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In memory of the late Professor Hei Braun 

1. Introduct ion. Let Tgk(k > 1) be the genus consisting of 
all equivalence classes of positive definite even unimodular quadratic 
lattices of rank 8k. In an element L of Tg*:, a vector x in L is called 
a 2ra-vector if x satisfies (#, x) = 2ra, where (, ) is the inner product 
of L and 2ra is an even integer. In obtaining a complete picture of the 
configurations of all equivalence classes in T%k{k > 4), the classes of 
lattices without 2-vectors would be a main obstacle. 

In this paper, we study the subfamily T^o of r 4 0 consisting of 
all equivalence classes of lattices without 2-vector. As in [7], we 
use £2m(L) (respectively, C2ml+2m2{L)) to denote the sublattice of L 
generated by all 2m-vectors (respectively 2mi-vectors and 2m2-vectors) 
in L. In §2, we prove 

THEOREM 1. Let L be a lattice in T^o- Then we have 

L = £4+6 (L). 

In §3,we shall introduce the notion of the c-sublattice of a lattice in 
T4o,o- We expect this notion would play a role in the study of the 
structures of lattices in T4o,o, and also in r32,o. However our present 
study of the e sublattice is merely a beginning of exploration. 

We collect some standard notations used throughout the paper: Q is 
the field of rational numbers, Z is the ring of rational integers, M(l , k) 
(respectively S(l, k)) is the linear space of modular (respectively cusp) 
forms of degree 1 and weight &, Efc(z) is Eisenstein series of degree 
1 and weight fc, Ai2(z) is the normalized cusp form of degree 1 and 
weight 12. Special notations are explained in the appropriate places if 
necessary. 
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The author thanks the referee for giving the author many useful 
suggestions to simplify the paper. 

2. S o m e prel iminaries and the proof of T h e o r e m 1. Let L 
be an element of T ^ o - Then theta-series of degree 1 attached to L is 
defined by 

e ( z , L ) = £ e ( ( x , x ) z ) , 

where z is the variable on the upper-half plane H and e(-) = exp(7rz). 
The theta-series with spherical function Pv of degree v attached to L 
is defined by 

9(z, P„, L) = J2 P-(x; <*)e((x> x)z), 
x£L 

where a is a vector in L(g)z Q. For the spherical function P^(x; a ) , one 
may refer to [1], [11] or [7]. 

If we use the set A2t(L) defined by 

A2f(L) = {x e L\{x,x) = 2t}, 

and its cardinality 

a(t, L) = cardinality of A2t(L)i 

then B(z, L) can be rewritten as 

Q(z,L) = J2 E e«x'x)z) 
*=0 xeA 2 t (L) 
oo 

= ^ a ( £ , L ) e ( 2 £ z ) . 
*=o 

The number a(£, L) is the number of the solutions x in L of (x, x) = 2t. 
Similarly we have 

oo 

e(z,P„,L) = £ Y, ^(x;a)e((x,x)z) . 
(=1 xgA2t(L) 
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It is known that 

(1) 0(z, L) <E M(l , 20), 9(z, Pu, L) e S(l, 20 + v) 

and 

(2) dimM(l,20) = 2, dimS(l,20 + i/) = 1 fori; = 2,6 

and dim S(l, 20 + v) = 2 for i/ = 4,8. 

We take E|(z) and JEf (z)Ai2(s) as the basis of M(l,20), and 8(2, L) 
is expressed as 

(3) 0(*, L) = B|(z) - 1200£4
2(z)A12(z). 

The equation (3) is obtained by comparing the Fourier coefficients of 
three series in (3). We give some values of a(t, L)'s: 
(4) 
a(0, L) = 1, o(l, L) = 0, a(2, L) = 39600 and a(3, L) = 87859200. 

Since A2(L) is the empty set, we must have 

(5) O(z,P2 ,L) = 0, 

(6) 6(z, PA,L) = ciAf2(z) with a constant ci, 

(7) 9 ( z , P 6 , L ) = 0 

and 

(8) 6(z, P8, L) = C2#4(z)Af2(z) with a constant c2. 

Now we assume that L ^ £4+6(1/). Then the quotient module 
L/£4+e(L) is not equal to {0}. We take a minimal non-zero repre
sentative w of L/C4+6(L). Namely, w satisfies the conditions 

(9) ( w , w ) > 8 

and 

(10) (w,w) < (x,x) for any x = w mod£4+6(I/). 

If we can show a contradiction, then we can conclude that L = £4+6 {L). 
This will imply Theorem 1. 
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To get more precise informations on w, we use the quantities 

A^fc(w) = the cardinality of {x € À4(L)|(x, w) = k} 

and 

Nfc(w) = the cardinality of {y G Ae(Z/)|(y,w) = k}. 

