, b_2)$$
.

Proof. Let us choose a', a'', b', b'' in such a way that $a_1 < a' < a'' < a_2 < b_2 < b'' < b' < b_1$. Also, suppose $g \in C_0^{\infty}$ with supp $g \in [a'', b'']$ and g(x) = 1 on the interval $[a_2, b_2]$. For $x \in [a', b']$ with $D \equiv d/dx$, we have

$$B_{n,\alpha}^{(r)}(fg,x) - (fg)^{(r)}(x) = D^r(B_{n,\alpha}((fg)(t) - (fg)(x)), x)$$

$$= D^r(B_{n,\alpha}(f(t)(g(t) - g(x)), x))$$

$$+ D^r(B_{n,\alpha}(g(x)(f(t) - f(x)), x))$$

$$=: J_1 + J_2.$$

Using Leibniz's formula, we have

$$\begin{split} J_1 &= \frac{d^r}{dx^r} \int_0^\infty W_{n,\alpha}(x,t) f(t) [g(t) - g(x)] \, dt \\ &= \sum_{i=0}^r \binom{r}{i} \int_0^\infty W_{n,\alpha}^{(i)}(x,t) \frac{\partial^{r-i}}{\partial x^{r-i}} [f(t) (g(t) - g(x))] \, dt \\ &= -\sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) B_{n,\alpha}^{(i)}(f,x) \\ &+ \int_0^\infty W_{n,\alpha}^{(r)}(x,t) f(t) (g(t) - g(x)) \, dt \\ &=: J_3 + J_4. \end{split}$$

Applying Theorem 9, we have

$$J_3 = -\sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) f^{(i)}(x) + O(n^{-\beta/2}),$$

uniformly in $x \in [a', b']$. Applying Theorem 5, the Cauchy-Schwarz inequality, Taylor's expansions of f and g and Lemma 2, we are led to

$$J_4 = \sum_{i=0}^r \frac{g^{(i)}(x)f^{(r-i)}(x)}{i!(r-i)!}r! + o(n^{-1/2})$$
$$= \sum_{i=0}^r \binom{r}{i} g^{(i)}(x)f^{(r-i)}(x) + o(n^{-\beta/2}),$$

uniformly in $x \in [a', b']$. Again using Leibniz's formula, we have

$$\begin{split} J_2 &= \sum_{i=0}^r \binom{r}{i} \int_0^\infty W_{n,\alpha}^{(i)}(x,t) \frac{\partial^{r-i}}{\partial x^{r-i}} [g(t)(f(t) - f(x))] \, dt \\ &= \sum_{i=0}^r \binom{r}{i} g^{(r-i)}(x) B_{n\alpha}^{(i)}(f,x) - (fg)^{(r)}(x) \\ &= \sum_{i=0}^r \binom{r}{i} g^{(r-i)}(x) f^{(i)}(x) - (fg)^{(r)}(x) + o(n^{-\beta/2}) \\ &= O(n^{-\beta/2}), \end{split}$$

uniformly in $x \in [a', b']$. Combining the above estimates, we get

$$||B_{n,\alpha}^{(r)}(fg, \bullet) - (fg)^{(r)}||_{C[a',b']} = O(n^{-\beta/2}).$$

Thus, by Lemmas 4 and 6, we have $(fg)^{(r)} \in \text{Lip}^*(\beta, a', b')$ and also g(x) = 1 on the interval $[a_2, b_2]$, which proves that $f^{(r)} \in \text{Lip}^*(\beta, a_2, b_2)$. This completes the validity of the implication (i) \Rightarrow (ii) for the case $0 < \beta \le 1$. To prove the result for $1 < \beta < 2$ for any interval $[a^*, b^*] \subset (a_1, b_1)$, let a_2^*, b_2^* be such that $(a_2, b_2) \subset (a_2^*, b_2^*)$ and $(a_2^*, b_2^*) \subset (a_1^*, b_1^*)$. Let $\delta > 0$. We shall prove the assertion $\beta < 2$. From the previous case this implies that $f^{(r)}$ exists and belongs to $\text{Lip}(1 - \delta, a_1^*, b_1^*)$. Let $g \in C_0^{\infty}$ be such that g(x) = 1 on $[a_2, b_2]$ and $\sup g \subset (a_2^*, b_2^*)$. Then with $\chi_2(t)$ denoting the characteristic function of the interval $[a_1^*, b_1^*]$, we have

$$||B_{n,\alpha}^{(r)}(fg, \bullet) - (fg)^{(r)}||_{C[a_2^*, b_2^*]} \le ||D^r[B_{n,\alpha}(g(.)(f(t) - f(.)), \bullet)]||_{C[a_2^*, b_2^*]} + ||D^r[B_{n,\alpha}(f(t)(g(t) - g(.)), \bullet)]||_{C[a_2^*, b_2^*]} =: P_1 + P_2.$$

