STABILITY IN WITT RINGS AND ABELIAN SUBGROUPS OF PRO-2-GALOIS GROUPS

ROGER WARE

Let F denote a field of characteristic not two, let $F(2)$ be the maximal 2-extension (i.e., quadratic closure) of F, and let $G_{F}(2)=$ $\operatorname{Gal}(F(2) / F)$. In this note we introduce and study an invariant, $a(F)$, of F defined to be the largest integer m such that $G_{F}(2)$ has a closed torsion free abelian subgroup of rank m. [If there is no largest m, we define $a(F)=\infty]$. Recall that the (absolute) stability index of F, introduced in [5], is st $(F)=\min \left\{n \mid I^{n+1} F=2 I^{n} F\right\}$, where $I F$ is the fundamental ideal of even dimensional forms in the Witt ring, WF, of anisotropic quadratic forms over F and $I^{n} F$ is the $n^{\text {th }}$ power of this ideal. The connection between $a(F)$ and $\operatorname{st}(F)$ will be investigated and it will be shown that if F is a pythagorian field or a finitely generated extension of a hereditarily euclidean or hereditarily quadratically closed base field, then $a(F)=\mathrm{st}(F)$. First we present a few examples.

Examples. (1). $a(F)=0$ if and only if F is either euclidean (i.e., formally real with $\left|\dot{F} / \dot{F}^{2}\right|=2$) or quadratically closed if and only if $F(\sqrt{-1})$ is quadratically closed.
(2). If F is a finite, local, or global field, then $a(F)=1$.
(3). Let F be a rigid field (i.e., every element $a \notin \pm \dot{F}^{2}$ satisfies $F^{2}+a F^{2} \subseteq F^{2} \cup a F^{2}$) with $\left|\dot{F} / \dot{F}^{2}\right|=2^{m}>2$. Then $a(F)=m$ if and only if F is nonreal and $F(\sqrt{-1})$ contains all 2-power roots of unity: $a(F)=m-1$, otherwise. Special cases: $a\left(\mathbf{R}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)\right)=$ $a\left(\mathbf{C}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)=a\left(\mathbf{F}_{p}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)\right)=m\right.$.
(4). If $F=\mathbf{R}\left(t_{1}, \ldots, t_{n}\right)$ or $\mathbf{C}\left(t_{1}, \ldots, t_{n}\right)$, then $a(F)=n$.

Proof. (1) is clear and (4) will follow from Theorem 3.
(2). This is clear if F is finite. If F is local or global it can be proved using standard algebraic number theory (cf. [8] for a corresponding result for the absolute Galois group). We give an argument that uses
the Witt ring:
Let A be a closed torsion free abelian subgroup of $G_{F}(2)$ and let L be the fixed field of A. If rank $A=2$ then, by $[15$, Theorem 3.6], L contains all 2-power roots of unity and $W L \cong \mathbf{Z} / 2 \mathbf{Z}[V]$, with $|V|=4$. Hence, by Theorem 3.3 of $[\mathbf{1 7}]$, there is a valuation v on L with residue field L_{v} such that

$$
\left|\dot{L}_{v} / \dot{L}_{v}^{2}\right| \leq 2 \text { and } 1+M_{v} \subseteq L^{2}
$$

