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A NEW APPROACH TO THE STUDY OF
HARRIS TYPE MARKOV OPERATORS

SHAUL R FOGUEL

Harris operators are generalizations of Markov matrices. It is our
purpose to present an elementary discussion of the theory of Harris
operators. In Chapter 1 we introduce most of the results about
Markov operators to be used later. In Chapter 2 we study Orey’s
Lemma. And in the rest of the paper we use Orey’s Lemma to
give elementary proofs of Harris’ Theorem, Ornstein-Metivier-Brunel
Theorem, Doeblin's theorem, and Pointwise Convergence of uP".

1. Introduction. We shall use the definitions and notation of [3]
and [4].

Recall that ¢f X is o finite measure on (X, X), then a Markov operator,
P, is a linear operator on Ly (X.X, ) satisfying

PlSl, fZO—:}PfEO f1110:>an_“’0

All inequalities, here and elsewhere are in the a.e. sense. Denote
(u.f) = [ufd\ju € Ly and f € Lx. The dual operator acts on
Ly by (uP, f)=(u,Pf);u€ Ly and f € L.

We may extend P, by monotone continuity, so that Pf and uP are
defined for all non-negative measurable functions [3, Chapter I].

THEOREM 1.1. Let P be conservative and ergodic. Then:
(1) P1 =1.

(2) f>0,Pf < f= f=Const.

(3)f>0, f#0=EP"f=oc.

(4)u>0, u#0=XuP" =x.
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(5) There is at most one function, up to a multiplicative constant,
such that
0 <u(r)<oo, uP=u.

If u 0. then u(x) > 0.

Elementary proofs for (1)-(4) are given in [4, Chapter II] and for (5)
in [3: Chapter VI, Theorem A].

An integral kernel is an operator of the form

Kf(r) = / k(. y)f (3)M(dy)

where k > 0 is ¥ x ¥ measurable and A1 < 1.

We shall use “The Harris Decomposition” [3: Chapter V]: P" =
Q. +R,,Q, >0,R, >0 and Q,, is the largest integral kernel bounded
by P".

DEFINITION. P is a Harris operator provided:
(a) P is conservative and ergodic.

(b) @; # 0 for some integer j.

2. Orey’s Lemma. Let h,w be non-negative and non-trivial
functions.

Denote the integral kernel of h(x)w(y) by h ® w, thus:
(h©w)f = (w, fHh.
u(th ® w) = (u, h)w.

Note also that
Ph@w)=(Ph)Qw

(h®w)P =h® (wP).
Orey proved the following theorem [13, Theorem 2.1].

THEOREM 2.1. Let P be Harris. If ¥ is separable, then P™ > h ® w
for some integer r and non-negative non-trivial functions h and w.
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CONJECTURE. Separability of ¥ is not necessary.

We shall prove two versions of Orey’s Lemma where ¥ is not assumed
to be separable.

LEMMA 2.2. Let P be Harris. then

x
Z gn(r.y) = x ae. A%
n=1

PROOF. By [3: Chapter V. Equation (5.5)].
Qj+n 2 P"Qj'

Hence

Y Qipn12 ) PUQ) =

n=1 n=1

Choose Y with A(Y) = 0 such that. if x € Y. then ¢q,,(r.-) # 0 for
some m. Now
Qn-)—m(I-y) Z [q,,,(I.-)P"](y)

by [4, p. 298].
Thus, if r € Y, then

x<
Z(In(l‘ y Zq:w—;:: I, y > Z[QM P" =
n=1 n=1 n=1
for almost all y, by Theorem 1.1. 0
LEMMA 2.3. Let s, (x,y) > 0 be £ x ¥ measurable. If s,, T s <0 a.e.

A2, then there exists an integer n. a positive constant ¢. and two sets
f and G, of positive measure such that

/ s (22 2)sn (2 YA(d=) > 1p(2)16(y).
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PROOF. Let /\1 ~ X\ with /\1(X) = 1. Put:

Then 0 < ¢, (x), ¥, (y) < 1. Also,

/a,,('x))\l(dz) — 1 and /u",,(y)/\l(dy) — 1.

