STABILITY IN WITT RINGS AND ABELIAN SUBGROUPS OF PRO-2-GALOIS GROUPS

ROGER WARE

Let F denote a field of characteristic not two, let F(2) be the maximal 2-extension (i.e., quadratic closure) of F, and let $G_F(2) = \operatorname{Gal}(F(2)/F)$. In this note we introduce and study an invariant, a(F), of F defined to be the largest integer m such that $G_F(2)$ has a closed torsion free abelian subgroup of rank m. [If there is no largest m, we define $a(F) = \infty$]. Recall that the (absolute) stability index of F, introduced in [5], is st $(F) = \min\{n \mid I^{n+1}F = 2I^nF\}$, where IF is the fundamental ideal of even dimensional forms in the Witt ring, WF, of anisotropic quadratic forms over F and I^nF is the n^{th} power of this ideal. The connection between a(F) and s(F) will be investigated and it will be shown that if F is a pythagorian field or a finitely generated extension of a hereditarily euclidean or hereditarily quadratically closed base field, then $a(F) = \operatorname{st}(F)$. First we present a few examples.

EXAMPLES. (1). a(F) = 0 if and only if F is either euclidean (i.e., formally real with $|\dot{F}/\dot{F}^2| = 2$) or quadratically closed if and only if $F(\sqrt{-1})$ is quadratically closed.

- (2). If F is a finite, local, or global field, then a(F) = 1.
- (3). Let F be a rigid field (i.e., every element $a \notin \pm \dot{F}^2$ satisfies $F^2 + aF^2 \subseteq F^2 \cup aF^2$) with $|\dot{F}/\dot{F}^2| = 2^m > 2$. Then a(F) = m if and only if F is nonreal and $F(\sqrt{-1})$ contains all 2-power roots of unity: a(F) = m 1, otherwise. Special cases: $a(\mathbf{R}((t_1)) \dots ((t_m))) = a(\mathbf{C}((t_1)) \dots ((t_m))) = m$.
 - (4). If $F = \mathbf{R}(t_1, \dots, t_n)$ or $\mathbf{C}(t_1, \dots, t_n)$, then a(F) = n.

PROOF. (1) is clear and (4) will follow from Theorem 3.

(2). This is clear if F is finite. If F is local or global it can be proved using standard algebraic number theory (cf. [8] for a corresponding result for the absolute Galois group). We give an argument that uses

the Witt ring:

Let A be a closed torsion free abelian subgroup of $G_F(2)$ and let L be the fixed field of A. If rank A=2 then, by [15, Theorem 3.6], L contains all 2-power roots of unity and $WL \cong \mathbb{Z}/2\mathbb{Z}[V]$, with |V|=4. Hence, by Theorem 3.3 of [17], there is a valuation v on L with residue field L_v such that

$$|\dot{L}_v/\dot{L}_v^2| \leq 2$$
 and $1 + M_v \subseteq L^2$

where M_v is the maximal ideal of the valuation ring of v. Also, because L/F is algebraic, $|\Gamma_v/2\Gamma_v|=2$, where Γ_v is the value group. This forces $|\dot{L}_v/\dot{L}_v^2|=2$ (so v is non dyadic) and implies that L_v contains all 2-power roots of unity. As L_v is necessarily an algebraic extension of a finite field, this is impossible. Hence a(F)=1, as claimed.

(3). By [15], $G = G_F(2)$ is a metabelian pro-2-group, and, by [9, Theorem 4.12], there is a split exact sequence $1 \to A \to G \to \overline{G} \to 1$ with A free abelian and $\overline{G} \cong \mathbf{Z}_2$, the additive group of 2-adic integers, or $\overline{G} \cong \mathbf{Z}/2\mathbf{Z}$. In [15] it is shown that $G_F(2)$ is abelian if and only if F contains all 2-power roots of unity (as m > 1). Hence a(F) = m in this case. Similarly, if F is nonreal and $F(\sqrt{-1})$ contains all 2-power roots of unity, then, by [15, Theorem 1.5], rank $G_F(2) = \operatorname{rank} G_{F(\sqrt{-1})}(2)$. Since $G_{F(\sqrt{-1})}$ has maximal rank among abelian subgroups of $G_F(2)$ and $m = \operatorname{rank} G_F(2)$ we have a(F) = m in this case, as well. If $\overline{G} \cong \mathbf{Z}/2\mathbf{Z}$, then F is formally real, $A \cong G_{F(\sqrt{-1})}(2)$, and $a(F) = \operatorname{rank} A = m - 1$ (cf. [2, Chapter III]).

