A NEW APPROACH TO THE STUDY OF HARRIS TYPE MARKOV OPERATORS

SHAUL R FOGUEL

Harris operators are generalizations of Markov matrices. It is our purpose to present an elementary discussion of the theory of Harris operators. In Chapter 1 we introduce most of the results about Markov operators to be used later. In Chapter 2 we study Orey's Lemma. And in the rest of the paper we use Orey's Lemma to give elementary proofs of Harris' Theorem, Ornstein-Metivier-Brunel Theorem, Doeblin's theorem, and Pointwise Convergence of uP^n .

1. Introduction. We shall use the definitions and notation of [3] and [4].

Recall that if λ is σ finite measure on (X, Σ) , then a Markov operator, P, is a linear operator on $L_{\infty}(X, \Sigma, \lambda)$ satisfying

$$P1 \le 1$$
; $f \ge 0 \Rightarrow Pf \ge 0$; $f_n \downarrow 0 \Rightarrow Pf_n \to 0$

All inequalities, here and elsewhere are in the a.e. sense. Denote $\langle u, f \rangle = \int u f d\lambda$; $u \in L_1$ and $f \in L_{\infty}$. The dual operator acts on L_1 by $\langle uP, f \rangle = \langle u, Pf \rangle$; $u \in L_1$ and $f \in L_{\infty}$.

We may extend P, by monotone continuity, so that Pf and uP are defined for all non-negative measurable functions [3, Chapter I].

THEOREM 1.1. Let P be conservative and ergodic. Then:

- (1) P1 = 1.
- (2) $f \ge 0, Pf \le f \Rightarrow f = \text{Const}$.
- (3) $f \ge 0$, $f \ne 0 \Rightarrow \Sigma P^n f \equiv \infty$.
- (4) $u \ge 0$, $u \ne 0 \Rightarrow \sum u P^n \equiv \infty$.

Received by the editors on June 2, 1986 and in revised form on November 14, 1986.

(5) There is at most one function, up to a multiplicative constant, such that

$$0 \le u(x) < \infty, \quad uP = u.$$

If $u \neq 0$, then u(x) > 0.

Elementary proofs for (1)-(4) are given in [4, Chapter II] and for (5) in [3; Chapter VI, Theorem A].

An integral kernel is an operator of the form

$$Kf(x) = \int k(x,y)f(y)\lambda(dy)$$

where $k \geq 0$ is $\Sigma \times \Sigma$ measurable and $K1 \leq 1$.

We shall use "The Harris Decomposition" [3; Chapter V]: $P^n = Q_n + R_n, Q_n \ge 0, R_n \ge 0$ and Q_n is the largest integral kernel bounded by P^n .

DEFINITION. P is a Harris operator provided:

- (a) P is conservative and ergodic.
- (b) $Q_i \neq 0$ for some integer j.
- **2. Orey's Lemma.** Let h, w be non-negative and non-trivial functions.

Denote the integral kernel of h(x)w(y) by $h \otimes w$, thus:

$$(h \otimes w)f = \langle w, f \rangle h.$$

$$u(h \otimes w) = \langle u, h \rangle w.$$

Note also that

$$P(h \otimes w) = (Ph) \otimes w$$
$$(h \otimes w)P = h \otimes (wP).$$

Orey proved the following theorem [13, Theorem 2.1].

THEOREM 2.1. Let P be Harris. If Σ is separable, then $P^r \geq h \otimes w$ for some integer r and non-negative non-trivial functions h and w.

Conjecture. Separability of Σ is not necessary.

We shall prove two versions of Orey's Lemma where Σ is not assumed to be separable.

Lemma 2.2. Let P be Harris, then

$$\sum_{n=1}^{\infty} q_n(x, y) = \infty \text{ a.e. } \lambda^2.$$

PROOF. By [3: Chapter V, Equation (5.5)],

$$Q_{j+n} \geq P^n Q_j$$
.

Hence

$$\sum_{n=1}^{\infty} Q_{j+n} 1 \ge \sum_{n=1}^{\infty} P^n(Q_j 1) \equiv \infty.$$

Choose Y with $\lambda(Y)=0$ such that, if $x \in Y$, then $q_m(x,\cdot)\neq 0$ for some m. Now

$$q_{n+m}(x,y) \ge [q_m(x,\cdot)P^n](y)$$

by [4, p. 298].

Thus, if $x \in Y$, then

$$\sum_{n=1}^{\infty} q_n(x,y) \ge \sum_{n=1}^{\infty} q_{n+m}(x,y) \ge \sum_{n=1}^{\infty} [q_m(x,\cdot)P^n](y) = \infty$$

for almost all y, by Theorem 1.1. \square

LEMMA 2.3. Let $s_n(x,y) \ge 0$ be $\Sigma \times \Sigma$ measurable. If $s_n \uparrow s < 0$ a.e. λ^2 , then there exists an integer n, a positive constant ε , and two sets f and G, of positive measure such that

$$\int s_n(x,z)s_n(z,y)\lambda(dz) \ge \varepsilon 1_F(x)1_G(y).$$

PROOF. Let $\lambda_1 \sim \lambda$ with $\lambda_1(X) = 1$. Put:

$$\varphi_n(x) = \lambda_1(\{z : s_n(x, z) \ge 1/n\}),
\psi_n(y) = \lambda_1(\{z : s_n(z, y) \ge 1/n\}).$$

Then $0 \le \phi_n(x), \psi_n(y) \le 1$. Also,

$$\int \phi_n(x)\lambda_1(dx) \to 1 \text{ and } \int \psi_n(y)\lambda_1(dy) \to 1.$$

Thus $\phi_n(x) \uparrow 1, \psi_n(y) \uparrow 1$ a.e. λ_1 , hence a.e. λ .