Thus ¢, (z) T 1,¥,(y) T 1 a.e. Aq, hence a.e. A.
Given 6 > 1/2 find n such that, if

F= {.l‘ ten(T) 2 6} and G = {y : u”n(y) 2> 6}7

then A(F) > 0, A\(G) > 0.
Then we may find € > 0 with

/s,,(r, 2)su(2,y)A(dz) > ¢
provided that, for x € F,y € G,

M{zsa(z,z) <1/n})<1-6
Mz sa(zy) <1/n}) <1-6.

Hence

M{z i sa(z,2) 2 1/n}0{z:s,(2,y) > 1/n})
>1-(2-20)=26-1.

Thus
AM{z:su(x,2) > 1/n}N{z:8,(2,9) > 1/n}) =€ > 0.

Put e =¢'/n%. 0

The above argument was used in [12].
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THEOREM 2.4. Let P be Harris. There exists an integer N and two
non-negative non-trivial functions h.w. such that

N
I/NY P >hcu

k=1

PROOF. Let s, = 3__, ¢;- By Lemma 2.3.

oo < f (S atn0) (Saten)ien

Zq'+1 r.y) <71ng

i.g=1

Put N =2n. h = 2—5711:. w=1g.0

REMARK. We used ch qn > 0. One may prove Theorem 2.4. for
nonconservative operators.

In Chapter 6 we shall need a third version of Orey’s Lemma:

THEOREM 2.5. Let P satisfy:
P1=1: MA)>0= Ply>a(A)>0.
where a(A) is a constant. Then
P°>1Cu
where w > 0 and w # 0.
PROOF. Let A\; ~ A and A\ (X) = 1.
(a). There exists an ¢ > 0 such that

AM(A)>1—c= Ply>=
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Otherwise, find sets A4,, with
M(A4,) >1-1/2" \({r: Pla,(x) <1/2"}) #0.

Put A = N)_,A,. Then A (A) > 1/2 and hence A(4) > 0. Also
AM({x: Pla(z) < 1/2"}) # 0, thus

A({r: Pla(z) <1/2"}) #0,

a contradiction. (This argument was used in [7]).
(b). Let Kof = [ fdA;. Then

(PAKy)L>e
(P/\ ]\'0)1 = mf{PlA + /\I(A’)}

If \;(A) > 1—¢, then P14 > e by (a). If \;(A) < 1—¢, then A\;(A4") > ¢.

(¢) @11 > e. NY [3, Chapter V] P A K is an integral kernel, hence
PAKy<Q.

(d) g2(z,y) > 0ae. X2 go(x,y) > [q(z,)P](y) by [4, p. 28] It
suffices to prove that if 0 < u € L; and u 3 0, then uP(z) > 0 a.e.:
Given A with A(A) > 0, then

(uP,14) = (u.P14) > a(A){u,1) #0.

(e). There exist two non negative non trivial functions h and w’ with
qa(x,y) > h(x)w'(y): Apply Lemma 2.3 to s, = go.

(f) P° > 1®w wherew >0, w# 0: P> > PQq4 > (Ph)®w' > 1Qw
where w = a(h)w’. 0

In all the three versions of Orey’s Lemma we have

ASSUMPTION 1. There exist ay,as,...,an with

N

a, >0, aN#O’ Zanzl
1
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such that
N
S = ZanP"' =hzw+T
n=1
where T > 0. the functions h,w are nonnegative and nontrivial..

Moreover S is conservative and ergodic.

We need to prove only the last statement. S is conservative by [4,
Theorem 2.7]. For ergodicity:

(1). If S = I/NZN P", then, whenever S14 = 14. Pl4(zx) =0 for

n=1
all z € A’. Thus P14 < 14; hence, since P is conservative and ergodic.

A is trivial.
(2). If Pl =1and A(A) > 0 = Ply > a(A) > 0. then
S=P5 P51=1and

A(A) > 0= P°14 > a(A) > 0.

(3). S=P" > h®w. For any k,
P> (PYh) @ w.