where M_{v} is the maximal ideal of the valuation ring of v. Also, because L / F is algebraic, $\left|\Gamma_{v} / 2 \Gamma_{v}\right|=2$, where Γ_{v} is the value group. This forces $\left|\dot{L}_{v} / \dot{L}_{v}^{2}\right|=2$ (so v is non dyadic) and implies that L_{v} contains all 2power roots of unity. As L_{v} is necessarily an algebraic extension of a finite field, this is impossible. Hence $a(F)=1$, as claimed.
(3). By [15], $G=G_{F}(2)$ is a metabelian pro-2-group, and, by [$\mathbf{9}$, Theorem 4.12], there is a split exact sequence $1 \rightarrow A \rightarrow G \rightarrow \bar{G} \rightarrow 1$ with A free abelian and $\bar{G} \cong \mathbf{Z}_{2}$, the additive group of 2 -adic integers, or $\bar{G} \cong \mathbf{Z} / 2 \mathbf{Z}$. In $[\mathbf{1 5}]$ it is shown that $G_{F}(2)$ is abelian if and only if F contains all 2-power roots of unity (as $m>1$). Hence $a(F)=m$ in this case. Similarly, if F is nonreal and $F(\sqrt{-1})$ contains all 2-power roots of unity, then, by $\left[15\right.$, Theorem 1.5], $\operatorname{rank} G_{F}(2)=\operatorname{rank} G_{F(\sqrt{-1})}(2)$. Since $G_{F(\sqrt{-1})}$ has maximal rank among abelian subgroups of $G_{F}(2)$ and $m=\operatorname{rank} G_{F}(2)$ we have $a(F)=m$ in this case, as well. If $\bar{G} \cong \mathbf{Z} / 2 \mathbf{Z}$, then F is formally real, $A \cong G_{F(\sqrt{-1})}(2)$, and $a(F)=$ rank $A=m-1(c f .[2$, Chapter III]).
Thus it remains to consider the case when $\bar{G} \cong \mathbf{Z}_{2}$ and $F(\sqrt{-1})$ does not contain all 2-power roots of unity. If rank $A>1$, then the fixed field L of A contains $F(\mu)$, where μ is the group of all 2-power roots of unity. Since $\operatorname{Gal}(L / F) \cong \mathbf{Z}_{2}$ it follows that $\operatorname{Gal}\left(F(\mu) /(F) \cong \mathbf{Z}_{2}\right.$ or $\mathbf{Z} / 2 \mathbf{Z}$. If $\operatorname{Gal}(F(\mu) / F) \cong \mathbf{Z} / 2 \mathbf{Z}$, then $F(\mu)=F(\sqrt{-1})$ (see, for example, $[\mathbf{9}$, Lemma 4.1]), a case we have excluded. Hence $\operatorname{Gal}(F(\mu) / F) \cong \mathbf{Z}_{2}$ and we obtain a (split) exact sequence $1 \rightarrow B \rightarrow G_{F}(2) \rightarrow \mathbf{Z}_{2} \rightarrow 1$ where $B=\operatorname{Gal}(F(2) / F(\mu))$. By [15], B is abelian and B is maximal among all abelian subgroups of $G_{F}(2)$. Hence $a(F)=a(B)=\operatorname{rank} G_{F}(2)-$ $1=m-1$. Finally, if rank $A=1$ then $\operatorname{rank} G_{F}(2)=2$ and the only possible cases occur as pro-2-Galois groups over nondyadic local fields (see [9; Table 5.2, Lemma 4.1, and the remark following the proof of Lemma 4.3]). Since $a(F)=1$ and $\left|\dot{F} / \dot{F}^{2}\right|=4$ for a nondyadic local field this completes the proof.

If G is an arbitrary pro-2-group we define $a(G)=\max \{m \mid G$ has a closed torsion free abelian subgroup of rank $m\}$. Recall that the cohomological dimension of a pro-2-group G is $\operatorname{cd}(G)=$ $\min \left\{n \mid H^{n}(G, \mathbf{Z} / 2 \mathbf{Z}) \neq 0\right\}[\mathbf{1 4}, \mathrm{I}-17]$.

PROPOSITION. Let G be a pro-2-group.
(i) If G is a torsion free abelian pro-2-group and if one of the numbers $a(G), \operatorname{cd}(G)$ is finite, then both are finite and $a(G)=\operatorname{cd}(G)$.
(ii) $a(G) \leq \operatorname{cd}(G)$, in general.
(iii) If H is a closed subgroup of finite index in G, then $a(H)=a(G)$.
(iv) If N if a closed normal subgroup of G such that G / N is a torsion group, then $a(N)=a(G)$.
(v) Suppose $1 \rightarrow N \rightarrow G \rightarrow \bar{G} \rightarrow 1$ is an exact sequence of pro-2groups with $\bar{G} \subseteq G_{k}(2)$ for some field k. Then $a(G) \leq a(\bar{G})+a(N)$.