Given $\delta > 1/2$ find n such that, if

$$F = \{x : \varphi_n(x) \ge \delta\}$$
 and $G = \{y : \psi_n(y) \ge \delta\}$,

then $\lambda(F) > 0, \lambda(G) > 0$.

Then we may find $\varepsilon > 0$ with

$$\int s_n(x,z)s_n(z,y)\lambda(dz) \ge \varepsilon$$

provided that, for $x \in F, y \in G$,

$$\lambda_1(\{z: s_n(x, z) < 1/n\}) < 1 - \delta$$

 $\lambda_1(\{z: s_n(z, y) < 1/n\}) < 1 - \delta$

Hence

$$\lambda_1(\{z: s_n(x, z) \ge 1/n\} \cap \{z: s_n(z, y) \ge 1/n\})$$

> 1 - (2 - 2\delta) = 2\delta - 1.

Thus

$$\lambda(\{z: s_n(x, z) \ge 1/n\} \cap \{z: s_n(z, y) \ge 1/n\}) = \varepsilon' > 0.$$

Put $\varepsilon = \varepsilon'/n^2$. \square

The above argument was used in [12].

THEOREM 2.4. Let P be Harris. There exists an integer N and two non-negative non-trivial functions h, w, such that

$$1/N\sum_{k=1}^{N}P^{k}\geq h\otimes w.$$

PROOF. Let $s_n = \sum_{j=1}^n q_j$. By Lemma 2.3,

$$\varepsilon 1_F(x) 1_G(y) \le \int \left(\sum_{j=1}^n q_j(x, z) \right) \left(\sum_{i=1}^n q_i(z, y) \right) \lambda(dz)$$

$$\le \sum_{i,j=1}^n q_{i+j}(x, y) \le n \sum_{k=1}^{2n} q_k.$$

Put $N=2n,\ h=\frac{\varepsilon}{2n^2}1_F,\ w=1_G.$

REMARK. We used $\sum_{1}^{\infty} q_n > 0$. One may prove Theorem 2.4. for nonconservative operators.

In Chapter 6 we shall need a third version of Orey's Lemma:

THEOREM 2.5. Let P satisfy:

$$P1 = 1$$
; $\lambda(A) > 0 \Rightarrow P1_A \ge \alpha(A) > 0$.

where $\alpha(A)$ is a constant. Then

$$P^5 \ge 1 \odot w$$

where $w \geq 0$ and $w \neq 0$.

PROOF. Let $\lambda_1 \sim \lambda$ and $\lambda_1(X) = 1$.

(a). There exists an $\varepsilon > 0$ such that

$$\lambda_1(A) \ge 1 - \varepsilon \Rightarrow P1_A \ge \varepsilon.$$

Otherwise, find sets A_n with

$$\lambda_1(A_n) \ge 1 - 1/2^n, \ \lambda_1(\{x : P1_{A_n}(x) < 1/2^n\}) \ne 0.$$

Put $A = \bigcap_{n=2}^{\infty} A_n$. Then $\lambda_1(A) \geq 1/2$ and hence $\lambda(A) > 0$. Also $\lambda_1(\{x: P1_A(x) < 1/2^n\}) \neq 0$, thus

$$\lambda(\{x: P1_A(x) < 1/2^n\}) \neq 0,$$

a contradiction. (This argument was used in [7]).

(b). Let $K_0 f = \int f d\lambda_1$. Then

$$(P \wedge K_0)1 \ge \varepsilon$$

$$(P \wedge K_0)1 = \inf\{P1_A + \lambda_1(A')\}.$$

If $\lambda_1(A) \geq 1 - \varepsilon$, then $P1_A \geq \varepsilon$ by (a). If $\lambda_1(A) < 1 - \varepsilon$, then $\lambda_1(A') \geq \varepsilon$.

- (c) $Q_1 1 \ge \varepsilon$. NY [3, Chapter V] $P \wedge K_0$ is an integral kernel, hence $P \wedge K_0 \le Q_1$.
- (d) $q_2(x,y) > 0$ a.e. λ^2 . $q_2(x,y) \geq [q_1(x,\cdot)P](y)$ by [4, p. 28]. It suffices to prove that if $0 \leq u \in L_1$ and $u \neq 0$, then uP(x) > 0 a.e.: Given A with $\lambda(A) > 0$, then

$$\langle uP, 1_A \rangle = \langle u.P1_A \rangle \ge \alpha(A)\langle u, 1 \rangle \ne 0.$$

- (e). There exist two non negative non trivial functions h and w' with $q_4(x,y) \ge h(x)w'(y)$: Apply Lemma 2.3 to $s_n = q_2$.
- (f) $P^5 \ge 1 \otimes w$ where $w \ge 0$, $w \ne 0$: $P^5 \ge PQ_4 \ge (Ph) \otimes w' \ge 1 \otimes w$ where $w = \alpha(h)w'$. \square

In all the three versions of Orey's Lemma we have

ASSUMPTION 1. There exist a_1, a_2, \ldots, a_N with

$$a_n \ge 0, \ a_N \ne 0, \ \sum_{1}^{N} a_n = 1$$

such that

$$S = \sum_{n=1}^{N} a_n P^k = h \otimes w + T$$

where $T \geq 0$, the functions h, w are nonnegative and nontrivial..