Clearly we have Mk(w) = M_ f c(w) and Nk(w) = N_k(w). The 
following lemma is easy to prove, and we give it without proof . 

LEMMA 2-1. Let w be a minimal non-zero representative in a residue 
class of L/C4+e(L). Then we have 

(11) M fc(w) / 0 only when k = 0, ± 1 , ± 2 

and 

(12) Nk(w) # 0 only when k = 0, ± 1 , ± 2 , ± 3 . 

Put t ing a = w in the equations (5) and (7), it follows that 

(13) £ ( x , w ) 2 = ^ ^ Yl (x ,x ) = 3960(w,w), 
40 

x£A4(L) xEA4(L) 

and 

u£A6{L) 

13178880(w,w). 

(14) yeAe(^) U G A 6 ( L ) 

By means of (6) and the values of the Fourier coefficients of Af 2 (z) , we 
get 

(15) Yl *My;w) = -48 Yl p4(x;w). 
yeA6(L) X É A 4 ( L ) 
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Using the explicit expression of P4, the equation (15) becomes 
(16) 

E (y.w)4-£(w,w) E (y,w)* + ̂  E (y.y)2 

^A6(L) y€A6(L) yeAe(L) 

= -48 E (x,w)4 + ̂ p} £ (X|W)a 
x€A4(L) xGA4(L) 

- ^ ^ E (*>*)2-77 
xGA4(L) 

Substituting (13) and (14) into (16), we get 

(17) ] T (y,w)4 = -48 Yl (x,w)4 + 5702400(w,w)2 

y€A6(L) xGA4(L) 

From (7), we obtain 
(18) 

E pe(x,w) 
xeA4(/>) 

= E ((x,w) 6 -g(x,w) 4 (x ,x)(w,w) 
x€A4(L 

4 5 / x2/ \ 2 / \2 1 5 ( X , X ) 3 ( W , W ) 3 \ 
+ 4 8 " i 6 ( X ' W ) ( X ' X ) ( W ' W ) - 48-46-44 ) = 

and 
(19) 

E pe(y;w) 
y€A6(t) 

= E ( (^w) 6 -g (w ,w) (y ,y ) (y ,w) 4 

y€A6(L) 

45 , x 9 / x 9 / ,0 15(y,y)3(w, w)3\ 
+ 4 8 T 4 6 ( y ' y ) ( W ' W ) ( y ' W ) - 48 46-44 ) = °" 

Using (13) and (14), the equations (18) and (19), respectively, become 

(20) E (x,w)6 = jj(w,w) E ( x , w ) 4 - 9 0 0 ( w , w ) 3 

x€A4(L) xGA4(L) 
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and 

(21) Yl (y,w)6 = ^ ( w , w ) J2 (y,w)4-6739200(w,w)3 , 
y e A 6 ( L ) y e A 6 ( L ) 

respectively. By means of (8) and the values of the Fourier coefficients 
of E4(z)Af2(z) we get 

(22) Y, ft(y;w) = 192 Yl p s(x;w) . 
yGA 6 (L) xGA 4 (L) 

Using explicit expression of Pg given in [7], the equation (22) becomes 
(23) 

E ((y-w)8 - n ( y 'w ) 6 ( y ' y ) ( w 'w ) + 2^ ( y ' w ) 4 ( y ' y ) 2 ( w ' w ) 2 

yeAeW 

Ä ( y ' w ) 2 ( y ' y ) 3 ( w ' w ) 3 + Ä ( y ' y ) 4 ( w ' w ) 4 ) 
Y ( (x,w) 8 - ^ ( x , w)6(x,x)(w, w) + ^ ( x , w ) 4 ( x , x ) 2 ( w , w ) 2 

13v ' v /v ' y 260 

xGA 4 (L) 

7 („ „ ^ 2 / v v x 3 / x3 , 7 ( X , X ) 4 ( W , W ) 4 ^ 2080 
( x , w ) 2 ( x , x ) 3 ( w , w ) 3

+ 3 8 ^ 2 0 >). 