To estimate P_1 , by Theorem 9, we have

$$P_{1} = ||D^{r}[B_{n,\alpha}(g(.)(f(t), \bullet)] - (fg)^{(r)}||_{C[a_{2}^{*}, b_{2}^{*}]}$$

$$= \left\| \sum_{i=0}^{r} {r \choose i} g^{(r-i)}(.) B_{n,\alpha}^{(i)}(f, \bullet) - (fg)^{(r)} \right\|_{C[a_{2}^{*}, b_{2}^{*}]}$$

$$= \left\| \sum_{i=0}^{r} {r \choose i} g^{(r-i)}(.) f^{(i)} - (fg)^{(r)} \right\|_{C[a_{2}^{*}, b_{2}^{*}]} + O(n^{-\beta/2})$$

$$= O(n^{-\beta/2}).$$

Also by Leibniz's formula and Theorem 5, have

$$P_{2} \leq \left\| \sum_{i=0}^{r} {r \choose i} g^{(r-i)}(.) B_{n,\alpha}(f, \bullet) + B_{n,\alpha}^{(r)}(f(t)(g(t) - g(.)) \chi_{2}(t), \bullet) \right\|_{C[a_{2}^{*}, b_{2}^{*}]} + O(n^{-1})$$

$$=: \|P_{3} + P_{4}\|_{C[a_{2}^{*}, b_{2}^{*}]} + O(n^{-1}).$$

Then by Theorem 9, we have

$$P_3 = \sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) f^{(i)}(x) + O(n^{-\beta/2}),$$

uniformly in $x \in [a_2^*, b_2^*]$. Applying Taylor's expansion of f, we have

$$P_{4} = \int_{i=0}^{\infty} W_{n,\alpha}^{(r)}(x,t) [f(t)(g(t) - g(x))\chi_{2}(t) dt$$

$$= \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \int_{0}^{\infty} W_{n,\alpha}^{(r)}(x,t) (t-x)^{i} (g(t) - g(x)) dt$$

$$+ \int_{0}^{\infty} W_{n,\alpha}^{(r)}(x,t) \frac{(f^{(r)}(\xi) - f^{(r)}(x))}{r!} (t-x)^{r} (g(t) - g(x)) \chi_{2}(t) dt,$$

where ξ lies between t and x. Next by Theorem 9, the first term in the above expression is given by

$$\sum_{m=0}^{r} \binom{r}{m} g^{(m)} f^{(r-m)}(x) + O(n^{-\beta/2}),$$

uniformly in $x \in [a_2^*, b_2^*]$. Also by the mean value theorem and using Lemma 4, we can obtain the second term as follows:

$$\left\| \int_{0}^{\infty} W_{n,\alpha}^{(r)}(x,t) \frac{(f^{(r)}(\xi) - f^{(r)}(x))}{r!} (t-x)^{r} (g(t) - g(x)) \chi_{2}(t) dt \right\|_{C[a_{2}^{*},b_{2}^{*}]}$$

$$\leq \sum_{\substack{2m+s \leq r \\ m,s \geq 0}} n^{m+s} \left\| \frac{|Q_{m,s,r,\alpha}(x)|}{x(1+\alpha x)}^{r} \int_{0}^{\infty} W_{n,\alpha}(x,t) |t-x|^{\delta+r+1} \right\|_{C[a_{2}^{*},b_{2}^{*}]}$$

$$\times \left. \frac{|f^{(r)}(\xi) - f^{(r)}(x)|}{r!} |g'(\eta)| \chi_2(t) \, dt \right\|_{C[a_2^*, b_2^*]}$$

$$= O(n^{-\delta/2}),$$

choosing δ such that $0 \le \delta \le 2 - \beta$. Combining the above estimates, we get

$$||B_{n,\alpha}^{(r)}(fg,\bullet)-(fg)^{(r)}||_{C[a_2^*,b_2^*]}=O(n^{-\beta/2}).$$

Since supp $fg \subset (a_2^*, b_2^*)$, it follows from Lemmas 4 and 6 that $(fg)^{(r)} \in \text{Lip}^*(\beta, a_2^*, b_2^*)$. Since g(x) = 1 on $[a_2, b_2]$, we have $f^{(r)} \in \text{Lip}^*(\beta, a_2, b_2)$. This completes the proof of the theorem. \square

Acknowledgments. The authors are extremely thankful to the referee for the valuable suggestions and the critical review, leading to the better presentation of the paper.

REFERENCES

- 1. H. Berens and G.G. Lorentz, Inverse theorem for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.
- 2. Z. Finta, On converse approximation theorems, J. Math. Anal. Appl. 312 (2005), 159-180.
- 3. G. Freud and V. Popov, On approximation by Spline functions, Proc. Conference on Constructive Theory Functions, Budapest, 1969.
- 4. S. Goldberg and V. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. 23 (1971), 1–15.
- 5. V. Gupta, A note on modified Baskakov type operators, Approximation Theory Appl. 10 (1994), 74–78.
- 6. ——, Approximation for modified Baskakov Durrmeyer type operators, Rocky Mountain J. Math. 39 (2009), 825–841.
- 7. V. Gupta and P.N. Agrawal, Inverse theorem in simultaneous approximation by Szasz Durrmeyer operators, J. Indian Math. Soc. 63 (1997), 99–113.
 - 8. C.P. May, On Phillips operator, J. Approx. Theory 20 (1977), 315-332.
- 9. Li Wang, The Voronovskaja type expansion formula of the modified Baskakov-Beta operators, J. Baoji University of Arts and Science (Natural Science Edition) 25 (2005), 94–97, 479–492.

SCHOOL OF APPLIED SCIENCES, NETAJI SUBHAS INSTITUTE OF TECHNOLOGY, SECTOR 3 DWARKA, NEW DELHI 110078, INDIA Email address: vijay@nsit.ac.in

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, KIRIKKALE UNIVERSITY, KIRIKKALE, TURKEY

Email address: aral@science.ankara.edu.tr