Proof (i). It is a consequence of Pontryagin duality that a torsion free abelian pro-2-group is isomorphic to \mathbf{Z}_{2}^{I} for some index set I (where \mathbf{Z}_{2}^{I} denotes the direct product of $|\mathbf{I}|$ copies of the additive group \mathbf{Z}_{2} of 2 -adic integers). Since $\operatorname{cd}\left(\mathbf{Z}_{2}\right)=1$, (i) follows from $[\mathbf{1 4}, \mathrm{I}-32,33]$ and induction.
(ii). This follows from (i) and [14, I-20].
(iii). Let A be a closed torsion free abelian subgroup of G. Then $(A: A \cap H) \leq(G: H)<\infty$. We may assume rank $A \cap H<\infty$. Then rank $A<\infty$ (as $|A / A \cap H|<\infty)$ and, by (i), $a(A \cap H)=$ $\operatorname{cd}(A \cap H), a(A)=\operatorname{cd}(A)$. By [14, I-20], $\operatorname{cd}(A)=\operatorname{cd}(A \cap H)$, proving (iii).
(iv). Let A be a finitely generated closed torsion free abelian subgroup of G. It suffices to prove that $\operatorname{rank} A=\operatorname{rank} A \cap N$. Since G / N is a torsion group so is $A / A \cap N$, and because A is finitely generated (as a pro-2-group) this implies that $A / A \cap N$ is finite. Hence (iv) follows from (iii).
(v). Let A be a closed torsion free abelian subgroup of G. It suffices to show that $a(A) \leq a(A \cap N)+a(A / A \cap N)$. Since $A / A \cap N$ is a closed abelian subgroup of the pro-2-Galois group $G_{k}(2)$ there are only
two possibilities: either $A / A \cap N$ is torsion free or $|A / A \cap N|=2$. In the first case the sequence $1 \rightarrow A \cap N \rightarrow A \rightarrow A / A \cap N \rightarrow 1$ splits, so $a(A)=a(A \cap N)+a(A / A \cap N)$, and in the second, (iii) gives $a(A)=a(A \cap N)$.

COROLLARY If K / F is a finite 2-extension, then $a(F)=a(K)$.

REmARKS 1. Concerning the inequality $a(G) \leq \operatorname{cd}(G)$, one can have $a(G)<\operatorname{cd}(G)$. For example, $\operatorname{cd}(\mathbf{Z} / 2 \mathbf{Z})=\infty$ and $a(\mathbf{Z} / 2 \mathbf{Z})=0$; if F is a local or global field, then $\operatorname{cd}\left(G_{F}(2)\right)=2$, while $a\left(G_{F}(2)\right)=1$.
2. The inequality in (v) can be strict. For example, if $F=\mathbf{Q}_{3}$, then the 3 -adic valuation on F induces an exact sequence $1 \rightarrow \mathbf{Z}_{2} \rightarrow$ $G_{F}(2) \rightarrow G_{\mathbf{F}_{3}}(2) \rightarrow 1$ and $G_{\mathbf{F}_{3}}(2)=\mathbf{Z}_{2}$, so the corresponding inequality is $1<1+1$.
3. There are finite extensions K / F with $a(K)>a(F)$. Let $F=\mathbf{Q}(2)$, the quadratic closure of the rationals. In $[11, ~ p .219]$ it is shown that if K is any proper extension of F, then K is not quadratically closed. Hence $a(K)>0$.
4. I suspect that $a(F) \leq a(K)$ for any finite extension K / F but I have not been able to prove this.