Substituting (13), (14), (20), (21) into (23) and rearranging the equa
tion, we get 

J2 (y* w ) 8 -^( w > w ) 2 J2 (y,w)4 + 14031360(w,w)4 

( 2 4 ) 1144 
= 192 E ( x , w ) 8 - ^ ( w , w ) 2 E (x 'w)4-

xGA 4 (L) xGA 4 (L) 

The equation (24) is transformed, by using (17), into 
(25) 

E (y,w)8 = 192 J2 ( x ,w) 8 -420(w,w) 2 £ (x,w)4 

yGA 6 (L) xGA 4(L) xGA 4 (L) 

+ 3931200(w,w)4. 
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Taking Lemma 2-1 into account, we see that 

(26) Yl ( x , w ) r = (M!(w) + 2 rM2(w)) 
x<EA4(L) 

and 

(27) ] T (y,w)r = 2(iV1(w) + 2riV2(w) + 3riV3(w)), 

where r is a positive even integer > 2. In terms of (26) and (27), the 
equations (13), (14),(17), (20) and (25) respectively can be transformed, 
by putting (w, w) = m, into 

(28)Mi(w) + 4M2(w) = 1980m, 

(29) iVi(w) + 4iV2(w) + 9N3(w) = 6589440m, 

(30) TVi(w) + 167V2(w) + 81iV3(w) 

= - 4 8 ( M I ( W ) + 16M2(w)) + 2851200m2, 

(31)Mi(w) + 64M2(w) = ^ ( M i ( w ) - h l 6 M 2 ( w ) ) -450m 3 , 

JVi(w) 4- 64iV2(w) -I- 7297V3(w) 

(32) = ^ ( ^ i ( w ) 4 - 1 6 A r 2 ( w ) + 81^3(w)) -3369600m3 

and 

(33) 7Vi(w) -f 256iV2(w) + 6561AT3(w) = 192^Mi(w) + 256M2(w)) 

- 420m2 (Mi (W) -f 16M2 ( w)) 4- 1965600m4 

respectively. We can easily solve the equations (28), (29), (30), (31) 
and (32), and the solutions are given by 

(34)Mi(w) = -24m(5m2 - 110m 4- 352)/(m - 4), 

(35)M2(w) = m(30m2 - 165m + 132)/(m - 4), 

(36) JVi (w) = m(81000m3 - 1864440m2 

+ 16085520m - 39701376)/(m - 4), 

(37) N2(w) = m(-32400m3 4- 604080m2 

- 2898720m + 4004352)/(m - 4) 

and 
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(38) N3{w) = m(5400m3 - 61320m2 + 233200m - 297088)/(m - 4). 

Here we show that if there is a minimal representative w of L/C^+^L) 
with (w, w) > 8, for a lattice L in T ^ o , then we reach a contradiction. 
We remark that ATfc(w) and Mfc(w) are non-negative integers. If 
( w , w ) = m > 20, then we get M i ( w ) < 0, which contradicts the 
nature of M i ( w ) . Therefore, we may assume m < 18. 

For even m with 8 < m < 18, we give the reasons for the impossibility 
of (w, w) = m. For m = 14 (respectively m = 18), we have 

M2(w) = 14 x 3702/10 £ Z 

(respectively M2(w) = 18 x 6882/14 g Z). 

For m = 16, iV2(w) = - 4 x 20441088/3 < 0. For m = 12, 10 or 8, we 
get the positive integers M i ( w ) , M 2 (w) , A^i(w), N2{w) and A ^ w ) , but 
these values do not satisfy the condition (33). We have thus established 
the Theorem 1. D 

REMARK 1. One may suspect that the equality C±{L) = L would 
hold for L G T ^ o - However, this is not always true. The examples in 
[9] show that £4+6{L) = L and A ( L ) / L for some L G r4 0 ,o- This 
question is closely connected with the existence of the c-sublattice, 
which is introduced in the next section, of type D40 in L G T4o,o. 

3. Introduct ion of the not ion of the c-sublattice. Throughout 
this section, L is a lattice in r4o,o- A c-sublattice M of L is defined as 
follows. 

DEFINITION. Let T be a system of 4-vectors satisfying 

(i) for any pair of vectors x and y in T, (x, y) = 0(mod2); 

(ii) there is no larger system of 4-vectors Ti , which contains T, 
satisfying (i). 

M is the sublattice of L generated by T over Z. 

We say an integral lattice is a root lattice if it has a basis consisting 
of 2-vectors. 
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PROPOSITION 3-1. Let the notations be as above. The c-sublattice M 
of L is similar to a root lattice. 

PROOF. Let x i , . . . , x* be all elements of T, which defines M. Putting 

Yi = l/v^Xi, 1 < i < t, 

then y i , . . . , y« are 2-vectors satisfying 

(39) ( y i , Y i ) e Z 

The last condition (39) is guaranteed by the condition (i) for T. 
Therefore the lattice U generated by 2-vectors y i , . . . ,yt is an integral 
lattice. By Proposition 2-2 in [5], the lattice U has a basis consisting 
of 2-vectors, and U is a root lattice. D 

By the above proposition, the c-sublattice M is similar to an orthog
onal sum of irreducible root lattices An(n > 1), Dn(n > 4), Z?6, Er and 
#8 (see, e.g., [5]), and the scaling factor is always l / \ /2 . 