Moreover S is conservative and ergodic.

We need to prove only the last statement. S is conservative by [4, Theorem 2.7]. For ergodicity:

- (1). If $S = 1/N \sum_{n=1}^{N} P^n$, then, whenever $S1_A = 1_A$, $P1_A(x) = 0$ for all $x \in A'$. Thus $P1_A \leq 1_A$; hence, since P is conservative and ergodic, A is trivial.
- (2). If P1=1 and $\lambda(A)>0 \Rightarrow P1_A\geq \alpha(A)>0$, then $S=P^5, P^51=1$ and

$$\lambda(A) > 0 \Rightarrow P^5 1_A \ge \alpha(A) > 0.$$

(3). $S = P^r \ge h \otimes w$. For any k,

$$P^{r+k} \ge (P^k h) \otimes w.$$

It suffices to show that P^j is ergodic for some $j \geq r$. By [6] and [4, Theorem 3.5], there exists a fixed integer d such that

$$\sum\nolimits_i(p^j)\subset\sum\nolimits_i(P^d)$$

for every integer j. Choose $j \ge r$ with (j,d) = 1. Let nj + md = 1. If n < 0, then, whenever $A \in \sum_{i} (P^{j})$, we have

$$1_A = P^{md} 1_A = P P^{-nj} 1_A = P 1_A.$$

Thus A is trivial. \square

3. Existence of an invariant measure.

LEMMA 3.1. Let Assumption 1 hold. Then $T^n 1 \downarrow 0$.

PROOF. Let $T^n 1 \downarrow q$. Then

$$0 \le g \le 1$$
, $Tg = g$.

Thus $Sg \geq g$, therefore by Theorem 1.1. $g = {\rm Const}$. Hence $\langle w,g \rangle = 0$ or g = 0. \square

LEMMA 3.2. Let Assumption 1 hold. Then

$$\sum_{0}^{\infty} T^{n} h = 1/\langle w, 1 \rangle.$$

PROOF.

$$\langle w, 1 \rangle \sum_{n=0}^{N} T^{n} h = \sum_{n=0}^{N} T^{n} (h \otimes w) 1 = \sum_{n=0}^{N} T^{n} (S - T) 1$$

= 1 - T^{N+1} 1 \cdot 1.

NOTATION. $v = \sum_{n=0}^{\infty} wT^n$.

COROLLARY. $\langle v, h \rangle = 1$.

$$\langle v, h \rangle = \Big\langle \sum_{0}^{\infty} w T^{n}, h \Big\rangle = \Big\langle w, \sum_{0}^{\infty} T^{n} h \Big\rangle.$$

Let us show that $v<\infty$. In fact a stronger result is valid, i.e., $0\leq u\in L_1\Rightarrow \sum_0^\infty uT^n<\infty$: $\langle\sum_0^N uT^n,1-T^k1\rangle\leq k$. Hence

$$\sum_{0}^{\infty} u T^{n} < \infty \text{ on } \cup_{k} \{x : T^{k} 1(x) < 1\} = X.$$

THEOREM 3.3. Let Assumption 1 hold. Then

$$vS = v, \ 0 < v(x) < \infty.$$

PROOF. $vS = vT + v(h \otimes w) = \sum_{1}^{\infty} wT^{n} + \langle v, h \rangle w = v$ by Corollary to Lemma 3.2. Finally, v(x) > 0 by Theorem 1.1. \square

THEOREM 3.4. (HARRIS' THEOREM). If Assumption 1 holds, then

$$vP = v$$
.

PROOF. $vP^N \le a_N^{-1}vS = a_N^{-1}vM\infty$. If $0 < f \in L_\infty$ satisfies $\langle vP^N,f \rangle < \infty$, then

$$\langle vP^i, P^{N-i}f \rangle < \infty, \quad 0 \le i \le N.$$

Now $(P^{N-i}f)(x) > 0$:

$$\lim_{n \to \infty} (P^{N-i}(nf))(x) \ge P^{N-i}1(x) = 1.$$

Hence $vP^i(x) < \infty$, for $0 \le i \le N$. Thus $v_1 = \sum_{n=1}^N a_n v(I + \cdots + P^{n-1}) < \infty$ and

$$0 = v - vS = v_1(I - P).$$

Finally, $v_1=v_1P$ implies $v_1=v_1S$ and v_1 is a multiple of v, by Theorem 1.1. Thus v=vP. \square