Thus it remains to consider the case when $\overline{G} \cong \mathbf{Z}_2$ and $F(\sqrt{-1})$ does not contain all 2-power roots of unity. If rank A>1, then the fixed field L of A contains $F(\mu)$, where μ is the group of all 2-power roots of unity. Since $\operatorname{Gal}(L/F) \cong \mathbf{Z}_2$ it follows that $\operatorname{Gal}(F(\mu)/F) \cong \mathbf{Z}_2$ or $\mathbf{Z}/2\mathbf{Z}$. If $\operatorname{Gal}(F(\mu)/F) \cong \mathbf{Z}/2\mathbf{Z}$, then $F(\mu) = F(\sqrt{-1})$ (see, for example, [9, Lemma 4.1]), a case we have excluded. Hence $\operatorname{Gal}(F(\mu)/F) \cong \mathbf{Z}_2$ and we obtain a (split) exact sequence $1 \to B \to G_F(2) \to \mathbf{Z}_2 \to 1$ where $B = \operatorname{Gal}(F(2)/F(\mu))$. By [15], B is abelian and B is maximal among all abelian subgroups of $G_F(2)$. Hence $a(F) = a(B) = \operatorname{rank} G_F(2) - 1 = m - 1$. Finally, if rank A = 1 then rank $G_F(2) = 2$ and the only possible cases occur as pro-2-Galois groups over nondyadic local fields (see [9; Table 5.2, Lemma 4.1, and the remark following the proof of Lemma 4.3]). Since a(F) = 1 and $|\dot{F}/\dot{F}^2| = 4$ for a nondyadic local field this completes the proof. \square

If G is an arbitrary pro-2-group we define $a(G) = \max\{m \mid G \text{ has a closed torsion free abelian subgroup of rank } m\}$. Recall that the *cohomological dimension* of a pro-2-group G is $cd(G) = \min\{n \mid H^n(G, \mathbf{Z}/2\mathbf{Z}) \neq 0\}$ [14, I-17].

PROPOSITION. Let G be a pro-2-group.

- (i) If G is a torsion free abelian pro-2-group and if one of the numbers a(G), cd(G) is finite, then both are finite and a(G) = cd(G).
 - (ii) $a(G) \leq \operatorname{cd}(G)$, in general.
 - (iii) If H is a closed subgroup of finite index in G, then a(H) = a(G).
- (iv) If N if a closed normal subgroup of G such that G/N is a torsion group, then a(N) = a(G).
- (v) Suppose $1 \to N \to G \to \overline{G} \to 1$ is an exact sequence of pro-2-groups with $\overline{G} \subseteq G_k(2)$ for some field k. Then $a(G) \le a(\overline{G}) + a(N)$.
- PROOF (i). It is a consequence of Pontryagin duality that a torsion free abelian pro-2-group is isomorphic to \mathbf{Z}_2^I for some index set I (where \mathbf{Z}_2^I denotes the direct product of $|\mathbf{I}|$ copies of the additive group \mathbf{Z}_2 of 2-adic integers). Since $\operatorname{cd}(\mathbf{Z}_2) = 1$, (i) follows from [14, I-32,33] and induction.
 - (ii). This follows from (i) and [14, I-20].
- (iii). Let A be a closed torsion free abelian subgroup of G. Then $(A:A\cap H)\leq (G:H)<\infty$. We may assume rank $A\cap H<\infty$. Then rank $A<\infty$ (as $|A/A\cap H|<\infty$) and, by (i), $a(A\cap H)=\operatorname{cd}(A\cap H)$, $a(A)=\operatorname{cd}(A)$. By [14, I-20], $\operatorname{cd}(A)=\operatorname{cd}(A\cap H)$, proving (iii).
- (iv). Let A be a finitely generated closed torsion free abelian subgroup of G. It suffices to prove that rank $A = \operatorname{rank} A \cap N$. Since G/N is a torsion group so is $A/A \cap N$, and because A is finitely generated (as a pro-2-group) this implies that $A/A \cap N$ is finite. Hence (iv) follows from (iii).
- (v). Let A be a closed torsion free abelian subgroup of G. It suffices to show that $a(A) \leq a(A \cap N) + a(A/A \cap N)$. Since $A/A \cap N$ is a closed abelian subgroup of the pro-2-Galois group $G_k(2)$ there are only

