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PROPER EMBEDDING INTO A UNIT LATTICE

YOSHIO MIMURA

0. Introduction. An n-dimensional quadratic lattice is a free
module of rank n over the rational integer ring Z, which is endowed
with a symmetric bilinear form B. Let E, be a unit lattice, that is an
n-dimensional quadratic lattice which has an orthonormal basis with
respect to B, i.e.,

E, =%Ze+ -+ Ze,, B(ei,ej)zéij,

where 0;; is the Kronecker delta. Let A be a positive integer. A
sublattice F' of E,, is an r-frame of scale A if

F=2fi+---+2Zf., B(fi,f;) = Abi;.

A frame F in E, is proper if B(F,e;) # {0} for each j. In this situation
we have a problem:

(*) When does E,, contain a proper r-frame of scale A?

We shall give a complete answer in the case of r = 2. Why proper?
The Siegel Mass Formula can answer the question: When does F,
contain an r-frame of scale A?

This problem leads to diophantine equations in the following:
(#) E, contains a proper 1-frame of scale A if and only if there are
integers z1,...,x, in Z satisfying

1:]2+'+3372,=A, xl#O,,xn#U;

(##) E, contains a proper 2-frame of scale A if and only if there are
integers z1,...,%n,Y1,...,Yn in Z satisfying

i+t =+ Yl = A, Tyt Tayn =0,
z1#0 or y; #0,...,2, #0 or y, #0.
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T. Ono proposed an interesting problem - a skew hanging of picture
frames - which leads to the above problem (*) in the case of n = 3 and
r=2.

We can write A = 2°A; A3, where p = j mod 4 for all prime divisors
pof A;(j =1,3).

1. 1-frames. This case is to characterize the set S, of sums of n
non-zero squares by (#).

THEOREM 1. Let n # 3. E, contains a proper 1-frame of scale A if
and only if one of the following is satisfied:

(1) n =1, A is a square;

(2) n =2, A3 is a square, e is odd or A; > 1;

(3)n=4, A#1,3,509,11,17,29,41,2 - 4% 6 - 4% 14 - 4*;

() n=>5 A+1,23,46,79,10,12,15,18,33;
(5)n>6,A+#1,2,...,n—1,n+1,n+2,n+4,n+5,n+7,n+10,n+13.

PROOF. It is classical for n = 1,2. Assume n > 4. All the con-
ditions are clearly necessary by direct calculations. In case n =
4, it suffices to show that A € S; if A # 0mod8 and A #
1,3,5,9,11,17,29,41,2,6,14. When A # 1 mod4, we define an in-
teger C by A = a? + C, where a = 1 (if A = 4,7 mod8), a = 2
(f A = 2mod8), and a = 4 (if A = 3,6 mod8). When A =
1 mod4, we define an integer C by A = a? + 4C, where a = 1
(if A = 13,25 mod32), a = 3 (if A = 1,21 mod32), a = 5 (if
A=5,17mod32), and a = 7 (if A = 9,29 mod32). Then C is a posi-
tive integer with C' = 3,6 mod 8; Hence we have C € S3 by a classical
result. Therefore A € S;. In case n > 5, we use induction on n. Put
T, ={n,n+3,n+6,n+8,n+9,n+11,n+12}U{m € Z : m > n+14}.
Take A € Ts with A # 33. If A < 45, then we have A € S5 by di-
rect calculations. If A > 45, then either A — 12 or A — 22 is an odd
positive integer > 41. Hence it is a sum of four non-zero squares from
the case of n = 4. Then we have A € S5. Take A € T,, with n > 6.
Then we have A — 12 € T,,_,. By the inductive hypothesis, we have
A—-1%2 € S, (except n = 6 and A = 34). Thus A € S, (and
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34=22+22422422432+3?%).0

REMARK. In case n = 3, the problem is: what A is a sum of three
non-zero squares? This is a famous and open problem. We may assume
that A = 1,2,5 mod 8 (because we know the following: A € S3 if and
only if 44 € S3, A€ S3if A = 3,6 mod8, A ¢ S3 if A =7 mod8).
Under the notation A = 2¢°A; A3, we may assume that Az is a square
(because we know that A € S; if A3 is not a square). If A contains an
odd square > 1, then we have

A=+’ +wlor A=u? =02 +u?