4. The Ornstein-Metivier-Brunel Theorem.

THEOREM 4.1. Let Assumption 1 hold. If

$$\sum_{0}^{\infty} T^{n} |f| \in L_{\infty} \ and \ \langle v, f \rangle = 0$$

then

$$f \in \text{Range}(I - P),$$

hence

$$\left| \left| \sum_{n=0}^{N} P^n f \right| \right| \le \text{Const.}$$

PROOF. Let us check that $\langle v, |f| \rangle < \infty$:

$$\langle v, |f| \rangle = \left\langle \sum_{n=0}^{\infty} wT^n, |f| \right\rangle = \left\langle w, \sum_{n=0}^{\infty} T^n |f| \right\rangle < \infty.$$

Put $g = \sum_{0}^{\infty} T^{n} f$. Then $g \in L_{\infty}$ and

$$(I - S)g = (I - T)g - \left\langle w, \sum_{n \to \infty} T^n f \right\rangle h = (I - T)g - \left\langle v, f \right\rangle h$$
$$= (I - T)g = \lim_{n \to \infty} (f - T^{N+1}f) = f.$$

This last step was by Lemma 3.1. Now

$$f = (I - S)g = (I - P)\sum_{n=1}^{N} a_n(I + \dots + P^{n-1})g = (I - P)g_1.$$

Finally, if $f = (I - P)g_1$, then

$$\left| \left| \sum_{n=0}^{N} P^n f \right| \right| \le 2||g_1||.$$

REMARKS. Put

$$\Omega = \{e : e \ge 0 \text{ and } \Sigma T^n e \in L_{\infty}\}.$$

By Lemma 3.2, $h \in \Omega$. If $e \in \Omega$, then $Se = Te + \langle w, e \rangle h \in \Omega$. Thus if $0 \le e \le \Sigma S^j h$, then $e \in \Omega$. If $e \in \Omega$ and $A = \{x : e(x) \ge \delta > 0\}$, then $1_A \le \delta^{-1} e$ so $1_A \in \Omega$.

Therefore, there exists a sequence of sets A, such that

$$A_k \uparrow X, 1_{A_k} \in \Omega.$$

Let $1_A \in \Omega$. If support $f \subset A$ and $\langle v, f \rangle = 0$, then $f = (I - P)g_1$ where

$$|g_{1}| = \left| \sum_{n=1}^{N} a_{n} (I + \dots + P^{n-1}) \sum_{j=0}^{\infty} T^{j} f \right|$$

$$\leq ||f|| \left(\sum_{n=1}^{N} a_{n} (I + \dots + P^{n-1}) \sum_{j=0}^{\infty} T^{j} 1_{A} \right)$$

$$\leq \text{Const.} ||f||.$$

The constant depends on the set A but not on the function f. Thus

$$\left|\left|\sum_{0}^{N} P^{n} f\right|\right| \leq 2||g_{1}|| \leq 2 \text{Const.}||f||$$

where the constant depends on A alone.

If we write $f = f_1 - f_2$ where support $f_1 \subset A$, support $f_2 \subset A$ and $\langle v, f_1 \rangle = \langle v, f_2 \rangle$, then

$$\left| \left| \sum_{i=0}^{N} P^{n} f_{1} - \sum_{i=0}^{N} P^{n} f_{2} \right| \right| \leq 2 \text{Const.}(\left| |f_{1}| \right| + \left| |f_{2}| \right|).$$

This leads to "Ration Limit Theorems".

Let us conclude this Chapter with a dual result.

THEOREM 4.2. Let Assumption 1 hold. If

$$\sum_{0}^{\infty} |u| T^n \in L_1, \quad \langle u, 1 \rangle = 0,$$

then

$$u \in \text{Range}(I - P)$$
.

Hence

$$\left| \left| \sum_{n=0}^{N} u P^{n} \right| \right|_{1} \le \text{Const.}$$

PROOF. Put $s = \sum_{0}^{\infty} uT^{n}$. Then, by assumption, $s \in L_{1}$. Now $s(I - S) = s(I - T) - \langle s, h \rangle w$. But

$$\langle s,g \rangle = \left\langle \sum_{n=0}^{\infty} u T^n, h \right\rangle = \left\langle u, \sum_{n=0}^{\infty} T^n h \right\rangle = 0$$

by Lemma 3.2. Moreover,

$$s(I-T) = \lim_{N \to \infty} (u - uT^{N+1}) = u.$$

Finally,

$$s(I-S) = \Big(\sum_{1}^{n} a_n s(I+\cdots+P^{n-1})\Big)(I-P) = s_1(I-P).$$

REMARK. Let

$$\Omega_1 = \{y : y \ge 0 \text{ and } \sum_{0}^{\infty} yT^n \in L_1\}.$$

We do not know if $\Omega_1 \neq \{0\}$ unless $v \in L_1$ (in which case $w \in \Omega_1$ and Ω_1 is invariant under S).

5. Doeblin's Theorem.

THEOREM 5.1. Let P_1 be a Markov operator satisfying

$$P_1 1 = 1, \ \lambda(A) > 0 \Rightarrow P_1 1_a \ge \alpha(A) > 0.$$

Then P_1^n converges in the operator norm.