THEOREM 1. Suppose F has a nondyadic 2-henselian valuation v with residue field F_{v} and value group Γ with $1 \leq|\Gamma / 2 \Gamma|<\infty$. Then
(i). $a(F)=\log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$ if and only if either $G_{F_{v}}(2) \varsubsetneqq \mathbf{Z}_{2}$ or $F_{v}(\mu) \neq F_{v}(2)$, where μ is the group of all 2-power roots of unity.
(ii). $a(F)=\log _{2}|\Gamma / 2 \Gamma|$ if and only if $F_{v}(\mu)=F_{v}(2)$.

Proof. We need a lemma:

Lemma. Let $G=G_{F}(2)$. If there exists a split exact sequence $1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1$ of pro-2-groups with A, B abelian and rank $B>1$, then G is abelian.

Proof. By Theorem 2.5 in [9] there is a field k such that $G_{k}(2) \cong B$ and $W F \cong W k\left[A / A^{2}\right]$. Since $\operatorname{rank} B>1, W k \varsubsetneqq \mathbf{Z}, \mathbf{Z} / 2 \mathbf{Z}$, so, by the Realization theorem of [1] (also see [9], the proof of Theorem 2.1), one can find a nondyadic 2-henselian valuation $v: F \rightarrow \Gamma$ with residue field F_{v} such that $A \cong \operatorname{Gal}\left(F_{n r} / F\right)$, where $F_{n r}$ is the maximal nonramified 2-extension of F with respect to v. By valuation theory, $B \cong G_{F_{v}}(2)$ and $\operatorname{rank} B>1$ implies F_{v} contains all 2-power roots of unity [15]. Since v is 2-henselian, F also contains all 2-power roots of unity. This implies that the metabelian group $G=G_{F}(2)$ is abelian [16].
(i). The 2-henselian valuation v gives rise to a split exact sequence $1 \rightarrow A \rightarrow G_{F}(2) \rightarrow G_{F_{v}}(2) \rightarrow 1$, where $A=G_{F_{n r}}(2)$ is abelian and $\operatorname{rank} A=\log _{2}|\Gamma / 2 \Gamma|$. By Proposition, part (v), $a(F) \leq \log _{2}|\Gamma / 2 \Gamma|+$ $a\left(F_{v}\right)$. If $a\left(F_{v}\right)>1$, then consider the split sequence $1 \rightarrow A \rightarrow$ $G_{0} \rightarrow B \rightarrow 1$, where $B \subseteq G_{F_{v}}(2)$ is a closed abelian subgroup of maximal rank and $G_{0} \subseteq G_{F}(2)$. By the lemma, G_{0} is abelian and $G_{0} \cong A \times B$. Hence $a(F) \geq \log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$, completing the proof in this case. If $a\left(F_{v}\right)=0$, then A is a maximal abelian subgroup of $G_{F}(2)$ so $a(F)=\log _{2}|\Gamma / 2 \Gamma|=\log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$. Thus it remains to consider the case $a\left(F_{v}\right)=1$.
Let μ be the group of all 2-power roots of unity and let $L=F(\mu)$. Since $\mu \subseteq F_{n r}$ we have a split sequence $1 \rightarrow A \rightarrow G_{L}(2) \rightarrow G_{k}(2) \rightarrow 1$, where $k=F_{v}(\mu)$. If $a(k)=1$, then a closed torsion free abelian subgroup $B \subseteq G_{k}(2)$ with rank $B=1$ gives rise to a split sequence $1 \rightarrow A \rightarrow G_{0} \rightarrow B \rightarrow 1$ with $G_{0} \subseteq G_{L}(2)$. As L contains μ, the metabelian group G_{0} is abelian and $G_{0} \cong A \times B$. Hence $a(F) \geq a(L) \geq \operatorname{rank} G_{0}=\log _{2}|\Gamma / 2 \Gamma|+1=\log |\Gamma / 2 \Gamma|+a\left(k_{v}\right)$, with Proposition (v) giving equality. If $a(k)=0$, then $F_{v}(\mu)=F_{v}(2)$ and $G_{F_{v}}(2) \cong \mathbf{Z}_{2}$ (if $G_{F_{v}}(2) \cong \mathbf{Z} / 2 \mathbf{Z}$ or 1 , then $a\left(F_{v}\right)=0$). This proves that $a(F)=\log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$, unless $F_{v}(\mu)=F_{v}(2)$ and $G_{F_{v}}(2) \cong \mathbf{Z}_{2}$. Finally we show that, conversely, these conditions imply that $a(F) \neq \log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$.