In what follows, we assume that 

(*) the c — sublattice M of L is similar to D40. 

We can give examples of lattices L in T^o satisfying the above 
assumption. In fact, let C be any one of doubly even [40, 20, 8] binary 
codes given in [8], then the construction A in [2] gives the lattice L\ 
in T40 of type 40 x A\. An adjacent lattice L of L\ in the sense of 
M. Kneser, which has no 2-vectors, is shown to have the c-sublattice 
satisfying the assumption (*). 

REMARK 2. It is obvious that the notion of the c-sublattice can be 
defined also for 1̂ 4,0 and 1̂ 32,0• and for any L G 1^4,0, we can show 
that the c-sublattice of L is similar to D24. In this case, the modular 
form theory works quite well, and this fact leads to a characterization of 
the Leech lattice. In the cases 1̂ 32,0 and I ^ o ^ at present we cannot say 
whether the c-sublattice M of L in 1̂ 32,0 (respectively T4o,o) is similar 
to D32 (respectively D40). This time the modular form theory does not 
help. 
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Without loss of generality, we may assume that M is generated by 
±ft ± fj which satisfy 

(f i , f i) = 2«ü, for 1 < z' < J < 40, 

where 6ij is Kronecker delta. We say that a vector x in L is a minimal 
representative of the equivalence class x + M if x satisfies 

(40) (x, x) < (y, y ) , for all y G x + M. 

By assumption (*) rank L = rank M = 40, and any vector x in L can 
be written as 

(41) x = a i f i + a 2 f 2 + h a40f4o with a; G Q, 1 < i < 40. 

The following is easy to prove. 

LEMMA 3-2. Let the notations be as above. Then the coefficients ai 
of a vector x of the form (41) satisfy either 

(42) all ai belong to Z /4 - Z /2 

or 

(43) all ai belong to Z /2 . 

We call a vector x of the form (41) with condition (42) (respectively 
(43)) a vector of the first kind (respectively the second kind). The set 
of the vectors of the second kind in L forms a sublattice J of L, and 
we see that 

LDJDM. 

Let x and y be two vectors of the first kind. Then each coefficient of 
x - y belongs to Z /2 . This implies that 

x = y (mod J ) . 

We can conclude that 

L = J + ( J - h r ) ( a disjoint union), 
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where r is a vector of the first kind. 

After a brief consideration it is easy to see that the coefficients of 
a minimal vector r of the first kind satisfy one of the following two 
conditions. 

(44) all ai = ±1/4 (i = 1 , . . . ,40) 

or 

(45) 39 di's = ±1/4 and one a{ = ±3/4. 

We remark that the vector r satisfying the condition (44) is non
existent because, for such r, (r, r) is not an even integer. It is easy to 
see that the vector r satisfying the condition (45) is equivalent modulo 
M to 

(46) a = l/4(±fi ± • • • ± f39 ± 3f40). 

Without loss of generality, we may assume that the vector 

r = l /4(/ i + . . . + /3 9 - 3/40) e L. 

LEMMA 3-3. Let J and M be the sublattices of L € F ^ o defined as 
above. Then we have 

(i) A vector x of the form (41), which belongs to J, is a minimal 
representative of a class in J/M if and only if all a^ equal to zero or x 
takes the form 

(47) x = - ( p i | f < 1 + . . - + p<rf i r), 

where each pik = ±1; 

(ii) The coefficients pik in (47) satisfy r = 0(mod4) and 

r 

(48) n ^ = L 

k=\ 

PROOF, (i). By the definition of the lattice J, the coefficients ai of 
an element x of J are integers or half-integers. Similar to the above 
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discussion for the vector r of the first kind, one sees that if x' is a 
minimal representative of a class in J/M, then x' is expressible either 
as 

(49) x' = -(A^f^ H h KJir) + cLjfj with \ik,a,j = ±1 

J T1 Ai1? . . . , Aik 

or is of the form (47). But the vector x' of the form (49) is not minimal. 
Conversely, the zero vector or the vector of the form (47) cannot be 
minimized any more. This completes the proof of (i). 

(ii) . We see that 

1 r 1 
(X'X) = ô E ^ = 97 -T 

k=\ 

and 

(50) (r>x) = ( f 5 ^ + - + ̂  , , Ì f
f^

< 4° 
40. 