PROOF. By Theorem 2.5.,

$$P_1^5 = 1 \otimes w + T, \ T \ge 0.$$

By Theorem 3.4., if $v = \sum wT^n$ then vP = v. Note that

$$T1 = 1 - \langle w, 1 \rangle < 1.$$

$$||T^n|| < (1 - \langle w, 1 \rangle)^n.$$

Recall that, by Corollary to Lemma 3.2., $\langle v, 1 \rangle = 1$. Put

$$Ef = \langle v, f \rangle.$$

Then $||E|| \le 1, E^2 = E = EP = PE$. Now

$$P^{5n} = T^n + 1 \otimes w + 1 \otimes (wT) + \dots + 1 \otimes (wT^{n-1}).$$

We know this for n = 11 let us prove, by induction,

$$P^{5}P^{5n} = P^{5}t^{n} + 1 \otimes w + \dots + 1 \otimes (wT^{n-1})$$

= $T^{n+1} + 1 \otimes (wT^{n}) + 1 \otimes w + \dots + 1 \otimes (wT^{n-1}).$

If $0 \le f \le 1$, then

$$|P^{5n}f - Ef| = \left| T^n f + \sum_{j=0}^{n-1} \langle w T^j, f \rangle - \sum_{j=0}^{\infty} \langle w T^j, f \rangle \right|$$

$$\leq ||T||^n + \sum_{j=n}^{\infty} \langle w T^j, 1 \rangle \leq ||T||^n \left(1 + ||w||_1 \sum_{j=0}^{\infty} ||T||^n \right)$$

$$= 2(1 - \langle w, 1 \rangle)^n.$$

Thus $||P^{5n} - E|| \le 4(1 - \langle w, 1 \rangle)^n \to 0$ as $n \to \infty$. Finally

$$||P^k p^{5n} - E|| = ||P^k P^{5n} - P^k E|| \le ||P^{5n} - E|| \to 0.$$

LEMMA 5.2. Let P satisfy

$$P1 = 1, \ \lambda(A) > 0 \Rightarrow \sum_{n=1}^{N(A)} P^n 1_A \ge \alpha(A) > 0.$$

Then there exists a function v with $0 < v \in L_1, vP = v$ and

Range
$$(I - P) = \{f : \langle v, f \rangle = 0\}.$$

PROOF. Put $P_1 = \sum_{n=1}^{\infty} 1/2^n P^n$. The operator P_1 satisfies the assumptions of Theorem 5.1.

If $v = vP_1$, then

$$0 = \left(\sum_{1} 1/2^{n} v(I + \dots + P^{n-1})\right) (I - P) = v_{1}(I - P).$$

But $v_1 = v_1 P$ implies $v_1 = v_1 P_1$ and, by Theorem 1.1., v_1 is a multiple of v: v = v P. Put

$$Ef = \langle v, f \rangle; L = \{f : \langle v, f \rangle = 0 = \{f : Ef = 0\}.$$

Then $P_1E = EP_1 = E$, so $P_1L \subset L$.

By Theorem 5.1.,

$$||P_1^j/L|| \le ||P_1^j(I-E)|| = ||P_1^j - E|| \to \text{ as } j \to \infty.$$

If $||P_1^j/L|| \le 1$, then the restriction of $I - P_1^j$ to L is invertible. Thus $L \subset \text{Range}(I - P_1^j)$. Now

$$I - P_1^j = (I - P_1)(I + P_1 + \dots + P_1^{j-1})$$

or Range $(I - P_1^j) \subset \text{Range}(I - P_1)$. Finally

$$(I-P_1) = (I-P)\sum_{n=1}^{\infty} 1/2^n (I+\cdots+P^{n-1})$$

or Range $(I - P) \subset \text{Range } (I - P)$. Thus $L \subset \text{Range } (I - P)$.

Conversely, if g = (I - P)f, then

$$\langle v, g \rangle = \langle v, f \rangle - \langle vP, f \rangle = 0.$$

The next Theorem is Horowitz's version of Doeblin's Theorem, see [9]. A similar result is proved in [15].

THEOREM 5.3. Let P1 = 1. The following conditions are equivalent:

- (1) $\lambda(A) > 0 \Rightarrow \sum_{0}^{N(A)} P^{n} 1_{A} \ge \alpha(A) > 0$.
- (2) There exists $v, 0 < v < L_1$, and

Range
$$(I - P) = \{f : \langle v, f \rangle = 0\}.$$

(3) There exists $v, 0 < v \in L_1$, and if $Ef = \langle v, f \rangle$, then

$$\left|\left|1/N\sum_{0}^{N-1}P^{n}-E\right|\right|\to 0.$$

(4) There exists $v, 0 < v \in L_1$, and

$$\left|\left|1/N\sum_{0}^{N-1}P^{n}f-\langle v,f\rangle\right|\right|\to 0$$

for every $f \in L_{\infty}$.

(5) There exists $v, 0 < v \in L_1$, and

Closure Range
$$(I - P) = \{f : \langle v, f \rangle = 0\}.$$

PROOF. $(1) \Rightarrow (2)$. Lemma 5.2.