for some non-zero integers u,v,w by Theorem 2 (in case n = 3) in
the next section. If A is the first, then we have A € S3. If A is the
second, then u contains a prime p = 1 mod4 since vw # 0. First
suppose that A # p?. The same argument implies that A/p? € S3 or
A/p? = v} +w? with vyw; # 0. Hence A € S3 or A = (pv;)*+(pw)? =
(pv1)? + ((s* — t?)w1)? + (2stw;)? € Ss, since we can write p = s2 + t2
with s > ¢t >0. Let A=p? = (2 —t2)2 + (2st)2. f s=0o0rt =0
or s2 = t2 mod 5, then we have A € S3 since (5r)2 = (3r)% + (4r)2.
Otherwise, we have s2 = —t2 mod 5, so p = 5. We note that 25 ¢ Ss.
After all we may consider the case where A is square-free, A > 1, and
p = 1 mod 4 for all prime divisors of A. In this case, we have the known
formulas
#{(a,b) € Z*:a* +b* +* = A} = 2'*!

and
#{(a,b,c) € Z®:a® + b? 4+ c® = A} = 12h(—A) > 12- 2",

where t is the number of distinct primes in 4a, and h(—A) is the ideal
class number of quadratic field Q(v/—A). Hence we have A € S if and
only if h(—A) = 2!~1. This result shows that A € S; if and only if each
genus contains only one ideal class in the quadratic field Q(v/—A4). A
numerical example shows that if A < 1376256, then it occurs if and
only if A =1,2,5,10,13,25,37, 58, 85, 130.

2. 2-frames.
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THEOREM 2. E, contains a proper 2-frame of scale A if and only if
one of the following is satisfied:

(1) n =2, A3 is a square;

(2) n =3, A3z is a square, A contains an odd square > 1;
(3) n >4, n is even, A > n/2;

() n=5, A#1,2,3,56,9,21;

B)yn=7, A#1,2,3,4,7;

(6) n>9,n is odd, A> (n+3)/2.

PROOF. Consider the Gaussian integer ring I' = Z[i] with i = \/—1.
Putting z; = x;+y;i in (##), the lattice E, contains a proper 2-frame
of scale A if and only if

($) there are Gaussian integers z1,..., 2, € I satisfying
224 4+22=0, N(z1)+---+N(z,) =24, 21#0,...,2, #0,

where N(z) = zZ is the norm of z. If the condition ($) holds, then we
have n > 2.

(1). Casen = 2. By ($), we have 22 = —2%,s0 N(21) = N(z2). Hence
A = N(z;), which shows Aj is a square. Conversely assume that As is
a square. Then we have A = N(z;) with 0 # 2; € I". Putting z2 = iz,
we see that the condition ($) holds.

(2). Case n = 3. Assume that the condition ($) holds. By & we
denote a G.C.D. of 21,2, and 23. Put z; = dw; with w; € I'. Take a
prime 7 = 1 + . We may suppose that w; = wes = 1, ws = 0 mod,
since w? + w? + w? = 0. Then we have w3 = 0 mod 4, by noticing that
w? = +1, w2 = 41, w? =0, 2{ mod4 and w? + w? + w2 = 0 mod 4.
Hence we see that

(iwy +w2)/2 = B%e, (iwy —wo)/2=7%"", w3 =28y
with 3,7 € I and € € {£1, +i}. Hence we have
wy = —i(B% +9%7"), wp =Bl -7,

whence 24 = N(8)(N(w1)+ N(w2)+ N(w3)) = 2N(6)(N(8) + N(7))%.
Using the fact

l=w,=p*—4?=p—~ymodr and By #0,
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we see that N(8)+ N(v) is odd and greater than 1, and that A contains
an odd square > 1. We note that N(§) is of form 2¥a a3 with a3 a
square (see the end of §0).

Conversely assume that As is a square and A contains an odd square
a? > 1. Thus we (‘an write A = N((S)a with § € I'. A classical result
shows that a = zl +1'2 + :L'3 +:c4 with x1,x2, 23,24 € Z and z23 # 0.
Put B = z; + iz, ¥ = x3 +iT4, w1 = —i(B% +7?), wa = (% — 72,
w3 = 20y and z; = éw;. Then we have wywows # 0 from the fact that
a is odd. Hence the condition ($) holds.

(3). Casen > 4, even. The necessity is clear. Assume that 24 > n.
Then we have A+2—n/2 = a?+a2+a3 +a? with ay,az,a3,a4 € Z and
ajas # 0, since A+2—n/2 > 2. Put z; = a; +ia3, 22 = az +iaq,23 =
as — 141,24 = @4 — 102,25 = -+ = 2, = Ll and zppp1 = -+ = 2, = 1,
where m = 2 4+ n/2. Thus the condition ($) holds.