Given $F_{v}(\mu)=F_{v}(2)$ and $G_{F_{v}}(2) \cong \mathbf{Z}_{2}$ it follows that $G_{F}(2)$ is a nonabelian, metabelian pro-2-group and $a\left(F_{v}\right)=1$. Moreover, $\operatorname{rank} G_{F}(2)=\operatorname{rank} A+1=\log _{2}|\Gamma / 2 \Gamma|+1$. By Example (3), $a(F)=$ $\operatorname{rank} G_{F}(2)-1$. Hence $a(F)=\log _{2}|\Gamma / 2 \Gamma| \neq \log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$, completing the proof of (i).
(ii). This is contained in the proof of (i).

COROLLARY 1. Under the hypothesis of Theorem 1, either $a(F)=$ $\log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$ or $a(F)=\log _{2}|\Gamma / 2 \Gamma|$, and if $\left|\dot{F}_{v} / \dot{F}_{v}^{2}\right| \neq 2$, then $a(F)=\log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$.

COROLLARY 2. Suppose F has a nondyadic valuation v with residue field F_{v} and value group Γ. Then
(i). $a(F) \geq \log _{2}|\Gamma / 2 \Gamma|$.
(ii). If $G_{F_{v}}(2) \varsubsetneqq \mathbf{Z}_{2}$ or $F_{v}(\mu) \neq F_{v}(2)$ (in particular, if $\left.\left|\dot{F}_{v} / \dot{F}_{v}^{2}\right| \neq 2\right)$ then $a(F) \geq \log _{2}|\Gamma / 2 \Gamma|+a\left(F_{v}\right)$.

Proof. Let (L, w) be a 2-henselization of (F, v) [2, Chapter II], [4]. Then (L, w) has the same value group and the same residue as (F, v). Since L / F is a 2 -extension, $a(F) \geq a(L)$, so (i) and (ii) follow from Theorem 1.

COROLLARY 3. $a\left(k\left(t_{1}, \ldots, t_{n}\right)\right) \geq n+a(k)$, unless $k(\mu)=k(2)$ and $G_{k}(2) \cong \mathbf{Z}_{2}$.

Corollary 4. Let F / k be a finitely generated field extension with $\operatorname{tr} \operatorname{deg}_{k} F=n$. Then $a(F) \geq n$.

Proof. This follows from Corollary 2 and [7, Lemma 1].

REmARK. We will see that the inequality in Corollary 3 can be strict. For example, if k is quadratically closed but not hereditarily quadratically closed (e.g., $k=Q(2)$) it will follow from Theorem 3 that $a\left(k\left(t_{1}, \ldots, t_{n}\right)\right)>n$.
Recall that the ν-invariant of F, introduced by Elman and Lam in [6], is $\nu(F)=\min \left\{m \mid I^{m} F\right.$ is torsion free $\}$ and the reduced stability index of F, defined by Bröcker $[\mathbf{3}, \mathbf{4}]$, is st red $(F)=\min \left\{n \mid 2^{n} W_{\text {red }} F \subseteq C(X, \mathbf{Z})\right\}$, where $W_{\text {red }} F$ is the reduced Witt ring of F and $C(X, \mathbf{Z})$ is the ring of continuous functions on the topological space, X, of orderings on F.

