FINITE SPACES OF SIGNATURES: RESEARCH ANNOUNCEMENT

VICTORIA POWERS

Mulcahy's Spaces of Signatures [3] provide an abstract setting for Becker and Rosenberg's reduced Witt rings of higher level [1], along the same lines as Marshall's Spaces of Orderings setting for the ordinary reduced Witt ring.

This note concerns a generalization of Marshall's result that a finite Space of Orderings arises in connection with a field [2].

DEFINITION. A Space of Signatures (SOS) is a pair (X, G), where G is an abelian group of even exponent, and $X \subseteq G^* = \text{Hom}(G, \mu)$ (μ being the complex roots of 1), which satisfies certain axioms (see [3]).

(X,G) is said to be realizable when $(X,G) = (X_T, \dot{K}/\dot{T})$ for a preordered field $\{K,T\}$.

Let (X, G) be a SOS such that $|G| = 2^s$ for some $s \in \mathbb{N}$. Our main result is

THEOREM 1. (X,G) is realizable.

The general idea of the proof of Theorem 1 is Marshall's: We show that (X, G) can be built up from smaller SOS's, and since the building operations preserve realizability, we can use induction.

DEFINITION. (X,G) is said to be a group extension of an SOS (X_0,G_0) if $G_0 \subseteq G$ and $X = \{\sigma \in G^* : \sigma|_{G_0} \in X_0\}$. If we just say that (X,G) is a group extension, we mean that (X,G) is a group extension of an SOS (X_0,G_0) where $G_0 \neq G$.

An SOS (X,G) is said to be a *direct sum* of the SOS's (X_1,G_1) and

Received by the editors on October 1, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium

 (X_2, G_2) if $G \simeq G_1 \times G_2$ and $X = X_1 \cup X_2$, where X_1 and X_2 have the obvious embeddings in $G^* \simeq G_1^* \times G_2^*$.

The following is proven in [4]:

THEOREM 2. A group extension of a realizable SOS is realizable, and a direct sum of realizable SOS 's is realizable.

To prove Theorem 1 we need only show that (X, G) is either a group extension or a direct sum, for then we can use induction. (The smallest possible SOS is trivially realizable.)

We must first classify certain small SOS's by brute force.

PROPOSITION 3. If G has ≤ 3 cyclic summands, then (X, G) is either a direct sum or a group extension.

The proof of Proposition 3 is long and complicated. We use Mulcahy's Rigidity Theorem [3, 5.5]: if G contains x such that both x and -x are rigid, then (X, G) is a group extension. Note that in Marshall's case, i.e., when $G^2 = 1$, Proposition 3 is trivial.

If $\sigma, \tau \in X$ we say σ is *equivalent* to τ , written $\sigma \sim \tau$, when there exists $\alpha \in X \setminus \{\sigma^{-1}, \tau^{-1}\}$ such that $\sigma \tau \alpha \in X$.

This is actually an equivalence relation on X, but the proof that \sim is transitive requires most of the work needed for the proof of our next result.

THEOREM 4. If X has only one equivalence class w.r.t. \sim , then (X,G) is a group extension.

Finally we have

THEOREM 5. If X has more than one equivalence class w.r.t. \sim , then (X, G) is a direct sum.

SIGNATURES

Putting everything together Theorem 1 is now proven.

Of course we would like to prove Theorem 1 for finite SOS's without the 2-power assumption on the order of G. Unfortunately many of our methods do not seem to extend to the general case.

REFERENCES

1. E. Becker and A. Rosenberg, Reduced Forms and Reduced Witt Rings of Higher Level, J. Algebra 92 (1985), 477-503.

2. M. Marshall, Classification of Finite Spaces of Orderings, Canad. J. Math. 31 (1979), 320-330.

3. C. Mulcahy, An Abstract Approach to Higher Level Forms and Rigidity, Comm. Algebra **16** (1988), 577-612.

4. V. Powers, Characterizing Reduced Witt Rings of Higher Level, Pacific. J. Math. 128 (1987), 333-347.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII AT MANOA, HONOLULU, HI 96822