
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 19, Number 3, Summer 1989 

S T A B I L I T Y I N W I T T R I N G S A N D 
A B E L I A N S U B G R O U P S O F P R O - 2 - G A L O I S G R O U P S 

ROGER WARE 

Let F denote a field of characteristic not two, let F(2) be the 
maximal 2-extension (i.e., quadratic closure) of F , and let Gp(2) — 
G a l ( F ( 2 ) / F ) . In this note we introduce and study an invariant, a(F), 
of F defined to be the largest integer m such that GF(2) has a closed 
torsion free abelian subgroup of rank m. [If there is no largest ra, 
we define a(F) = oo]. Recall that the (absolute) stability index of F , 
introduced in [5], is st (F) = min{n | In+lF = 2 J n F } , where IF is the 
fundamental ideal of even dimensional forms in the Wit t ring, W F , of 
anisotropic quadratic forms over F and InF is the n t h power of this 
ideal. The connection between a(F) and s t (F) will be investigated and 
it will be shown that if F is a pythagorian field or a finitely generated 
extension of a hereditarily euclidean or hereditarily quadratically closed 
base field, then a(F) = st (F ) . First we present a few examples. 

EXAMPLES. (1). a(F) = 0 if and only if F is either euclidean (i.e., 
formally real with | F / F 2 | = 2) or quadratically closed if and only if 
F( \ /—Ï) is quadratically closed. 

(2). If F is a finite, local, or global field, then a(F) — 1. 

(3). Let F be a rigid field (i.e., every element a £ ±F2 satisfies 
F 2 + aF2 Ç F 2 U aF2) with | F / F 2 | = 2 m > 2. Then a(F) = m 
if and only if F is nonreal and F( \ /—Ï) contains all 2-power roots of 
unity: a(F) = m — 1, otherwise. Special cases: a ( R ( ( £ i ) ) . . . ((tm))) = 
a (C( ( i i ) ) • . . ((tm)) = a (Fp ( (* ! ) ) . . . ((tm)))=m. 

(4). If F = R(ti,...,tn) or C ( * i , . . . , * n ) , then a ( F ) = n. 

PROOF. (1) is clear and (4) will follow from Theorem 3. 

(2). This is clear if F is finite. If F is local or global it can be proved 
using standard algebraic number theory (cf. [8] for a corresponding 
result for the absolute Galois group). We give an argument that uses 

Copyright ©1989 Rocky Mountain Mathematics Consortium 

985 



986 R. WARE 

the Wit t ring: 

Let A be a closed torsion free abelian subgroup of GF(2) and let L 
be the fixed field of A. If rank A = 2 then, by [15, Theorem 3.6], L 
contains all 2-power roots of unity and WL = Z/2Z[V], with |V| = 4. 
Hence, by Theorem 3.3 of [17], there is a valuation v on L with residue 
field Lv such that 

\LV/Ll\ < 2 a n d 1 + M„ Ç L 2 

where Mv is the maximal ideal of the valuation ring off. Also, because 
L/F is algebraic, | r „ / 2 r w | = 2, where Tv is the value group. This forces 
\LV/L%\ — 2 (so v is non dyadic) and implies that Lv contains all 2-
power roots of unity. As Lv is necessarily an algebraic extension of a 
finite field, this is impossible. Hence a(F) — 1, as claimed. 

(3). By [15], G = GF(2) is a metabelian pro-2-group, and, by [9, 
Theorem 4.12], there is a split exact sequence 1—>^4—>G—>G—>1 
with A free abelian and G = Z2, the additive group of 2-adic integers, 
or G = Z /2Z . In [15] it is shown that GF{2) is abelian if and only if F 
contains all 2-power roots of unity (as m > 1). Hence a(F) = m in this 
case. Similarly, if F is nonreal and F( \ /—Ï) contains all 2-power roots 
of unity, then, by [15, Theorem 1.5], rank GF{2) = rank GFt^z\\(2). 
Since Gpt^jzri) has maximal rank among abelian subgroups of GF{2) 
and m = rank GF{2) we have a(F) = m in this case, as well. If 
G = Z /2Z , then F is formally real, A ^ G F ( v / C Î ) ( 2 ) , and a(F) = 
rank A = m - 1 (cf. [2, Chapter III]). 