two possibilities: either $A/A \cap N$ is torsion free or $|A/A \cap N| = 2$. In the first case the sequence $1 \to A \cap N \to A \to A/A \cap N \to 1$ splits, so $a(A) = a(A \cap N) + a(A/A \cap N)$, and in the second, (iii) gives $a(A) = a(A \cap N)$. \square

COROLLARY If K/F is a finite 2-extension, then a(F) = a(K).

REMARKS 1. Concerning the inequality $a(G) \leq \operatorname{cd}(G)$, one can have $a(G) < \operatorname{cd}(G)$. For example, $\operatorname{cd}(\mathbf{Z}/2\mathbf{Z}) = \infty$ and $a(\mathbf{Z}/2\mathbf{Z}) = 0$; if F is a local or global field, then $\operatorname{cd}(G_F(2)) = 2$, while $a(G_F(2)) = 1$.

- 2. The inequality in (v) can be strict. For example, if $F = \mathbf{Q}_3$, then the 3-adic valuation on F induces an exact sequence $1 \to \mathbf{Z}_2 \to G_F(2) \to G_{\mathbf{F}_3}(2) \to 1$ and $G_{\mathbf{F}_3}(2) = \mathbf{Z}_2$, so the corresponding inequality is 1 < 1 + 1.
- 3. There are finite extensions K/F with a(K) > a(F). Let $F = \mathbf{Q}(2)$, the quadratic closure of the rationals. In [11, p. 219] it is shown that if K is any proper extension of F, then K is not quadratically closed. Hence a(K) > 0.
- 4. I suspect that $a(F) \leq a(K)$ for any finite extension K/F but I have not been able to prove this.

THEOREM 1. Suppose F has a nondyadic 2-henselian valuation v with residue field F_v and value group Γ with $1 \leq |\Gamma/2\Gamma| < \infty$. Then

- (i). $a(F) = \log_2 |\Gamma/2\Gamma| + a(F_v)$ if and only if either $G_{F_v}(2) \ncong \mathbb{Z}_2$ or $F_v(\mu) \neq F_v(2)$, where μ is the group of all 2-power roots of unity.
 - (ii). $a(F) = \log_2 |\Gamma/2\Gamma|$ if and only if $F_v(\mu) = F_v(2)$.

PROOF. We need a lemma:

LEMMA. Let $G = G_F(2)$. If there exists a split exact sequence $1 \to A \to G \to B \to 1$ of pro-2-groups with A, B abelian and rank B > 1, then G is abelian.

PROOF. By Theorem 2.5 in [9] there is a field k such that $G_k(2) \cong B$ and $WF \cong Wk[A/A^2]$. Since rank B > 1, $Wk \cong \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$, so, by the Realization theorem of [1] (also see [9], the proof of Theorem 2.1), one can find a nondyadic 2-henselian valuation $v: F \to \Gamma$ with residue field F_v such that $A \cong \operatorname{Gal}(F_{nr}/F)$, where F_{nr} is the maximal nonramified 2-extension of F with respect to v. By valuation theory, $B \cong G_{F_v}(2)$ and rank B > 1 implies F_v contains all 2-power roots of unity [15]. Since v is 2-henselian, F also contains all 2-power roots of unity. This implies that the metabelian group $G = G_F(2)$ is abelian [16].