(4). Casen = 5. The necessity is clear. We shall show the sufficiency.
By Lemma 4 below, if A #5,7,9,15,21,39,4F,2.4% 3.4% 6.4% then
we can write

A=a2+b2+g2(c2+d2),

where a,b,c,d € Z, ac # 0, g > 1 and g odd. From the case n = 3,
there are z3, 24, 25 in I satisfying

Z§+Z‘%+Z§ =0, N(23)+N(Z4)+N(25) =0, 232425 #0.

Putting 2; = a+bi and 22 = b— ai, we see that the condition ($) holds.

We write z = (21, 22, 23, 24, 2z5) shortly. If A =7,15,39, then we put
2= (2,142, 1—i,1—4,4), (3+i, 2— 23, 1+4, 1, 34), (6, 1— 3¢, 14+23, 1+1, 5i)
respectively. If A = 4F,2.4% 3. 4% 6.4 with k > 1, then we put
z = 2F"1(2,4,4,4,4),25"1(2 — 26,1 + 4,1 + 4,1 + 0,1 +14),2571(3,1,1 +
2i,1—2i,2i),2%"1(4— 24,2+ 34,241, , 3¢) respectively. Thus ($) holds.

(5). Case n = 7. The necessity is clear. If A—1+#£0,1,2,3,5,6,9, 21,
then ($) holds, using the z;’s in the case n = 5 for A—1 and putting zg =
1,z =4. IfA-2# -1,0,1,2,3,5,6,9,21, then we use the z;’s in the
case n = 5 for A—2 and put z¢=1+4,27 = 1—i. Hence if A # 1,2,3,4,7,
then ($) holds. We shall give another proof without using the case n =
5. If A=5,6,8,9,10, then we put z = (1,1,1,1,1,4,2¢),(1,1,1,1,2¢,1 +
i,1-4),(1,1,1,1, 2, 2i,2), (1,1,1,1,1,2,34), (1,1,1 +4,1 — 4,1 + 23,1 —
21,2) respectively. If A > 11 then we put z = (a; + asi, ag + aq1, —a.1 1,
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as —a;,2 + 2i,2 — i,1 — 2i), where A — 9 = a? + a2 + a2 + a? with
ajaz # 0.

(6). Case n > 9, odd. If ($) holds, then we have 24 > n, so
2A > n+1. If 24 = n + 1, then we may suppose that N(z;) =
2,N(z2) =--- = N(z,) = 1. Hence z; = 1 +i and z; = £1 (j > 2),
which contradicts the fact zZ +--- + 22 = 0. Thus 4 > (n + 3)/2. We
shall prove the sufficiency. If A = (n + 3)/2, then we put z; = 2i,22 =

© = Z(n-3)/2 = i, and Z(n-1)/2 = " = Zp = 1. A= (n+5)/2
then we put 2y = 2i,20 = 14+4d,23 = 1 — 4,24 = -+ = 2(n_1)/2 = %,
and 2(n41)2 = -+ =20 = 1. If A > (n + 9)/2, then we put
m=A— (n—7)/2. Then we have m > 8, so there are z;,...,27 in '
such that 22 +-- 422 =0, N(z1)+---+ N(27) =2m, 21 #0,...27 # 0
by the case n = 7. We put 23 = -+ = z(my7y/2 = 1 and z(n49y/2 = 1.

Thus the condition ($) holds. o

LEMMA 3. Let m be a positive integer = +1 mod 5. Then there are
integers a,b,c,d € Z such that

m=a®+25(b% + c* +d?), ac#0,
if and only if m & G, where G is the set defined by

G = {19,21,31,39,49,69,71,81,119,121,179, 191, 211, 239, 379, 391}
U {4*9-4F 11.4% 6-4% 14-4% 46-4%,94.4% : k > 0}.

PROOF. Put T = {m = a® + 25(b®> + c® + d?) : a,b,c,d € Z, ac
#0, m = =1 mod5}. We note that if m = 0 mod 8, then m € T if and
only if m/4 € T. The necessity follows from direct calculations. Take
a positive integer m ¢ G such that m # 0 mod 8 and m = +1 mod 5.
Then we can find an integer a such that m = a® mod 25 with 1 < a <
24. We can assume that m—a? = 1,2, 3, 5,6 mod 8 (replacing a by 25—a
if necessary). Thus, if m > a2, then we have (m —a?)/25 = b? +c? +d?
with ¢ # 0, which proves that m € T if m > 24%. When m < 242, then
we see that m € T by a direct calculation.