Thus it remains to consider the case when G = Z2 and F(>/—Î) does 
not contain all 2-power roots of unity. If rank A > 1, then the fixed field 
L of A contains F(/z), where // is the group of all 2-power roots of unity. 
Since G a l ( L / F ) ^ Z 2 it follows that Gal(F(/x) /(F) ^ Z 2 or Z /2Z . If 
Gal(F( /x) /F) ^ Z /2Z , then F(/x) = F ( v ^ î ) (see, for example, [9, 
Lemma 4.1]), a case we have excluded. Hence Ga l (F ( / i ) /F ) = Z2 and 
we obtain a (split) exact sequence 1 —• B —• Gp(2) —> Z2 —» 1 where 
£? = G a l ( F ( 2 ) / F ( ^ ) ) . By [15], ß is abelian and B is maximal among 
all abelian subgroups of Gp(2). Hence a(F) = a(B) = rank GF(2) — 
1 = m — 1. Finally, if rank 4̂ = 1 then rank GF(2) = 2 and the only 
possible cases occur as pro-2-Galois groups over nondyadic local fields 
(see [9; Table 5.2, Lemma 4.1, and the remark following the proof of 
Lemma 4.3]). Since a(F) = 1 and | F / F 2 | = 4 for a nondyadic local 
field this completes the proof. D 
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If G is an arbitrary pro-2-group we define a(G) = max{ra | G 
has a closed torsion free abelian subgroup of rank ra}. Recall 
that the cohomological dimension of a pro-2-group G is cd(G) = 
min{n|#n(G, Z/2Z) ^ 0} [14, 1-17]. 

PROPOSITION. Let G be a pro-2-group. 

(i) If G is a torsion free abelian pro-2-group and if one of the numbers 
a(G), cd(G) is finite, then both are finite and a(G) — cd(G). 

(ii) a(G) < cd(G), in general. 

(iii) If H is a closed subgroup of finite index in G, then a(H) — a{G). 

(iv) If N if a closed normal subgroup of G such that G/N is a torsion 
group, then a(N) — a(G). 

(v) Suppose l-+N-+G—>G-+lisan exact sequence of pro-2-
groups with G Ç G&(2) for some field k. Then a(G) < a(G) -f a(N). 

PROOF (i). It is a consequence of Pontryagin duality that a torsion 
free abelian pro-2-group is isomorphic to Z2 for some index set I (where 
Z2 denotes the direct product of |I| copies of the additive group Z2 of 
2-adic integers). Since cd(Z2) = 1, (i) follows from [14, 1-32,33] and 
induction. 

(ii). This follows from (i) and [14, 1-20]. 

(iii). Let A be a closed torsion free abelian subgroup of G. Then 
(A : A n H) < (G : H) < 00. We may assume rank A D H < 00. 
Then rank A < 00 (as \A/A H H\ < 00) and, by (i), a(A n H) = 
cd{AC)H), a(A) = cd(i4). By [14, 1-20], cd(i4) = cd(AnH), proving 
(iii). 

(iv). Let A be a finitely generated closed torsion free abelian 
subgroup of G. It suffices to prove that rank A = rank A fi N. Since 
G/N is a torsion group so is A/A fl N, and because A is finitely 
generated (as a pro-2-group) this implies that A/A fl iV is finite. Hence 
(iv) follows from (iii). 

(v). Let A be a closed torsion free abelian subgroup of G. It suffices 
to show that a(A) < a(A fi N) + a(A/A D N). Since A/A n N is a 
closed abelian subgroup of the pro-2-Galois group G^(2) there are only 
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two possibilities: either A/A fl TV is torsion free or \A/A D N\ — 2. 
In the first case the sequence l ^ A n N ^ A - * A/A D N —> 1 
splits, so a(A) = a(A fl N) + a(A/A fl TV), and in the second, (iii) gives 
a(A) = a(ADN). u 

COROLLARY If K/F is a finite 2-extension, then a(F) = a(K). 

REMARKS 1. Concerning the inequality a(G) < cd(G), one can have 
a{G) < cd(G). For example, cd(Z/2Z) = oo and a (Z /2Z) = 0; if F is 
a local or global field, then cd(G F (2)) = 2, while a(GF(2)) = 1. 

2. The inequality in (v) can be strict. For example, if F = Q3, 
then the 3-adic valuation on F induces an exact sequence 1 —> Z2 —> 
Gp(2) —> G?3(2) —> 1 and G F 3 ( 2 ) = Z 2 , so the corresponding 
inequality is 1 < 1 + 1. 

3. There are finite extensions K/F with a(K) > a(F). Let F = Q(2), 
the quadratic closure of the rationals. In [11, p. 219] it is shown that 
if K is any proper extension of F, then K is not quadratically closed. 
Hence a(K) > 0. 

4. I suspect that a(F) < a(K) for any finite extension K/F but I 
have not been able to prove this. 

THEOREM l. Suppose F has a nondyadic 2-henselian valuation v 
with residue field Fv and value group T with 1 < |T /2 r | < 00. Then 

(i). a(F) = log2 | r / 2 r | + a(Fv) if and only if either GFv(2) £ Z 2 or 
Fv(fi) ^ Fv(2), where ß is the group of all 2-power roots of unity. 

(ii). a(F) = log2 | r / 2 r | if and only if Fv(fi) = Fv{2). 

PROOF. We need a lemma: 

LEMMA. Let G = Gp(2). If there exists a split exact sequence 
l - > i ^ G - > ß ^ l o / pro-2- groups with A, B abelian and rank 
B > 1, then G is abelian. 
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PROOF. By Theorem 2.5 in [9] there is a field k such that Gk{2) 9* B 
and WF ^ Wk[A/A2]. Since rank £ > 1, Wk ^ Z, Z /2Z , so, by the 
Realization theorem of [1] (also see [9], the proof of Theorem 2.1), one 
can find a nondyadic 2-henselian valuation v : F —» T with residue field 
Fv such that A = G a l ( F n r / F ) , where Fnr is the maximal nonramified 
2-extension of F with respect to v. By valuation theory, B = GFV(2) 
and ranki? > 1 implies Fv contains all 2-power roots of unity [15]. 
Since v is 2-henselian, F also contains all 2-power roots of unity. This 
implies that the metabelian group G = G F (2 ) is abelian [16]. 

(i). The 2-henselian valuation v gives rise to a split exact sequence 
1 -> A -> G F (2) -> GFv(

2) -* 1> w h e r e 4 = G F n r (2 ) is abelian and 
rank ,4 = log2 | r / 2 r | . By Proposition, part (v), a(F) < log2 | r / 2 r | + 
a(Fv). If a(Fv) > 1, then consider the split sequence 1 —» A —• 
Go —> -B —> 1, where B Ç GFV(2) is a closed abelian subgroup of 
maximal rank and Go Ç G F ( 2 ) . By the lemma, Go is abelian and 
Co = i x ß . Hence o(F) > log2 | r / 2 r | + a(Fv), completing the proof 
in this case. If a(Fv) = 0, then A is a maximal abelian subgroup of 
G F (2 ) SO a(F) = log2 | r / 2 r | = log2 | r / 2 r | +a(Fv). Thus it remains to 
consider the case a(Fv) = 1. 

Let n be the group of all 2-power roots of unity and let L = F([i). 
Since fi Ç Fnr we have a split sequence 1 —> 4̂ —» G L (2) —• Gfc(2) —> 1, 
where fc = Fv{ji). If a(fc) = 1, then a closed torsion free abelian 
subgroup J5 Ç Gfc(2) with rank B = 1 gives rise to a split sequence 
1 - > , 4 - » G O - > £ - + 1 with G0 Ç G L (2) . AS L contains 
/z, the metabelian group Go is abelian and Go = A x B. Hence 
a(F) > a(L) > r a n k G 0 = log2 | r / 2 r | 4- 1 = l o g | r / 2 r | + a(kv), with 
Proposition (v) giving equality. If a(k) — 0, then Fv{\x) — Fv(2) 
and G n ( 2 ) ^ Z 2 (if GFv(2) ^ Z / 2 Z or 1, then a(Fv) = 0). This 
proves that a(F) = log2 | r / 2 r | + a(Fv), unless Fv(fi) = Fv(2) and 
GFV(2) = Z 2 . Finally we show that , conversely, these conditions imply 
that a(F) / log2 | r / 2 r | + a(Fv). 

Given Fv(fi) = Fv{2) and GFv(2) ^ Z 2 it follows that GF(2) is 
a nonabelian, metabelian pro-2-group and a(Fv) = 1. Moreover, 
r a n k G F ( 2 ) = rank ,4 + 1 = log2 | T / 2 r | + 1. By Example (3), a(F) = 
r a n k G F ( 2 ) - 1. Hence a{F) = log2 | T / 2 r | ^ log2 | T / 2 r | + a(Fv), 
completing the proof of (i). 

(ii). This is contained in the proof of (i). D 
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COROLLARY 1. Under the hypothesis of Theorem 1, either a(F) = 
log2 | r / 2 r | + a{Fv) or a(F) = log2 |T/2r|, and if \FV/F%\ / 2, then 
a(F) = log 2 | r /2 r |+a(F ? ; ) . 

COROLLARY 2. Suppose F has a nondyadic valuation v with residue 

field Fv and value group T. Then 

(i). a ( F ) > l o g 2 | r / 2 r | . 

(ii). IfGFv{2)¥Z2 orFv(fi) # Fv(2) (in particular, if\Fv/Ff\ ^ 2) 
then a{F) > log2 | r / 2 r | + a{Fv). 

PROOF. Let (L,w) be a 2-henselization of (F,v) [2, Chapter II], [4]. 
Then (L,w) has the same value group and the same residue as {F,v). 
Since L/F is a 2-extension, a(F) > a(L), so (i) and (ii) follow from 
Theorem 1. D 

COROLLARY 3. a(k(ti,... ,£„)) > n + a(k), unless k(fjb) = A:(2) anrf 
Gk(2)^Z2. 

COROLLARY 4. Le^ F/A: be a finitely generated field extension with 
trdegfcF = n. Then a(F) > n. 

PROOF. This follows from Corollary 2 and [7, Lemma 1]. D 

REMARK. We will see that the inequality in Corollary 3 can be 
strict. For example, if k is quadratically closed but not hereditarily 
quadratically closed (e.g., k = Q(2)) it will follow from Theorem 3 that 
a(fc(*i,...,*„)) > n. 

Recall that the v~invariant of F , introduced by Elman and Lam in [6], 
is v(F) = min{m | ImF is torsion free} and the reduced stability index of 
F , defined by Bröcker [3, 4], is st r ed(F) = min{n |2 n ^ r e d F Ç C(X, Z)}, 
where Wve^F is the reduced Witt ring of F and C(X, Z) is the ring of 
continuous functions on the topological space, X, of orderings on F. 



STABILITY 991 

THEOREM 2. (i) a(F) < v(F(^f::l) - 1 and if F is nonreal, then 
a(F) < v{F) - 1. 

( i i ) s t r e d ( F ) < a ( F ) < s t ( F ) + l. 

PROOF (i). Observe that if F is nonreal, then v{F) is the index 
of nilpotence of the fundamental ideal IF. If i/(F(v/—Î)) = 1, then 
WF(^Ï) S* Z/2Z so F{yf^l) is quadratically closed and a{F) = 0. 
Hence, if a(F) = 1, then i/(F(\/—Ï)) > 2 so we may assume a(F) > 1. 
Let A be a closed torsion free abelian subgroup of Gp(2) of rank 
m > 2 and let L be its fixed field. By 15, WL 9* Z/2Z[L/L2] and 
log2 \L/L2\ = m. Hence the index of nilpotence of the ideal JL is m +1. 
Since V^7! e X, [6, Theorem 6.3] implies that i / (F( v

/ z ï ) ) > i/(L), 
proving the first part of (ii). The second part of (ii) also follows from 
[6, Theorem 6.3]. 

(ii). The inequality a(F) < st (F) + 1 follows from (i) and the 
inequality ^{y/^l)) - 2 < st (F) [6, Corollary 4.7]. 

In [2, p. 143], Becker showed that st r e (j(F) + 1 is the largest integer 
n (or oo) such that there is a 2-extension K/F with K pythagorean 
and Gtf(v/zT)(2) abelian, log2 \K/K2\ = n, and K = FK2. As K is 
Pythagorean, rankG#(v/rn(2) = n — 1 so a(F) > n — 1 = stred (F). 

REMARKS 1. It can happen that a(F) = st(F) - 1; for example, if 
F = Q, then a(F) = 1 and st(F) — 2. However, I know no example 
where a(F) ^ {st(F), st(F) — 1}. In particular, I suspect that the 
inequality in (i) can be improved to a(F) < st(F). By Theorem 2(i), 
this is true if \ / -T € F . 

2. The inequality stre(j(F) < a(F) can be strict. In fact, let F\ = R 
and let F2 be the power series field C((r)) , where T — JS1^ is an infinite 
direct sum of copies of Z ordered lexicographically (see, for example, [2; 
pp. 66, 119]). Then WFX £ Z, WF2 ^ Z/2Z [T/2r], GFl(2) = Z/2Z, 
and Gp2(2) = Z2. By a construction of Kula [10], there is a field 
F such that W F = WF\ x l^F2 , and, by a theorem of Jacob (see 
[9, Theorem 3.4]), GF(2) is the free product (in the category of 
pro-2-groups) of Z/2Z and Z2. In particular, a(F) = oo. Since 
WF^Zx Z/2Z[r/2r] , WredF £ Z and st r e d(F) = 0. 
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Theorem 2 has several corollaries: 

COROLLARY l. Let F be a pythagorean field. Then a(F) = s t (F) = 
v(F(y/=\) - 1. 

PROOF. By [12, Proposition 13.1], s t (F) = s t e d (F ) and, because 

F/F2 - • F{V=ï)/F(y/=î)2 is surjective, s t (F ) = v(F(y/=ï) - 1. 

It appears to be an open question whether s t (F) = cd(Gf
F/>/crY)(2)) 

for an arbitrary pythagorian field F , although it has been shown 
by Minac [13] when | F / F 2 | < oo. In any event, Corollary 1 and 
Proposition (ii) yield 

COROLLARY2. Let F be a pythagorian field. IfHn(GF{^rzT)(2)i Z /2Z) 

= 0, then 7 n F ( v / T ï ) = 0. 

COROLLARY 3. If F is a formally real field with a(F) < 1, then F 
satisfies SAP (see [5, 12, 4]). 

COROLLARY 4. Let F be a pythagorian field. Then a(F) < 1 if and 
only z/G r

F/vrry)(2) is a free pro-2-group. 

PROOF. Apply Corollary 3 and [16, Proposition 3.2]. 

COROLLARY 5. Let F be a nonreal field. Then a(F) < log2 | F / F 2 | . 

PROOF. We may assume log2 | F / F 2 | = n < oo. A result of Kneser 
states that every quadratic form of dimension > 2 n is isotropic [11, p. 
317], whence, by a theorem of Pfister, In+lF = 0 [11, p. 317]. Hence 
a(F) < n, as desired. D 

REMARK. Corollary 5 should hold for formally real fields, as well. 
In fact, if F is pythagorian, then the inequality can be improved to 
a(F) < log2 | F / F 2 | - 1. On the other hand, using Theorem 2 and [11, 
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Theorem 3.4, p. 202], I have only been able to obtain the inequality 
a(F) < 21og2 | F / F 2 | - 2, in general. 

THEOREM 3. (cf. [7]) Let F/k be a finitely generated extension with 
tr degkF = n > 1. Then a(F) — n if and only if fc(\/—Ï) is hereditarily 
quadratically closed. 

PROOF. Assume a(F) = n and let S be a simple algebraic extension 
of fc(>/~T). It suffices to show that S is quadratically closed. By [7, 
Lemma 1] there exists a &-valuation v of F with value group Zn and 
residue field Fv such that S Ç Fv and [Fv : 5] < oo. Let (L,w) 
be a 2-henselization of (F,v). Then a(L) < n and we have a split 
exact sequence 1 —* A —> GL (2) —* GFV{2) —> 1 where v4 is abelian of 
rank n. By Theorem 1, a(L) — n + a(Fv), unless Fv(/i) — Fv(2) and 
GFv(2) ^ Z2. If a(L) = n + o(F„), then a(L) < n implies a(F,;) = 0; 
i.e., Fv is quadratically closed (since \ /^T € S). On the other hand, 
suppose Fv(fi) = Fv(2). As n > 1, L contains the group ji of 2-power 
roots of unity and since (L,w) is 2-henselian with residue field FViFv 

also contains /x. Hence Fv is quadratically closed in all cases, and, 
by a well-known theorem of Diller and Dress [11, p. 254], S is also 
quadratically closed. 

Conversely, assume k(y/^ï)) is hereditarily quadratically closed. By 
Corollary 4 to Theorem 1, a(F) > n. However, by [7, Theorem ] 
v{F(yf^ï)) = n - f i . So, by Theorem 2, a(F) <n.u 

REMARK. The field F — Fp(£) shows that the assumption n > 1 
is necessary. However, it is only needed to prove the implication 
a(F) — n =$• fc(\/--î) is hereditarily quadratically closed. 

COROLLARY 1. If F/k is a finitely generated extension with k(\/^T) 
hereditarily quadratically closed, then a(F) = st(F) = i/(F(\/—Ï)) — 1. 

PROOF. Apply Theorem 3 and [7, Theorem]. D 

Elman and Wadsworth [7] prove, under the hypotheses of Corollary 
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1, that the cohomological 2-dimension of the absolute Galois group of F 

is equal to the stability index of F. I have not been able to determine 

whether st(F) = cd (GFf^r[\(2)). However, from Corollary 1 and 

Proposition, part (ii), we have 

COROLLARY 2. If F/k is a finitely generated extension with k(y/^ï) 

hereditarily quadratically closed, then s t (F) < cà(GF(yry)(2)). Hence, 

z /# n (G F ( v / 3T) (2 ) , Z/2Z) = 0 then / n F ( v
/ z T ) = 0. 
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