THEOREM 2. (i) $a(F) \leq \nu(F(\sqrt{-1})-1$ and if F is nonreal, then $a(F) \leq \nu(F)-1$.
(ii) $\mathrm{st}_{\mathrm{red}}(F) \leq a(F) \leq \operatorname{st}(F)+1$.

Proof (i). Observe that if F is nonreal, then $\nu(F)$ is the index of nilpotence of the fundamental ideal $I F$. If $\nu(F(\sqrt{-1}))=1$, then $W F(\sqrt{-1}) \cong \mathbf{Z} / 2 \mathbf{Z}$ so $F(\sqrt{-1})$ is quadratically closed and $a(F)=0$. Hence, if $a(F)=1$, then $\nu(F(\sqrt{-1})) \geq 2$ so we may assume $a(F)>1$. Let A be a closed torsion free abelian subgroup of $G_{F}(2)$ of rank $m \geq 2$ and let L be its fixed field. By $\mathbf{1 5}, W L \cong \mathbf{Z} / 2 \mathbf{Z}\left[\dot{L} / \dot{L}^{2}\right]$ and $\log _{2}\left|\dot{L} / \dot{L}^{2}\right|=m$. Hence the index of nilpotence of the ideal $I L$ is $m+1$. Since $\sqrt{-1} \in L,[\mathbf{6}$, Theorem 6.3] implies that $\nu(F(\sqrt{-1})) \geq \nu(L)$, proving the first part of (ii). The second part of (ii) also follows from [6, Theorem 6.3].
(ii). The inequality $a(F) \leq \operatorname{st}(F)+1$ follows from (i) and the inequality $\nu(F(\sqrt{-1}))-2 \leq \operatorname{st}(F)$ [6, Corollary 4.7].
In [2, p. 143], Becker showed that $\mathrm{st}_{\text {red }}(F)+1$ is the largest integer n (or ∞) such that there is a 2 -extension K / F with K pythagorean and $G_{K(\sqrt{-1})}(2)$ abelian, $\log _{2}\left|\dot{K} / \dot{K}^{2}\right|=n$, and $K=F K^{2}$. As K is pythagorean, $\operatorname{rank} G_{K(\sqrt{-1})}(2)=n-1$ so $a(F) \geq n-1=\mathrm{st}_{\text {red }}(F)$.

Remarks 1. It can happen that $a(F)=\operatorname{st}(F)-1$; for example, if $F=\mathbf{Q}$, then $a(F)=1$ and $\operatorname{st}(F)=2$. However, I know no example where $a(F) \notin\{\operatorname{st}(F), \operatorname{st}(F)-1\}$. In particular, I suspect that the inequality in (i) can be improved to $a(F) \leq \operatorname{st}(F)$. By Theorem 2(i), this is true if $\sqrt{-1} \in F$.
2. The inequality st $_{\text {red }}(F) \leq a(F)$ can be strict. In fact, let $F_{1}=\mathbf{R}$ and let F_{2} be the power series field $\mathbf{C}((\Gamma))$, where $\Gamma=\mathbf{Z}^{(I)}$ is an infinite direct sum of copies of \mathbf{Z} ordered lexicographically (see, for example, [2; pp. 66, 119]). Then $W F_{1} \cong \mathbf{Z}, W F_{2} \cong \mathbf{Z} / 2 \mathbf{Z}[\Gamma / 2 \Gamma], G_{F_{1}}(2) \cong \mathbf{Z} / 2 \mathbf{Z}$, and $G_{F_{2}}(2) \cong \mathbf{Z}_{2}^{I}$. By a construction of Kula [10], there is a field F such that $W F \cong W F_{1} \times W F_{2}$, and, by a theorem of Jacob (see [9, Theorem 3.4]), $G_{F}(2)$ is the free product (in the category of pro-2-groups) of $\mathbf{Z} / 2 \mathbf{Z}$ and \mathbf{Z}_{2}^{I}. In particular, $a(F)=\infty$. Since $W F \cong \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}[\Gamma / 2 \Gamma], W_{\text {red }} F \cong \mathbf{Z}$ and $\mathrm{st}_{\text {red }}(F)=0$.