It suffices to show that P/ is ergodic for some j > r. By [6] and [4.
Theorem 3.5], there exists a fixed integer d such that

>y (P

for every integer j. Choose j > r with (j,d) = 1. Let nj + md = 1. If

n < 0, then, whenever A € )_.(P’), we have

]-A — P"'dlA =P P—"le = P].A
Thus A is trivial. O

3. Existence of an invariant measure.

LEMMA 3.1. Let Assumption 1 hold. Then T"1 | 0.
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PROOF. Let T"1 | g. Then
0<g<1, Tg=gy.

Thus Sg > g, therefore by Theorem 1.1. g = Const. Hence {w,g) =0
org=0.0

LEMMA 3.2. Let Assumption 1 hold. Then

> T'h=1/(w,1).
0

PROOF.

N N N

(w,1)Y T'h=>Y» T'thow)l=>» T(S-T)1

n=0 n=0 n=0
=1-TN*171.

=]

NOTATION. v = 3> wT™".

COROLLARY. (v, h) = 1.
(o) = (S ur 1) = (3 7)
0

Let us show that v < oo. In fact a stronger result is valid, i.e.,
0<uel;=3, ul™ < oo: (Z(I)V uT", 1 —T*1) < k. Hence

ZUT" <ooon Uy {r:TFl(z) < 1} =X

THEOREM 3.3. Let Assumption 1 hold. Then

vS =v, 0 <v(r) < oo.
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PROOF. vS =T + v(h @ w) = 3. wT™ + (v, h)w = v by Corollary
to Lemma 3.2. Finally, v(x) > 0 by Theorem 1.1. 0

THEOREM 3.4. (HARRIS’ THEOREM). If Assumption 1 holds, then

vP =v.

PROOF. vPN < a‘_,vle = a;,ll'Moo. If 0 < f € L satisfies
(vPN | f) < oo, then

(vP',PY7f) <00, 0<i<N.
Now (PN~ f)(x) > 0:

lim (PY~(nf))(z) > PV '1(z) = 1.

n—oxc

Hence vP(z) < oo, for 0 < i < N. Thus v; = Z:Lla,,v(l + -+
P 1) < 00 and
O=v—-vS=v(I-P).

Finally, v; = v; P implies v; = v;S and v; is a multiple of v, by

Theorem 1.1. Thus v =vP. O

4. The Ornstein-Metivier-Brunel Theorem.

THEOREM 4.1. Let Assumption 1 hold. If
o
> _T"|f| € L and (v,f) =0
0
then

f € Range (I — P),

hence

[ < Const .

N
1

n=0
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PROOF. Let us check that (v, |f]) < oo

(e, 1f1) = (ZwT" 1) = (.31 < o0

Put g=3 7 7T"f. Then g € L« and

(I-S)g=(I=T)g-(w. Y T"f)h=(I-T)g— (v, /)h
=(I-T)g= lim (f-T¥*1f) = 1.

This last step was by Lemma 3.1. Now

N
f=U=-8)9=U-P)Y au(I+---+P"")g=(I - P

n=1
Finally, if f = (I — P)g;, then

N
> Ps)| < 2laull
0

u]

REMARKS. Put
Q={e:e>0and XT"e € L. }.

By Lemma 3.2, h € Q. If e € Q, then Se = Te + (w,e)h € Q. Thus if
0<e<YSh theneec. IfecNand A= {r:e(r)>6 >0}, then
14 <élesoly e

Therefore, there exists a sequence of sets A, such that
Ak T X,lAk € Q
Let 14 € Q. If support f C A and (v, f) =0, then f = (I — P)g; where

N >
lg1] = ‘Za7’([+...+Pvr—l)szf'
=0

n=1

N >
WA anlr 4+ PP Y T014)

n=1 =0

< Const .|| f|]-
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The constant depends on the set A but not on the function f. Thus

| ZN:P"fH < 2)jgu]| < 2Const .|| f]]
0

where the constant depends on A alone.

If we write f = f; — f, where support f; C A, support f, C A and
(v, f1) = (v, f2), then

N N
|3 P =3 Pl | < 2Const (1Al + I £2l)-
0 0
This leads to “Ration Limit Theorems”.
Let us conclude this Chapter with a dual result.
THEOREM 4.2. Let Assumption 1 hold. If
o
> T € Ly, (v,1) =0,
0
then

u € Range (I — P).