 $(2)\Rightarrow(3)$. By the Closed Graph Theorem there exists a constant C such that

$$\langle v, f \rangle = 0 \Rightarrow f = (I - P)g \text{ and } ||g|| \le C||f||.$$

Thus

$$\left| \left| 1/N \sum_{0}^{N-1} P^n f - \langle v, f \rangle \right| \right| = \left| \left| 1/N \sum_{0}^{N-1} P^n (f - \langle v, f \rangle) \right| \right|$$

$$= \left| \left| 1/N \sum_{0}^{N-1} P^n (I - P) g \right| \right| \le 2||g||/N$$

$$\le 2C/N||f - \langle v, f \rangle|| \le 4C/N||f||.$$

- $(3)\Rightarrow (4)$. Obvious.
- $(4)\Rightarrow(1)$. Take $f=P1_A$. Then

$$1/N\sum_{1}^{N}P^{n}1_{A} - \langle v, 1_{A} \rangle \ge -1/2\langle v, 1_{A} \rangle$$

if N is large enough. Thus

$$\sum_{1}^{N} P^{n} 1_{A} \ge N/2\langle v, 1_{A} \rangle = \alpha(A) > 0.$$

Now $(2) \Rightarrow (5)$ is clear.

(5)
$$\Rightarrow$$
(4). Put $P_N = \frac{1}{N} \sum_{0}^{N-1} P^n$. Now
$$P_N f = P_N (f - \langle v, f \rangle) + \langle v, f \rangle \to \langle v, f \rangle$$

since $P_N g \to 0$ when $g \in \text{Closure Range}(I - P)$. \square

6. Pointwise convergence. Let P be a conservative and ergodic operator with a σ finite invariant measure μ :

$$d\mu = vd\lambda, \ vP = v.$$

By [3, Chapter VII],

$$\int |Pf|d\mu \le \int |f|d\mu,$$
$$\int |Pf|^2 d\mu \le \int |f|^2 d\mu.$$

Thus P is a contraction on $L_2(\mu)$.

Given $u \in L_1(\lambda)$, then $u = u_0 v$ where $u_0 \in L_1(\mu)$. Define

$$(u_0 v)P^* = v \cdot Pu_0(uP^* = v \cdot P(u/v)).$$

If $0 \le u \in L_1(\lambda)$, then $0 \le u_0 \in L_1(\mu)$ and

$$uP^* \geq 0, \quad \int uP^*d\lambda = \int Pu_0du_od\mu \leq \int_0 u_0d\mu = \int ud\lambda.$$

If $u \in L_1(\lambda)$, put $u = u^+ - u^-$. Then

$$\int |uP^*|d\lambda \le \int u^+P^*d\lambda + \int u^-P^*d\lambda \le \int (u^+ + u^-)d\lambda = \int |u|d\lambda:$$

 P^* is the dual of a Markov operator.

Let us compute P^*f :

$$\langle u_0 v, P^* f \rangle = \langle (u_0 v) P^*, f \rangle = \int P u_0 \cdot v f d\lambda$$

= $\langle u_0 v, 1/v [(v f) P] \rangle$.

THEOREM 6.1. Let P be a conservative and ergodic operator with a σ finite invariant measure $\mu(d\mu=cd\lambda)$. Define

$$P^*f = 1/v[(vf)P].$$

Then P* is a Markov operator and

$$(u_0v)P^* = v \cdot Pu_0, \quad u_0 \in L_1(\mu).$$

The operator P^* is conservative and ergodic, too, and $vP^* = v$. Now $P^{**} = P$ and P, P^* are adjoint operators on $L_2(\mu)$.

Finally

$$P^r \ge h \otimes w \Rightarrow P^{*r} \ge (w/v) \otimes (vh).$$

PROOF. Let $0 \le f \in L_{\infty}$ be such that $0 \ne f \in L_1(\lambda)$. Then

$$\infty = \sum_{0}^{\infty} (vf)P^{n} = v\sum_{0}^{\infty} P^{*n}f.$$

Thus P^* is conservative and ergodic, too. Now

$$vP^* = vP1 = v,$$

$$P^{**}f = 1/v[(fv)P^*] = Pf.$$

If $f, g \in L_1(\mu) \cap L_{\infty}(\lambda)$, then

$$\int Pf \cdot g d\mu = \langle vg, Pf \rangle = \langle 1/v[(vg)P], vf \rangle = \int f \cdot P^*g d\mu.$$

Finally, if $P^r \geq h \otimes w$, then, for every $f \geq 0$, we have

$$P^{*r}f = 1/v[(fv)P^r] \ge 1/v[(fv)h \otimes w]$$
$$= \left(\int fvhd\lambda\right)w/v = ((w/v) \otimes (vh))f.$$

Let us quote Theorem A and B of [3, Chapter VIII]. Define

$$\sum\nolimits_k = \Big\{A: \int (p^n 1_A)^2 d\mu = \int (P^{*n} 1_A)^2 d\mu = \mu(A) < \infty \text{ for all } n\Big\}.$$

Then

- (1) \sum_{K} is a field. If $A_n \in \sum_{K}$ and $A_n \uparrow A$ where $\mu(A) < \infty$, then $A \in \sum_{K}$.
- (2) If $A \in \sum_K$, then $P1_A$ and P^*1_A are characteristic functions of sets in \sum_K .
- (3) If K is the subspace of $L_2(\mu)$ generated by \sum_K , then K is invariant under P and P^* , and if $f \in K$, then

$$P^*Pf = PP^*f = f.$$

(4) If $\int_A f d\mu = 0$ for every set $A \in \sum_K$, then

$$(vP^nf,g) \to 0, \langle vP^{*n}f,g \rangle \to 0$$

for every $g \in L_2(\mu)$.