Theorem 2 has several corollaries:

COROLLARY 1. Let F be a pythagorean field. Then $a(F)=\operatorname{st}(F)=$ $\nu(F(\sqrt{-1})-1$.

Proof. By [12, Proposition 13.1], $\operatorname{st}(F)=\mathrm{st}_{\text {ed }}(F)$ and, because $\dot{F} / \dot{F}^{2} \rightarrow F(\dot{\sqrt{-1}}) / F(\dot{\sqrt{-1}})^{2}$ is surjective, $\operatorname{st}(F)=\nu(F(\sqrt{-1})-1$.
It appears to be an open question whether $\operatorname{st}(F)=\operatorname{cd}\left(G_{F(\sqrt{-1})}(2)\right)$ for an arbitrary pythagorian field F, although it has been shown by Minac $[\mathbf{1 3}]$ when $\left|\dot{F} / \dot{F}^{2}\right|<\infty$. In any event, Corollary 1 and Proposition (ii) yield

Corollary 2. Let F be a pythagorian field. If $H^{n}\left(G_{F(\sqrt{-1})}(2), \mathbf{Z} / 2 \mathbf{Z}\right)$ $=0$, then $I^{n} F(\sqrt{-1})=0$.

COROLLARY 3. If F is a formally real field with $a(F) \leq 1$, then F satisfies SAP (see [5, 12, 4]).

Corollary 4. Let F be a pythagorian field. Then $a(F) \leq 1$ if and only if $G_{F(\sqrt{-1})}(2)$ is a free pro-2-group.

Proof. Apply Corollary 3 and [16, Proposition 3.2].

Corollary 5. Let F be a nonreal field. Then $a(F) \leq \log _{2}\left|\dot{F} / \dot{F}^{2}\right|$.

Proof. We may assume $\log _{2}\left|\dot{F} / \dot{F}^{2}\right|=n<\infty$: A result of Kneser states that every quadratic form of dimension $>2^{n}$ is isotropic [11, p. 317], whence, by a theorem of Pfister, $I^{n+1} F=0$ [11, p. 317]. Hence $a(F) \leq n$, as desired.

REMARK. Corollary 5 should hold for formally real fields, as well. In fact, if F is pythagorian, then the inequality can be improved to $a(F) \leq \log _{2}\left|\dot{F} / \dot{F}^{2}\right|-1$. On the other hand, using Theorem 2 and $[11$,

Theorem 3.4, p. 202], I have only been able to obtain the inequality $a(F) \leq 2 \log _{2}\left|\dot{F} / \dot{F}^{2}\right|-2$, in general.

THEOREM 3. (cf. [7]) Let F / k be a finitely generated extension with $\operatorname{tr} \operatorname{deg}_{k} F=n>1$. Then $a(F)=n$ if and only if $k(\sqrt{-1})$ is hereditarily quadratically closed.

Proof. Assume $a(F)=n$ and let S be a simple algebraic extension of $k(\sqrt{-1})$. It suffices to show that S is quadratically closed. By [7, Lemma 1] there exists a k-valuation v of F with value group \mathbf{Z}^{n} and residue field F_{v} such that $S \subseteq F_{v}$ and $\left[F_{v}: S\right]<\infty$. Let (L, w) be a 2 -henselization of (F, v). Then $a(L) \leq n$ and we have a split exact sequence $1 \rightarrow A \rightarrow G_{L}(2) \rightarrow G_{F_{v}}(2) \rightarrow 1$ where A is abelian of rank n. By Theorem 1, $a(L)=n+a\left(F_{v}\right)$, unless $F_{v}(\mu)=F_{v}(2)$ and $G_{F_{v}}(2) \cong \mathbf{Z}_{2}$. If $a(L)=n+a\left(F_{v}\right)$, then $a(L) \leq n$ implies $a\left(F_{v}\right)=0$; i.e., F_{v} is quadratically closed (since $\sqrt{-1} \in S$). On the other hand, suppose $F_{v}(\mu)=F_{v}(2)$. As $n>1, L$ contains the group μ of 2-power roots of unity and since (L, w) is 2-henselian with residue field F_{v}, F_{v} also contains μ. Hence F_{v} is quadratically closed in all cases, and, by a well-known theorem of Diller and Dress [11, p. 254], S is also quadratically closed.
Conversely, assume $k(\sqrt{-1})$) is hereditarily quadratically closed. By Corollary 4 to Theorem $1, a(F) \geq n$. However, by [7, Theorem] $\nu(F(\sqrt{-1}))=n+1$. So, by Theorem $2, a(F) \leq n$.

REMARK. The field $F=\mathbf{F}_{p}(t)$ shows that the assumption $n>1$ is necessary. However, it is only needed to prove the implication $a(F)=n \Rightarrow k(\sqrt{-1})$ is hereditarily quadratically closed.

COROLLARY 1. If F / k is a finitely generated extension with $k(\sqrt{-1})$ hereditarily quadratically closed, then $a(F)=\operatorname{st}(F)=\nu(F(\sqrt{-1}))-1$.

Proof. Apply Theorem 3 and [7, Theorem].

Elman and Wadsworth [7] prove, under the hypotheses of Corollary

1, that the cohomological 2-dimension of the absolute Galois group of F is equal to the stability index of F. I have not been able to determine whether $\operatorname{st}(F)=\operatorname{cd}\left(G_{F(\sqrt{-1})}(2)\right)$. However, from Corollary 1 and Proposition, part (ii), we have

COROLLARY 2. If F / k is a finitely generated extension with $k(\sqrt{-1})$ hereditarily quadratically closed, then $\operatorname{st}(F) \leq \operatorname{cd}\left(G_{F(\sqrt{-1})}(2)\right)$. Hence, if $H^{n}\left(G_{F(\sqrt{-1})}(2), \mathbf{Z} / 2 \mathbf{Z}\right)=0$ then $I^{n} F(\sqrt{-1})=0$.

REFERENCES

1. J. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra, 110 (1987), 449-467.
2. E. Becker, "Hereditarily Pythagorean Fields and Orderings of Higher Level", Monografias de Matematica 29, IMPA, Rio de Janeiro, 1978.
3. L. Bröcker, Zur Theorie der quadratischen Formen über formal reelen Körpern, Math. Ann. 210, (1974) 233-256.
4. Characterization of fans and hereditarily pythagorean fields, Math. Zeit. 151 (1976), 149-163.
5. R. Elman and T.Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
6. - and ——, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
7. and A. Wadsworth, Hereditarily quadratically closed fields, J. Algebra 111 (1987), 475-482.
8. W.D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, J. Number Theory 1 (1969), 346-374.
9. B. Jacob and R. Ware, A recursive description of the maximal pro-2 Galois group via witt rings, Math. Zeit, to appear.
10. M. Kula, Fields with prescribed quadratic form schemes, Math. Zeit. 167 (1979), 201-212.
11. T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, New York, 1973.
12. , "Orderings, Valuations, and Quadratic Forms", CBMS, No. 52, AMS, 1983.
13. J. Minac, Stability and cohomological dimension, C.R. Math. Rep. Acad. Sci. Canada VIII (1986), 13-18.
14. J.P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. 5, SpringerVerlag, New York/Berlin, 1965.
15. R. Ware, When are Witt Rings groups rings? II, Pacific J. Math. 76 (1978), 541-564.
16. ——, Quadratic forms and profinite 2-groups, J. Algebra 58 (1979), 227237.
17. , Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1328-1325.

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