Hence

N
”;uP"

l < Const .
1

PROOF. Put s = 28" uT™. Then, by assumption, s € L;. Now
s(I-8)=s(I—-T)- (s,h)w. But

oC

(s,9) = <iuT”,h> = <u,ZT"h> =0
0

0

by Lemma 3.2. Moreover,

s(I-T)= lim (u—uT"*) =u

— o0
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Finally,
s(I-8) = (ians(l bt P"—l))(z _P)=s,(I - P).
1

a

REMARK. Let
Q) ={y:y>0and ZyT” € Ly}.
0

We do not know if €; 7 {0} unless v € L; (in which case w € @, and
, is invariant under S).

5. Doeblin’s Theorem.
THEOREM 5.1. Let P, be a Markov operator satisfying
Pi1=1, )\(A)>03P11a ZQ(A) > 0.

Then PT* converges in the operator norm.

PROOF. By Theorem 2.5.,
PP=1®@w+T, T >0.
By Theorem 3.4., if v = Y wT™ then vP = v. Note that

Tl1=1-(w,1) <1
T < (1 = (w, 1)™

Recall that, by Corollary to Lemma 3.2., (v,1) = 1. Put
Ef ={v, f).
Then ||E|| < 1,E? = E = EP = PE. Now

Pr=T"+10w+ 1@ wT) + -+ 1® (wT™ ).
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We know this for n = 11 let us prove, by induction,

PP =P 4 1@w+- - +1@ (W)
=T 1@ T +1@w+ - +16 (W),

If0 < f <1, then

|P"f — Ef| =

n—1 e

T"f+ Y (T, f) = 3 (T, )|

Jj=0 j=0

<ITI" + 3w, 1) < (T (1 + (el Y 0TI)
0

Jj=n

= 2(1 - (w, 1))".
Thus ||P5" — E|| < 4(1 - (w, 1)) — 0 as n — oo. Finally
IP™ — E|| = [P*P*" — PE|| < [P - E|| 0.
]

LEMMA 5.2. Let P satisfy

N(A)
Pl=1, NA)>0= > P"l4>a(4) >0,

n=1
Then there exists a function v with 0 < v € L;,vP = v and

Range (I — P) = {f: (v, f) = 0}.

PROOF. Put P, = Y 7 1/2"P". The operator P; satisfies the
assumptions of Theorem 5.1.
If v = vPy, then
0= (Y 12"+ + P))(I = P) = (I - P).
1
But v; = v, P implies v; = v, P and, by Theorem 1.1., v, is a multiple
of v:v=0ovP. Put

Ef =(u.f)iL={f:{v,f)=0={f: Ef =0}
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Then PPE=FEP, =F,so PLLC L.
By Theorem 5.1.,

IP{/LI| < IIP{(I - E)l| = ||P{ - E|| = as j — .
If||P//L|| < 1, then the restriction of 7 — P} to L is invertible. Thus
L C Range (I — P}). Now
I-Pl=(I-P)I+P+---+P

or Range (I — Plj) C Range (I — P;). Finally

(I—Pl):(I—P)il/?"(1+-~-+P"")

n=1

or Range (I — P) C Range (I — P). Thus L C Range ([ — P).
Conversely, if g = (I — P)f, then

(v,9) = (v, f) — (vP, f) = 0.
0O

The next Theorem is Horowitz’s version of Doeblin’s Theorem, see
[9]. A similar result is proved in [15].

THEOREM 5.3. Let P1 = 1. The following conditions are equivalent:
(1) A(4) > 0= Y0 Pr14 > a(A) > 0.
(2) There exists v,0 < v < Ly, and

Range(I — P) = {f : (v, f) = 0}.

(3) There ezists v,0 < v € Ly, and if Ef = (v, f), then

v S - B]| o
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(4) There exists v,0 < v € Ly, and
N-1
[N > Py = wn]| =0
0
for every f € L.
(5) There exists v,0 < v € Ly, and
Closure Range (I — P) = {f: (v, f) = 0}.