LEMMA 4. For a positive integer m, there are integers a,b,c,d, g in
Z such that

m=a®+b>+g*(?+d?), ac#0, g>1, g odd,
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if and only if m #5,7,9,15,21,39,4F 2. 4F 3.4k 6.4F

PROOF. We lose nothing by supposing m # 0 mod8. The ne-
cessity follows from a direct calculation. For the sufficiency, it suf-
fices to show that m is of the desired form if m # 0 mod8 and m
#1,2,3,4,5,6,7,9,12,15,21, 39.

(1). Case m # 0 mod3. Putting ¢ = 2 (if m1 mod4) or c = 1
(otherwise), we have m — 9c¢> # 0,4,7 mod8. This implies that
m — 9c¢?> = a% + b? + d? with a,b,d € Z if m > 9c? (that is m #
1,2,4,5,7,13,17,25,29). We may assume that d = 0 mod3, since
m % 0mod3. Thus we can write m = a? + b2 + 9(c? + d?) with
ac # 0, noticing that if a = b = 0 then we would have m = 0 mod 3. A
direct calculation shows that it is true for m = 13,17, 25, 29.

(2). Case m = O0mod9. If m > 9, then we can write m/9
= a? +b? + ¢ + d? with ac # 0, so m = (3a)? + (3b)2 + 9(c? + d?).

(3). Case m = 0 mod 3 with m # 0 mod9. Put m = 3h with h € Z
so h # 0 mod 3.

(1) If h = 0 mod 25, then m is of the desired form by a similar
argument like the case m = 0 mod 9.

(ii) Suppose that h = 0 mod 5 with h # 0 mod 25. Putting d; = 10
(if h =1 mod4) or dy = 5 (otherwise), we have h — d> # 0,4,7 mod 8,
which implies that h — d? = a? + b% + ¢? with a,b,c; € Z if h > d?
(that is h # 10,20,65,85). The two integers ¢ = (3c; + 4d;)/5 and
d = (4¢; £+ 3d,y)/5 are prime to 5, taking a suitable sign. Hence we
have h = a? + b? + ¢ + d? with abed # 0 mod 5. This is also true
for h = 10,20,65,85. Now we may assume, since h = 0 mod 5, that
a=d =1, b= c=2 modb5 by changing the signs if necessary. Putting

ag=b—-c+d, by=c—a+d, c;=a—-b+d, di=a+b+c,

we have m = 3h = a? + b + ¢ + d? with
ay

= 1modd,c; = dy = 0 mod5. If ¢; = di = 0, then we would have
h = 3(a® + b?), which is a contradiction. Hence m is of the desired
form.

(iil) Suppose that h = +1 mod5. By Lemma 3, if h € G, then we
have h = a? + 25(b% 4 ¢? + d?) with ac # 0. Using a similar argument
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as in (ii), we can write 25(b% + ¢?) = b? + ¢? with byc; # 0 mod5.
Hence we have h = a? + b% + ¢ + 25d® with abc Z 0 mod5. We
may assume, since h = +1 mod 5, that a = b = 2c mod5. Putting
a; = b—c+d,... as in (ii), we have m = 3h = a? + b + ¢ + d2
with a; # 0, ¢; =d; =0 modb. If ¢; = d; = 0 then we would have
h = 0 mod 3. Thus m is of the desired form. If h € G with h # 1,4,
then we see that m is of the desired form by a direct calculation.

(iv) Suppose that h = +2 mod5. Then m = 3h = £1 mod5. By
Lemma 3, if h ¢ G, then we have m = a? + (5b)2 + 25(c? + d?) with
ac # 0. If m € G, then m = 6,21, 39,69, since m = 0 mod 3. Notice
that 69 = 22 + 42 4 49(12 + 0?).

3. 3-frames. For 3-frames, we give the next theorem without a
proof. But the problem is open for n =5, 6.

THEOREM 5. Let n # 5,6. Then E, contains a proper 3-frame of
scale A if and only if one of the following is satisfied:

(1) n =3, A is a square;
(2)n=4,A>1;

3)n>7 mn=1mod3, A>(n+2)/3;
(4)n>8, n=2mod3, A>(n+4)/3;
5)n>9, n=0mod3, A>n/3.
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