Since L is an even lattice, r must satisfy r = 0(mod4). Since L is 
integral, from (50) we have 

(51) Pil +-- + pir =0(mod4). 

Under the condition r = 0(mod4), the condition (51) is equivalent to 
(48). This completes the proof of (ii). D 

By Lemma 3-3, we can take x of the form (47) satisfying r = 0(mod 4) 
and (48). Any such vector is equivalent modulo M to a unique vector 

(52) ti; = l /2( f i l +fi a + . " + f i r). 

DEFINITION. We call a minimal representative of the form (52) the 
canonical representative of J/M. We take the zero vector as the 
canonical representative of M. 
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We define a mapping tp from J/M to the 40 dimensional vector space 
F20 over the field of 2 elements F2 = G F (2). Let x be a non-zero 
canonical representative of the form (52), then tp(x) = supp (x) = 
(xi) G F20 (the support of x) is the binary vector whose coordinates 
are given by 

*i = \l VZU,'",i- 1<*<40. 

To the zero vector x0, we define <^(xo) = 0 G F20. The weight 
w£(supp (x)) of the binary vector supp (x) is defined to be the number 
of non-zero coordinates of supp (x). 

Let x and y be two non-zero canonical different representatives of 
J/M, then x + y is not necessarily minimal. 

DEFINITION. We define supp (x) * supp (y) as the number of the 
coordinates of <p{x) and </?(y) taking the value 1 in common. Let w be 
the canonical representative of the class to which x + y belongs, then 
we easily see that 

(53) utf(supp (w)) = wt(supp (x))+wt(supp (y)) —2supp (x)*supp (y) 

and 

(54) supp (x) • supp (y) = supp (x) * supp (y)(mod 2), 

where supp (a:) • supp (y) is the inner product of the space F20. We 
define y?(x + y) by y?(w). Then we can verify that 

(55) v?(x + y) = ^(x) + y>(y) 

holds. 

The next theorem connects J/M with a code. For the notion and the 
standard notations in the coding theory one may refer [3] or [10]. We 
prove 

THEOREM 2. Let L be an element of T^^. Assume that the c-
sublattice M of L is similar to D40. J is sublattice defined as above. 
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Then the mapping ip defines an isomorphism between J/M and a doubly 
even binary [40,20] code C with non-zero minimal weight 8. 

PROOF. Let x be a canonical representative of a class / M in J/M. 
By Lemma 3-3, (ii), we see that 

(56) utf(supp (x)) = r = 0(mod4) 

and 

(57) (x ,x ) = r / 2 

Let x and y be two canonical representatives of different classes in 
J/M, and w be the canonical representative of the class to which x + y 
belongs. By (53) and (56) we see that 

(58) supp(x) * supp(y) = 0(mod2). 

By appealing to Theorem 4 in [10], the properties (54), (56) and 
(58) imply that C, the image of J/M under ip, is a doubly even self-
orthogonal binary code of length 40. By (57) and that L does not 
contain a 2-vector, we get 

utf(supp(x)) > 8. 

It remains to prove that C is self-dual. We let M # denote the dual 
lattice of M. Since M is similar to D40 with scaling factor \ / 2 , the 
determinant d(M) of the lattice is given by 

d(M) = 240d(L>4o) 

= 2 4 2 . 

It is known (e.g., [4]) that 

d(M) = [M* : M] 

= [M* :J*\[J* : L}[L : J}[J : M], 

[J:M} = [M* : J*] 

and 

[J*:L] = [L:J]. 
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Since we see that [L : J] = 2, we get 

(59) [J:M} = 220. 

Since (f is an injective map from J/M into F^0, the self-duality of C 
follows from (59). D 

4. Concluding remarks. In the course of §3, although we restricted 
our consideration of the first kind vector to 

r = -(fi H f39 - 3f4o), 

it is provable that any vector of the first kind leads to a unique 
isomorphism class in T^o- With this fact, we can prove that two 
isomorphic lattices L\ and L^ in F ^ o with their c-sublattices similar 
to D40 induce equivalent [40,20,8] binary codes. In [8], we give 
three inequi valent such codes. From these codes three non-isomorphic 
lattices Li, L2 and L3 in T^o arise (Conf. [9]) with the property that 
Li = C4+6(Li) and L?: ^ C4(Li) (i = 1,2,3). 

Perhaps T^o is the last stage where the binary codes play a role in 
constructing the even unimodular extremal lattices. In the construction 
(or the understanding) of even unimodular extremal lattices of rank 48 
(respectively 56 and 64), some ternary codes may play a role. However, 
the notion of c-sublattice can be applied even to these cases by adjusting 
l/y/3 as the scaling factor instead of l / \ /2-
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