(i). The 2-henselian valuation v gives rise to a split exact sequence $1 \to A \to G_F(2) \to G_{F_v}(2) \to 1$, where $A = G_{F_{nr}}(2)$ is abelian and rank $A = \log_2 |\Gamma/2\Gamma|$. By Proposition, part (v), $a(F) \leq \log_2 |\Gamma/2\Gamma| + a(F_v)$. If $a(F_v) > 1$, then consider the split sequence $1 \to A \to G_0 \to B \to 1$, where $B \subseteq G_{F_v}(2)$ is a closed abelian subgroup of maximal rank and $G_0 \subseteq G_F(2)$. By the lemma, G_0 is abelian and $G_0 \cong A \times B$. Hence $a(F) \geq \log_2 |\Gamma/2\Gamma| + a(F_v)$, completing the proof in this case. If $a(F_v) = 0$, then A is a maximal abelian subgroup of $G_F(2)$ so $a(F) = \log_2 |\Gamma/2\Gamma| = \log_2 |\Gamma/2\Gamma| + a(F_v)$. Thus it remains to consider the case $a(F_v) = 1$.

Let μ be the group of all 2-power roots of unity and let $L=F(\mu)$. Since $\mu\subseteq F_{nr}$ we have a split sequence $1\to A\to G_L(2)\to G_k(2)\to 1$, where $k=F_v(\mu)$. If a(k)=1, then a closed torsion free abelian subgroup $B\subseteq G_k(2)$ with rank B=1 gives rise to a split sequence $1\to A\to G_0\to B\to 1$ with $G_0\subseteq G_L(2)$. As L contains μ , the metabelian group G_0 is abelian and $G_0\cong A\times B$. Hence $a(F)\geq a(L)\geq {\rm rank}\,G_0=\log_2|\Gamma/2\Gamma|+1=\log|\Gamma/2\Gamma|+a(k_v),$ with Proposition (v) giving equality. If a(k)=0, then $F_v(\mu)=F_v(2)$ and $G_{F_v}(2)\cong \mathbf{Z}_2$ (if $G_{F_v}(2)\cong \mathbf{Z}/2\mathbf{Z}$ or 1, then $a(F_v)=0$). This proves that $a(F)=\log_2|\Gamma/2\Gamma|+a(F_v),$ unless $F_v(\mu)=F_v(2)$ and $G_{F_v}(2)\cong \mathbf{Z}_2$. Finally we show that, conversely, these conditions imply that $a(F)\neq \log_2|\Gamma/2\Gamma|+a(F_v).$

Given $F_v(\mu) = F_v(2)$ and $G_{F_v}(2) \cong \mathbf{Z}_2$ it follows that $G_F(2)$ is a nonabelian, metabelian pro-2-group and $a(F_v) = 1$. Moreover, rank $G_F(2) = \operatorname{rank} A + 1 = \log_2 |\Gamma/2\Gamma| + 1$. By Example (3), $a(F) = \operatorname{rank} G_F(2) - 1$. Hence $a(F) = \log_2 |\Gamma/2\Gamma| \neq \log_2 |\Gamma/2\Gamma| + a(F_v)$, completing the proof of (i).

(ii). This is contained in the proof of (i). \Box

COROLLARY 1. Under the hypothesis of Theorem 1, either $a(F) = \log_2 |\Gamma/2\Gamma| + a(F_v)$ or $a(F) = \log_2 |\Gamma/2\Gamma|$, and if $|\dot{F}_v/\dot{F}_v^2| \neq 2$, then $a(F) = \log_2 |\Gamma/2\Gamma| + a(F_v)$.

COROLLARY 2. Suppose F has a nondyadic valuation v with residue field F_v and value group Γ . Then

- (i). $a(F) \ge \log_2 |\Gamma/2\Gamma|$.
- (ii). If $G_{F_v}(2) \cong \mathbb{Z}_2$ or $F_v(\mu) \neq F_v(2)$ (in particular, if $|\dot{F}_v/\dot{F}_v^2| \neq 2$) then $a(F) \geq \log_2 |\Gamma/2\Gamma| + a(F_v)$.

PROOF. Let (L, w) be a 2-henselization of (F, v) [2, Chapter II], [4]. Then (L, w) has the same value group and the same residue as (F, v). Since L/F is a 2-extension, $a(F) \geq a(L)$, so (i) and (ii) follow from Theorem 1. \square

COROLLARY 3. $a(k(t_1,\ldots,t_n)) \geq n + a(k)$, unless $k(\mu) = k(2)$ and $G_k(2) \cong \mathbf{Z}_2$.