PROOF. (1)=(2). Lemma 5.2.

(2)=(3). By the Closed Graph Theorem there exists a constant C'
such that

(v, f) = 0= f = (I - P)g and |lg| < CII]|

Thus
v s P - || =~ Y P
0 0

N-1
=||in 3 Pra - Pigl| < 2lgll/N
0
< 2C/N|If = (v. I < 4C/NIS]I-
(3)=(4). Obvious.
(4)=(1). Take f = P14. Then

N
1/NY P"1a = (v.14) 2 —1/2(v, 1)
1

if N is large enough. Thus

N
D P14 > N/2(v, 14) = a(4) > 0.
1
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Now (2)=>(5) is clear.
(5)=(4). Put Py = & 507" P". Now

PNfZPN(f—<U7f))+<Uqf>_"<'U»f>

since Pyg — 0 when g € Closure Range (I — P). O

6. Pointwise convergence. Let P be a conservative and ergodic
operator with a ¢ finite invariant measure y:

dp = vd\, vP = v.

[1psian< [ 111d
[1pseans [1rPdn.

Thus P is a contraction on Lo(u).

By (3, Chapter VII],

Given u € L{()), then u = upv where ug € Ly(p). Define
(ugv)P* = v - Pug(uP* = v - P(u/v)).

If0<ue€ Li(A), then 0 < ug € Ly(u) and

uP* >0, /uP*d/\ = /Puoduod,u < /uod,u = /ud)\.
0

Ifue Li(A\), put w=ut —u~. Then

/|uP*|d/\ < /u‘+P*dA+/u‘P*d)\ < /(u+ +u”)dA = /luld/\:

P* is the dual of a Markov operator.

Let us compute P*f:

(upv, P* f) = {(uov)P™, f) = /Puo -vfdA
= (uov, 1/v[(vf) P]).


file:///u/d/
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THEOREM 6.1. Let P be a conservative and ergodic operator with a
o finite invariant measure p(dy = cd)). Define

P*f =1/v[(vf)P).
Then P* is a Markov operator and

(upv)P* = v- Pug, ug € Ly(p).

The operator P* is conservative and ergodic, too, and vP* = v. Now
P** = P and P, P* are adjoint operators on Ly(p).

Finally
P">h@w= P > (w/v) ® (vh).

PROOF. Let 0 < f € L be such that 0 7 f € Li(A). Then

00 = Z(vf)P" = vz P f.
0 0
Thus P* is conservative and ergodic, too. Now
vP* = vPl =v,
P f = 1/v((fv)P*] = Pf.
If f,g€ Ly(u) N L()), then
[ Pr-gdu= (oo, P1) = el(ea)PLofy = [ £+ Padn

Finally, if P" > h ® w, then, for every f > 0, we have
P f = 1/o[(fo)P"] 2 1/2{(f)h © u]
= ( / fohdA)w/v = ((w/v) © (vh))].

Let us quote Theorem A and B of [3, Chapter VIII]. Define

Zk = {A : /(P"lA)2dll = /(P'"IA)zd,u = pu(A) < oo for all n}.



508 S.R. FOGUEL

Then

(1) >k is afield. If A, € ", and A, T A where u(A) < oo, then
A€ p.

(2) If A€ Y, then P14 and P*1,4 are characteristic functions of
sets in ) ..

(3) If K is the subspace of Ly(u) generated by >, then K is
invariant under P and P*, and if f € K, then

P*Pf=PPf=f
(4) If [, fdu =0 for every set A€y ., then

(‘UP"f, g) N 07 (UP“’f, g> N O

for every g € La(u).
Let us use the main result of [6]:
(5) If P is Harris, then either ", = {0} or ), contains an atom.

Let 3", 5 {0} and let A be an atom of y_ .. Put 14, = P/14,. A;
is again an atom of ) ,.. We can not have A9 N A; =0 for all j > 1
since Y P/1,4, = 0o. Let d be the first integer such that A, = Ao.