Let us use the main result of [6]:

(5) If P is Harris, then either $\sum_{K} = \{\emptyset\}$ or \sum_{K} contains an atom.

Let $\sum_K \neq \{\emptyset\}$ and let A_0 be an atom of \sum_K . Put $1_{A_j} = P^j 1_{A_0}$. A_j is again an atom of \sum_K . We can not have $A_0 \cap A_j = \emptyset$ for all $j \geq 1$ since $\sum P^j 1_{A_0} \equiv \infty$. Let d be the first integer such that $A_d = A_0$.

If $0 \le i < j \le d - 1$, then

$$A_i \cap A_i = \emptyset(A_0 \cap A_{i-i} = \emptyset).$$

Finally, the set $\bigcup_{i=0}^{d-1} A_i$ is invariant under P, so must be X. Hence

$$\mu(X)=d\mu(A_0)<\infty.$$

Conversely, if $\mu(X) < \infty$, then $X \subset \sum_K$ contains an atom. \square Let us summarize.

THEOREM 6.2. Let P be a Harris operator with an invariant measure $\mu(d\mu = vd\lambda)$.

(1) If
$$\mu(X) = \infty$$
, then $\sum_{K} = \{\emptyset\}$; hence
$$\langle (u_0 v) P^n, f \rangle \to 0 \text{ as } n \to \infty,$$

$$\langle v P^n u_0, f \rangle \to 0 \text{ as } n \to \infty.$$

whenever $u_0 \in L_1(\mu), f \in L_2(\mu) \cap L_{\infty}(\lambda)$.

(2) If $\mu(X) < \infty$, then $\sum_{K} = \{A_0, A_1, \dots, A_{d-1}\}\$ so that the sets A_i are disjoint.

$$P1_{A_i} = 1_{A_{i+1}} (A_d = A_0).$$

$$(v1_{A_i})P = v1_{A_{i-1}} (A_{-1} = A_{d-1}).$$

If $u_0 \in L_1(\mu)$, and $f \in L_{\infty}(\lambda)$ and

$$\alpha_i = \mu(A_i)^{-1} \int_{A_i} u_0 d\mu,$$

then

$$\left\langle \left(\left(u_0 - \sum_{i=0}^{d-1} \alpha_i 1_{A_i} \right) v \right) P^n, f \right\rangle \to 0,$$

$$\left\langle vP^n\left(u_0-\sum_{i=0}^{d-1}\alpha_i1_{A_i}\right),f\right\rangle \to 0.$$

PROOF. (1). If $\mu(X) = \infty$, then $\sum_{K} = \{\emptyset\}$. Thus

$$\langle (u_0 v) P^n, f \rangle \to 0,$$

 $\langle v P^n u_0, f \rangle \to 0$

whenever $u_0 \in L_2(\mu)$ and $f \in L_2(\mu)$.

Fix $f \in L_2(\mu) \cap L_{\infty}(\lambda)$. Then by continuity, we may take $u_0 \in L_1(\mu)$.

(2). We showed that, if $\mu(X) < \infty$, then

$$X = \bigcup_{i=0}^{d-1} A_i, \ A_i \cap A_j = \emptyset, \ 0 \le i < j < d,$$

$$P1_{A_i} = 1_{A_{i+1}} \ (A_d = A_0).$$

Now

$$(v1_{A_i})P = (v1_{A_i})P^{**} = v \cdot P^*1_{A_i} = v1_{A_{i-1}}$$

since $P^*1_{A_i} = P^*P1_{A_{i-1}} = 1_{A_{i-1}}$. By the choice of α_i ,

$$u_0 - \sum_{i=0}^{d-1} \alpha_i 1_A$$
 is orthogonal to \sum_K .

By (4),

$$\left\langle \left(\left(u_0 - \sum_{i=0}^{d-1} \alpha_i 1_{A_i} \right) v \right) P^n, f \right\rangle \to 0,$$

$$\left\langle v P^n \left(u_0 - \sum_{i=0}^{d-1} \alpha_i 1_{A_i} \right), f \right\rangle \to 0.$$

if $u_0 \in L_2(\mu)$ and $f \in L_2(\mu)$.

Fix $f \in L_{\infty}(\lambda)$. Then, by continuity, we may take $u_0 \in L_1(\mu)$ in the above equations. \square

In the rest of this paper we elaborate on results of Horowitz [10].

ASSUMPTION 2. Let P be a conservative and ergodic Markov operator such that there exists an integer r with

$$P^r > h \otimes w$$

where h, w are non negative and non-trivial.

Recall Theorem 3.4.: There exists v with $0 < v(x) < \infty$ and vP = v.