COROLLARY 4. Let F/k be a finitely generated field extension with $\operatorname{tr} \operatorname{deg}_k F = n$. Then $a(F) \geq n$.

PROOF. This follows from Corollary 2 and [7, Lemma 1]. \square

REMARK. We will see that the inequality in Corollary 3 can be strict. For example, if k is quadratically closed but not hereditarily quadratically closed (e.g., k = Q(2)) it will follow from Theorem 3 that $a(k(t_1, \ldots, t_n)) > n$.

Recall that the ν -invariant of F, introduced by Elman and Lam in [6], is $\nu(F) = \min\{m \mid I^m F \text{ is torsion free}\}$ and the reduced stability index of F, defined by Bröcker [3, 4], is $\operatorname{st_{red}}(F) = \min\{n \mid 2^n W_{\operatorname{red}} F \subseteq C(X, \mathbf{Z})\}$, where $W_{\operatorname{red}} F$ is the reduced Witt ring of F and $C(X, \mathbf{Z})$ is the ring of continuous functions on the topological space, X, of orderings on F.

THEOREM 2. (i) $a(F) \le \nu(F(\sqrt{-1}) - 1 \text{ and if } F \text{ is nonreal, then } a(F) \le \nu(F) - 1.$

- (ii) $\operatorname{st}_{\operatorname{red}}(F) \le a(F) \le \operatorname{st}(F) + 1$.
- PROOF (i). Observe that if F is nonreal, then $\nu(F)$ is the index of nilpotence of the fundamental ideal IF. If $\nu(F(\sqrt{-1}))=1$, then $WF(\sqrt{-1})\cong \mathbf{Z}/2\mathbf{Z}$ so $F(\sqrt{-1})$ is quadratically closed and a(F)=0. Hence, if a(F)=1, then $\nu(F(\sqrt{-1}))\geq 2$ so we may assume a(F)>1. Let A be a closed torsion free abelian subgroup of $G_F(2)$ of rank $m\geq 2$ and let L be its fixed field. By 15, $WL\cong \mathbf{Z}/2\mathbf{Z}[\dot{L}/\dot{L}^2]$ and $\log_2|\dot{L}/\dot{L}^2|=m$. Hence the index of nilpotence of the ideal IL is m+1. Since $\sqrt{-1}\in L$, [6, Theorem 6.3] implies that $\nu(F(\sqrt{-1}))\geq \nu(L)$, proving the first part of (ii). The second part of (ii) also follows from [6, Theorem 6.3].
- (ii). The inequality $a(F) \leq \operatorname{st}(F) + 1$ follows from (i) and the inequality $\nu(F(\sqrt{-1})) 2 \leq \operatorname{st}(F)$ [6, Corollary 4.7].
- In [2, p. 143], Becker showed that $\operatorname{st}_{\operatorname{red}}(F)+1$ is the largest integer n (or ∞) such that there is a 2-extension K/F with K pythagorean and $G_{K(\sqrt{-1})}(2)$ abelian, $\log_2|\dot{K}/\dot{K}^2|=n$, and $K=FK^2$. As K is pythagorean, $\operatorname{rank} G_{K(\sqrt{-1})}(2)=n-1$ so $a(F)\geq n-1=\operatorname{st}_{\operatorname{red}}(F)$.
- REMARKS 1. It can happen that $a(F) = \operatorname{st}(F) 1$; for example, if $F = \mathbf{Q}$, then a(F) = 1 and $\operatorname{st}(F) = 2$. However, I know no example where $a(F) \notin \{\operatorname{st}(F), \operatorname{st}(F) 1\}$. In particular, I suspect that the inequality in (i) can be improved to $a(F) \leq \operatorname{st}(F)$. By Theorem 2(i), this is true if $\sqrt{-1} \in F$.
- 2. The inequality $\operatorname{st}_{\operatorname{red}}(F) \leq a(F)$ can be strict. In fact, let $F_1 = \mathbf{R}$ and let F_2 be the power series field $\mathbf{C}((\Gamma))$, where $\Gamma = \mathbf{Z}^{(I)}$ is an infinite direct sum of copies of \mathbf{Z} ordered lexicographically (see, for example, [2; pp. 66, 119]). Then $WF_1 \cong \mathbf{Z}$, $WF_2 \cong \mathbf{Z}/2\mathbf{Z}$ $[\Gamma/2\Gamma]$, $G_{F_1}(2) \cong \mathbf{Z}/2\mathbf{Z}$, and $G_{F_2}(2) \cong \mathbf{Z}_2^I$. By a construction of Kula [10], there is a field F such that $WF \cong WF_1 \times WF_2$, and, by a theorem of Jacob (see [9, Theorem 3.4]), $G_F(2)$ is the free product (in the category of pro-2-groups) of $\mathbf{Z}/2\mathbf{Z}$ and \mathbf{Z}_2^I . In particular, $a(F) = \infty$. Since $WF \cong \mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}[\Gamma/2\Gamma]$, $W_{\operatorname{red}}F \cong \mathbf{Z}$ and $\operatorname{st}_{\operatorname{red}}(F) = 0$.

Theorem 2 has several corollaries:

COROLLARY 1. Let F be a pythagorean field. Then $a(F) = \operatorname{st}(F) = \nu(F(\sqrt{-1}) - 1)$.

PROOF. By [12, Proposition 13.1], $\operatorname{st}(F) = \operatorname{st}_{\operatorname{ed}}(F)$ and, because $\dot{F}/\dot{F}^2 \to F(\sqrt{-1})/F(\sqrt{-1})^2$ is surjective, $\operatorname{st}(F) = \nu(F(\sqrt{-1}) - 1)$.

It appears to be an open question whether $\operatorname{st}(F)=\operatorname{cd}(G_{F(\sqrt{-1})}(2))$ for an arbitrary pythagorian field F, although it has been shown by Minac [13] when $|\dot{F}/\dot{F}^2|<\infty$. In any event, Corollary 1 and Proposition (ii) yield

COROLLARY 2. Let F be a pythagorian field. If $H^n(G_{F(\sqrt{-1})}(2), \mathbb{Z}/2\mathbb{Z}) = 0$, then $I^nF(\sqrt{-1}) = 0$.

COROLLARY 3. If F is a formally real field with $a(F) \leq 1$, then F satisfies SAP (see [5, 12, 4]).

COROLLARY 4. Let F be a pythagorian field. Then $a(F) \leq 1$ if and only if $G_{F(\sqrt{-1})}(2)$ is a free pro-2-group.

PROOF. Apply Corollary 3 and [16, Proposition 3.2].

COROLLARY 5. Let F be a nonreal field. Then $a(F) \leq \log_2 |\dot{F}/\dot{F}^2|$.

PROOF. We may assume $\log_2 |\dot{F}/\dot{F}^2| = n < \infty$. A result of Kneser states that every quadratic form of dimension $> 2^n$ is isotropic [11, p. 317], whence, by a theorem of Pfister, $I^{n+1}F = 0$ [11, p. 317]. Hence $a(F) \leq n$, as desired. \square

REMARK. Corollary 5 should hold for formally real fields, as well. In fact, if F is pythagorian, then the inequality can be improved to $a(F) \leq \log_2 |\dot{F}/\dot{F}^2| - 1$. On the other hand, using Theorem 2 and [11,

Theorem 3.4, p. 202], I have only been able to obtain the inequality $a(F) \le 2\log_2 |\dot{F}/\dot{F}^2| - 2$, in general.

THEOREM 3. (cf. [7]) Let F/k be a finitely generated extension with $\operatorname{tr} \operatorname{deg}_k F = n > 1$. Then a(F) = n if and only if $k(\sqrt{-1})$ is hereditarily quadratically closed.

PROOF. Assume a(F)=n and let S be a simple algebraic extension of $k(\sqrt{-1})$. It suffices to show that S is quadratically closed. By $[\mathbf{7}, Lemma\ 1]$ there exists a k-valuation v of F with value group \mathbf{Z}^n and residue field F_v such that $S\subseteq F_v$ and $[F_v:S]<\infty$. Let (L,w) be a 2-henselization of (F,v). Then $a(L)\le n$ and we have a split exact sequence $1\to A\to G_L(2)\to G_{F_v}(2)\to 1$ where A is abelian of rank n. By Theorem 1, $a(L)=n+a(F_v)$, unless $F_v(\mu)=F_v(2)$ and $G_{F_v}(2)\cong \mathbf{Z}_2$. If $a(L)=n+a(F_v)$, then $a(L)\le n$ implies $a(F_v)=0$; i.e., F_v is quadratically closed (since $\sqrt{-1}\in S$). On the other hand, suppose $F_v(\mu)=F_v(2)$. As n>1, L contains the group μ of 2-power roots of unity and since (L,w) is 2-henselian with residue field F_v,F_v also contains μ . Hence F_v is quadratically closed in all cases, and, by a well-known theorem of Diller and Dress $[11, p.\ 254]$, S is also quadratically closed.

Conversely, assume $k(\sqrt{-1})$ is hereditarily quadratically closed. By Corollary 4 to Theorem 1, $a(F) \geq n$. However, by [7, Theorem] $\nu(F(\sqrt{-1})) = n + 1$. So, by Theorem 2, $a(F) \leq n$. \square

REMARK. The field $F = \mathbf{F}_p(t)$ shows that the assumption n > 1 is necessary. However, it is only needed to prove the implication $a(F) = n \Rightarrow k(\sqrt{-1})$ is hereditarily quadratically closed.

COROLLARY 1. If F/k is a finitely generated extension with $k(\sqrt{-1})$ hereditarily quadratically closed, then $a(F) = \operatorname{st}(F) = \nu(F(\sqrt{-1})) - 1$.

PROOF. Apply Theorem 3 and [7, Theorem]. \square

Elman and Wadsworth [7] prove, under the hypotheses of Corollary

1, that the cohomological 2-dimension of the absolute Galois group of F is equal to the stability index of F. I have not been able to determine whether $\operatorname{st}(F) = \operatorname{cd}(G_{F(\sqrt{-1})}(2))$. However, from Corollary 1 and Proposition, part (ii), we have

COROLLARY 2. If F/k is a finitely generated extension with $k(\sqrt{-1})$ hereditarily quadratically closed, then $\operatorname{st}(F) \leq \operatorname{cd}(G_{F(\sqrt{-1})}(2))$. Hence, if $H^n(G_{F(\sqrt{-1})}(2), \mathbb{Z}/2\mathbb{Z}) = 0$ then $I^nF(\sqrt{-1}) = 0$.

REFERENCES

- 1. J. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra, 110 (1987), 449-467.
- 2. E. Becker, "Hereditarily Pythagorean Fields and Orderings of Higher Level", Monografias de Matematica 29, IMPA, Rio de Janeiro, 1978.
- 3. L. Bröcker, Zur Theorie der quadratischen Formen über formal reelen Körpern, Math. Ann. 210, (1974) 233-256.
- 4. ——, Characterization of fans and hereditarily pythagorean fields, Math. Zeit. 151 (1976), 149-163.
- 5. R. Elman and T.Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
- 6. —— and ——, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
- 7. —— and A. Wadsworth, Hereditarily quadratically closed fields, J. Algebra 111 (1987), 475-482.
- 8. W.D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, J. Number Theory 1 (1969), 346-374.
- 9. B. Jacob and R. Ware, A recursive description of the maximal pro-2 Galois group via witt rings, Math. Zeit, to appear.
- 10. M. Kula, Fields with prescribed quadratic form schemes, Math. Zeit. 167 (1979), 201-212.
- T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, New York, 1973.
- 12. ——, "Orderings, Valuations, and Quadratic Forms", CBMS, No. 52, AMS, 1983.
- 13. J. Minac, Stability and cohomological dimension, C.R. Math. Rep. Acad. Sci. Canada VIII (1986), 13-18.
- 14. J.P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer-Verlag, New York/Berlin, 1965.
- 15. R. Ware, When are Witt Rings groups rings? II, Pacific J. Math. 76 (1978), 541-564.

16,	Quadratic	forms	and	profinite	$2\text{-}\mathit{groups},$	J.	Algebra	58	(1979),	227-
237.										

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

^{17. ——,} Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1328-1325.