If0<i<j<d-1,then
AiNA; =0(AoNA_; =0).
Finally, the set USZ) A; is invariant under P, so must be X. Hence
#(X) = du(Ao) < oo

Conversely, if u(X) < oo, then X C ) contains an atom. 0

Let us summarize.

THEOREM 6.2. Let P be a Harris operator with an invariant measure
u(dp = vdX).

(1) If w(X) = oo, then Y, = {0}; hence

((upv)P", f) — 0 as n — oo,

(vP"ug, f) = 0 as n — oo
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whenever ug € Ly(u). f € La(u) N L(N).

(2) If 1(X) < o0, then Yok ={A0,Ar,..., A4_1} so that the sets A;
are disjoint.
Pla, = 14,,, (Ad = Ay).

(v1a,)P =vl4, , (A = Ag_y).
Ifug € Ly(p), and f € Lo (\) and

a; = M(Ai)—l/ uodp,

A;

then

<(<u0 - dgéa,-lA,)v)P",f> — 0,

i
d-1

<l'P" (U() - Z(},'IAI.).f> — 0.
i=0
PROOF. (1). If p(X) = oo, then 3", = {0}. Thus

((wor)P" . f) — 0.
<l‘P” ll(),f) — 0

whenever uy € Ly(y) and f € Ly(u).
Fix f € La(p)N L (X). Then by continuity, we may take uy € L;(u).
(2). We showed that. if j1(X) < oc. then

X=UZJA,, AinA;=0. 0<i<j<d.
Ply, =14, (Aq = Ay).
Now

(v14,)P = (v14,)P™ =v- P14, = vly,_,

since P*1, = P*P1,4, | =14, ,. By the choice of a;,

d—1
uy — Z «;14 is orthogonal to ZK .
0
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(S oa)s)rros) o

i

<vP"<u0 - gailm),f> -0

n=0
if ug € Lo(p) and f € Lo(p).

Fix f € L, (\). Then, by continuity, we may take ug € L; (1) in the
above equations. O

In the rest of this paper we elaborate on results of Horowitz [10].

ASSUMPTION 2. Let P be a conservative and ergodic Markov operator
such that there exists an integer v with

P" > h®w,

where h,w are non negative and non-trivial.
Recall Theorem 3.4.: There exists v with 0 < v(x) < oo and vP = v.

NOTE. If P is Harris and Y is separable, then Assumption 2 follows
from Orey’s Lemma (Theorem 2.1.).

Now
Pr=h@w+T,T>0.

Let us show that
P =T" + (Pr(n—l)h) QW+---+h ® (an—l)'
Let us prove by induction:

Pr(n+l) = pPTT" + (Prnh) QW+ -+ (Prh) ® (an—l)
=T""' +h@ (wT™) + (P"h)@w + -+ (PTh) @ (wT™™").
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LEMMA 6.3. Let Assumption 2 hold. 1f ug € L1(p), then
(1) ((uov)P™, h) — 0 = (upv)P™ — 0.
(2) (P"ug,w) — 0= P"up — 0.

PROOF. (1). Let u = ugv, where ug € L1(p).

Pk ™ k|n r(n—i)+k i
(uP*)P™ < |[uP*|T +v112?$xk|(uP S+ ull ||h||x§wT

2C
|uP*|T™ — 0 (as n — 00) since Z |uP*|T" < oo.
n=0

ZwTi — 0(as k — 00)0 since ZwTi < 0.

i=k 1=0

(uP™, h) — 0 (as n — 00) by assumption.
(2). P > (w/v) ® (vh); hence, by (1),
{(ugv) P*",w/v) — 0 = (uov)P*™ — 0,

or
(P™ug,w) — 0= P"up — 0.

THEOREM 6.4. Let Assumption 2 hold. Let ug € Li(p). Then:
(1) If u(X) = oo, then

(upv)P" — 0,
P"UQ — 0.

(2) If w(X) < oo let X = U=y A; as in Part (2) of Theorem 6.2. Put

Qa; =/L(A,')-1/ uodp.
A;
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Then

d—1
((uO—IZ:%Q,‘lAi)’U)P -—>0,
d—1
P (uo - ;ail,‘h) — 0
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