NOTE. If P is Harris and \sum is separable, then Assumption 2 follows from Orey's Lemma (Theorem 2.1.).

Now

$$P^r = h \otimes w + T, \ T \ge 0.$$

Let us show that

$$P^{rn} = T^n + (P^{r(n-1)}h) \otimes w + \dots + h \otimes (wT^{n-1}).$$

Let us prove by induction:

$$P^{r(n+1)} = P^r T^n + (P^{rn} h) \otimes w + \dots + (P^r h) \otimes (w T^{n-1})$$

= $T^{n+1} + h \otimes (w T^n) + (P^{rn} h) \otimes w + \dots + (P^r h) \otimes (w T^{n-1}).$

LEMMA 6.3. Let Assumption 2 hold. If $u_0 \in L_1(\mu)$, then

(1) $\langle (u_0 v) P^n, h \rangle \to 0 \Rightarrow (u_0 v) P^n \to 0.$

(2)
$$\langle P^n u_0, w \rangle \to 0 \Rightarrow P^n u_0 \to 0.$$

PROOF. (1). Let $u = u_0 v$, where $u_0 \in L_1(\mu)$.

$$(uP^k)P^{rn} \le |uP^k|T^n + v \max_{1 \le i \le k} |\langle uP^{r(n-i)+k}, h \rangle| + ||u||_1 \ ||h||_{\infty} \sum_{i=k} wT^i.$$

$$|uP^k|T^n \to 0 \text{ (as } n \to \infty) \text{ since } \sum_{n=0}^{\infty} |uP^k|T^n < \infty.$$

$$\sum_{i=k}^{\infty} wT^i \to 0 \text{ (as } k \to \infty)0 \text{ since } \sum_{i=0}^{\infty} wT^i < \infty.$$

 $\langle uP^n, h \rangle \to 0$ (as $n \to \infty$) by assumption.

(2).
$$P^{*r} \ge (w/v) \otimes (vh)$$
; hence, by (1),

$$\langle (u_0 v) P^{*n}, w/v \rangle \to 0 \Rightarrow (u_0 v) P^{*n} \to 0,$$

or

$$\langle P^n u_0, w \rangle \to 0 \Rightarrow P^n u_0 \to 0.$$

THEOREM 6.4. Let Assumption 2 hold. Let $u_0 \in L_1(\mu)$. Then:

(1) If $\mu(X) = \infty$, then

$$(u_0v)P^n \to 0,$$

 $P^nu_0 \to 0.$

(2) If $\mu(X) < \infty$ let $X = \bigcup_{i=0}^{d-1} A_i$ as in Part (2) of Theorem 6.2. Put

$$\alpha_i = \mu(A_i)^{-1} \int_{A_i} u_0 d\mu.$$

Then

$$\left(\left(u_0 - \sum_{i=0}^{d-1} \alpha_i 1_{A_i}\right) v\right) P^n \to 0,$$

$$P^n \left(u_0 - \sum_{i=0}^{d-1} \alpha_i 1_{A_i}\right) \to 0.$$

REFERENCES

- 1. A. Brunel, Chaines abstraites de Markov vérifiant une condition de Orey, Z. Wahr. 19 (1971), 323-329.
- 2. W. Doeblin, Éléments d'une théorie générale des chaines simples constantes de Markoff, Ann. Sci. École Norm. Sup. 57 (1940), 61-111.
 - 3. S.R. Foguel, The ergodic theory of Markov Processes, Van Nostrand, (1969).
 - 4. ——, Harris operators, Israel J Math. 33 (1979), 281-309.
- 5. ——, New proofs for classical results on Markov operators, Semesterbericht Funktionalanalysis Tübingen (1984/85).
- **6.** ——, Singular Markov operators, Houston J. of Mathematics, **11** (1985), 485-498.
- 7. —— and N. Ghoussoub, Ornstein-Métivier-Brunel Theorem revisited, Ann. Inst. H. Poincare Sect. B 15 (1979), 293-301.
- 8. T.E. Harris, The existence of stationary measures for certain Markov processes, 3rd Berkeley symposium, Math. stat., vol. II (1956), 113-124.
- **9.** S. Horowitz, Transition probabilities and contractions of L_{∞}^{∞} , Z. Wahr. **24** (1972), 263-274.
- 10. ——, Pointwise convergence of the iterates of a Harris recurrent Markov operator, Israel J. Math, 33 (1979), 177-180.
- 11. M. Metivier, Existence of an invariant measure and an Ornstein's ergodic theorem, Ann. Math. Stat. 40 (1969), 79-96.
- 12. J. Neveu, Potential markovien récurrent des Chaines de Harris, Ann. Inst. Fourier 22 (1972), 85-130.
- 13. S. Orey, Limit theorems for Markov chain transition probabilities, Van Nostrand, 1971.
- 14. D.S. Ornstein, *Random walks* I, II, Trans. Amer. Math. Soc. 138 (1969), 1-60.
- 15. K. Yosida and S. Kakutani, Operator theoretical treatment of Markoff's process and mean ergodic theorem, Ann. Math. 42 (1941), 188-228.

Institute of Mathematics and Computer Science, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel