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FINITE SPACES OF SIGNATURES: 
RESEARCH ANNOUNCEMENT 

VICTORIA POWERS 

Mulcahy's Spaces of Signatures [3] provide an abstract setting for 
Becker and Rosenberg's reduced Witt rings of higher level [1], along the 
same lines as Marshall's Spaces of Orderings setting for the ordinary 
reduced Witt ring. 

This note concerns a generalization of Marshall's result that a finite 
Space of Orderings arises in connection with a field [2]. 

DEFINITION. A Space of Signatures (SOS) is a pair (X,G), where G 
is an abelian group of even exponent, and X Ç G* = Horn (G, fi) {fi 
being the complex roots of 1), which satisfies certain axioms (see [3]). 

(X, G) is said to be realizable when (X, G) = (XT,K/T) for a 
preordered field {JRT, T}. 

Let (X, G) be a SOS such that \G\ = 2s for some s e N. Our main 
result is 

THEOREM 1. (X,G) is realizable. 

The general idea of the proof of Theorem 1 is Marshall's: We show 
that (X, G) can be built up from smaller SOS's, and since the building 
operations preserve realizability, we can use induction. 

DEFINITION. (X, G) is said to be a group extension of an SOS 
(X01G0) if G0 Ç G and X = {a G G* : a\Go G X0}. If we just 
say that (X, G) is a group extension, we mean that (X, G) is a group 
extension of an SOS (X0, Go) where G0 # G. 

An SOS (X, G) is said to be a direct sum of the SOS's (Xi,G\) and 
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(X2 , G2) if G ~ Gx x G2 and X = Xx U X 2 , where Xx and X 2 have the 
obvious embeddings in G* ~ G\ x G%. 

The following is proven in [4]: 

THEOREM 2. A group extension of a realizable SOS is realizable, and 
a direct sum of realizable SOS '5 is realizable. 

To prove Theorem 1 we need only show that (X, G) is either a group 

extension or a direct sum, for then we can use induction. (The smallest 

possible SOS is trivially realizable.) 

We must first classify certain small SOS 's by brute force. 

PROPOSITION 3. If G has < 3 cyclic summands, then (X,G) is either 
a direct sum or a group extension. 

The proof of Proposition 3 is long and complicated. We use Mulcahy's 
Rigidity Theorem [3, 5.5]: if G contains x such that both x and — x are 
rigid, then (X, G) is a group extension. Note that in Marshall's case, 
i.e., when G2 = 1, Proposition 3 is trivial. 

If a, T £ X we say a is equivalent to r , written a ~ r , when there 
exists a e X\{a~l,T~1} such that ara G X. 

This is actually an equivalence relation on X , but the proof that ~ 
is transitive requires most of the work needed for the proof of our next 
result. 

THEOREM 4. / / X has only one equivalence class w.r.t. ~ , then 
(X, G) is a group extension. 

Finally we have 

THEOREM 5. If X has more than one equivalence class w.r.t. ~ , then 
(X, G) is a direct sum. 
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Putting everything together Theorem 1 is now proven. 

Of course we would like to prove Theorem 1 for finite SOS 's without 
the 2-power assumption on the order of G. Unfortunately many of our 
methods do not seem to extend to the general case. 
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