ON THE SCHARLAU TRANSFER

BRUNO KAHN

Let F be a field of characteristic $\neq 2, F_{s}$ a separable closure of F and $G_{F}=\operatorname{Gal}\left(F_{s} / F\right)$. The ring $A(F)$ of monomial representations of G_{F} is defined as follows: it is the Grothendieck ring of the category of pairs $\left(E, E^{\prime}\right)$, where E and E^{\prime} are étale F-algebras and E^{\prime} is a free E-algebra of rank 2 [1, III 2.2]. Such pairs are classified by homomorphisms of G_{F} in a wreath product $\mathbf{S}_{n} \int(\mathbf{Z} / 2) \simeq O(n, \mathbf{Z})$ (loc. cit.), so $A(F)$ really depends only on G_{F}.

On the other hand, write (here) $W(F)$ for the Witt-Grothendieck ring of F (the Grothendieck ring of the category of non-degenerate quadratic forms over F). In [1, III. 2.6] a ring homomorphism $h: A(F) \rightarrow W(F)$ was defined; it may be described in (at least) two different ways:
(a) Let $\left(E, E^{\prime}\right)$ be a generator of $A(F)$. Since char $F \neq 2$, there is an $a \in E^{*}$ such that $E^{\prime}=E[\sqrt{a}]$. Then $h\left(E, E^{\prime}\right)$ is the class in $W(F)$ of the quadratic form $q(x)=\operatorname{Tr}_{E / F} a x^{2}$.
(b) Let $\rho: G_{F} \rightarrow O(n, \mathbf{Z})$ be a homomorphism classifying $\left(E, E^{\prime}\right)$. Then $O(n, \mathbf{Z})$ maps naturally to a Galois-invariant subgroup of $O\left(n, F_{s}\right)$, hence to ρ is associated an element in the nonabelian cohomology set $H^{1}\left(G_{F}, O\left(n, F_{s}\right)\right)$; via [2, p.162, Corollary 1], this element corresponds to a quadratic form $h(\rho)$.
Observe that $W(F)$ also depends only on G_{F}; in $[\mathbf{1}$, III.2.7] the question was raised whether or not h depends only on G_{F}. The aim of this article is to answer this question positively:

ThEOREM. The homomorphism h depends only on G_{F}, and not on the particular field F.

Here is a sketch of the proof. One reduces to proving that, for any finite separable extension E of F, the 'Scharlau transfer' $T: W(E) \rightarrow$ $W(F)$ given by $T(q)(x)=\operatorname{Tr}_{E / F} q(x)$ depends only on G_{F} and G_{E}. To
do this, one reduces by dévissage to the case of a quadratic extension; at this stage the proof is reduced to a cohomological lemma which will be proved first. Behind this lemma is a construction imagined by J-P. Serre; I am grateful to him for having let me know about it and allowing me to use it here.

1. A lemma on boundary homomorphisms. Let G be a group and A be a G-module which, as an abelian group, is cyclic of order p^{n} (p : a prime number). In applications, G will be G_{F}, a profinite group, so one should think of G-modules as topological G-modules and cohomology of G as cohomology of a profinite group; however the situation is identical in practice so it will be implicit everywhere here.

The action τ of G on A is given by a homomorphism of G in Aut $\left(\mathbf{Z} / p^{n}\right) \simeq\left(\mathbf{Z} / p^{n}\right)^{*}$. Let $0 \subsetneq A^{\prime} \subsetneq A$ be a subgroup (hence a submodule) of A and $A^{\prime \prime}=A / A^{\prime}$. To the exact sequence $0 \rightarrow A^{\prime} \rightarrow$ $A \rightarrow A^{\prime \prime} \rightarrow 0$ are associated boundary homomorphisms:

$$
\partial_{A}: H^{i}\left(G, A^{\prime \prime}\right) \rightarrow H^{i+1}\left(G, A^{\prime}\right), \quad i \geq 0
$$

Another action $\tilde{\tau}$ of G on A will coincide with τ on A^{\prime} and $A^{\prime \prime}$ if and only if, for all $g \in G, \tilde{\tau}(g) \tau(g)^{-1} \in\left(1+p^{r} \mathbf{Z}\right) / p^{n} \mathbf{Z}$, where $p^{r}=\max \left(\left|A^{\prime}\right|,\left|A^{\prime \prime}\right|\right)$. Then $g \mapsto\left(\tilde{\tau}(g) \tau(g)^{-1}-1\right) / p^{r}$ defines an element $\chi \in \operatorname{Hom}\left(G, \mathbf{Z} / p^{n-r} \mathbf{Z}\right)=H^{1}\left(G, \mathbf{Z} / p^{n-r}\right)$. Write \tilde{A} for the G-module corresponding to this new action $\tilde{\tau}$.

Lemma 1. Assume that the G-module A^{\prime} is trivial. If $x \in H^{i}\left(G, A^{\prime \prime}\right)$, one has

$$
\partial_{\tilde{A}} x=\partial_{A} x+\chi \cdot x
$$

where the cup-product is induced by the pairing $\mathbf{Z} / p^{n-r} \times A^{\prime \prime} \rightarrow A^{\prime}$ such that $\left(n, a^{\prime \prime}\right) \mapsto p^{r} n a^{\prime \prime}$ (with an obvious abuse of notation).

Proof. For any G-module M, let $C \cdot(M)$ be the complex of "non-homogeneous cochains" defining the cohomology of M, as in [2, p. 121]. If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a short exact sequence of G modules, the boundary homomorphism ∂ associated to it is computed as follows on an element $x \in H^{i}\left(G, M^{\prime \prime}\right)$: choose a representative c of x
in $C^{i}\left(M^{\prime \prime}\right)$ and lift it to a cochain $\tilde{c} \in C^{i}(M)$. Then the differential $d \tilde{c}$ defines a cocycle in $C^{i+1}\left(M_{\tilde{d}}^{\prime}\right)$, whose class in $H^{i+1}\left(G, M^{\prime}\right)$ is precisely ∂x. But let d (respectively \tilde{d}) be the differential of $C \cdot(A)$ (respectively of $C \cdot(\tilde{A})$): the formula which gives the differential of a cochain c (e.g., loc. cit.) shows that

$$
\tilde{d} c\left(g_{1}, \ldots, g_{i+1}\right)-d c\left(g_{1}, \ldots, g_{i+1}\right)=p^{r} \chi\left(g_{1}\right) c\left(g_{2}, \ldots, g_{i+1}\right)
$$

hence the lemma.
2. The symbol (2, d). From now on, we shall simply write $H^{i}(G)$ for $H^{i}(G, \mathbf{Z} / 2)$, and $H^{i}(F,-)$ for $H^{i}\left(G_{F},-\right)$.

If $a \in F^{*}$, write (a) or $(a)_{F}$ for the image of a in $H^{1}(F)$ via Kummer theory; if $a, b \in F^{*}$, the cup-product $(a) \cdot(b)$ will often be written (a, b). When $G_{F} \simeq G_{F^{\prime}}$, the classes $(-1)_{F}$ and $(-1)_{F^{\prime}}$ in $H^{1}\left(G_{F}\right)$ need not coincide (e.g., take finite fields for F and F^{\prime}); however, for any $x \in H^{1}(F)$, one has the formula $(-1)_{F} \cdot x=x^{2}$, hence $(-1)_{F} \cdot x=(-1)_{F^{\prime}} \cdot x$. The aim of this paragraph is to show that similarly, the map $x \mapsto(2)_{F} \cdot x$ depends only on G_{F} (and not on F itself). To prove this we use a construction imagined by Serre (personal communication).
Again let G be any group. If $\alpha \in H^{1}(G)$, let $\mathbf{Z}(\alpha)$ be the G-module with support \mathbf{Z}, with action given by $g \cdot a=(-1)^{\alpha(g)} a$. For $n \geq 2$, set $\mathbf{Z} / n(\alpha)=\mathbf{Z}(\alpha) / n$. Let $\partial_{\alpha}: H^{1}(G) \rightarrow H^{2}(G)$ be the boundary associated to the exact sequence $0 \rightarrow \mathbf{Z} / 2 \rightarrow \mathbf{Z} / 4(\alpha) \rightarrow \mathbf{Z} / 2 \rightarrow 0$.

Lemma 2. The following are equivalent:
(i) $\partial_{\alpha}=0$;
(ii) $H^{1}(G, \mathbf{Z} / 4(\alpha)) \rightarrow H^{1}(G)$ is onto;
(iii) For any $x \in H^{1}(G), \alpha \cdot x=x^{2}$.

Proof. (i) $\Longleftrightarrow(\mathrm{ii})$ is obvious. To see $(\mathrm{i}) \Longleftrightarrow(\mathrm{iii})$, observe that $\partial_{o} x=$ $S q^{1} x=x^{2}$ and use Lemma 1.
Let $\varepsilon \in H^{1}(G)$ satisfy the equivalent conditions of Lemma 2: e.g., if $G=G_{F}, \varepsilon=(-1)_{F}$ will do. Following Serre, we associate to ε a "secondary boundary homomorphism" $\delta_{\varepsilon}: H^{1}(G) \rightarrow H^{2}(G)$ as follows.

We have a commutative diagram with exact rows:

in which the unique column is a short exact sequence, whence a commutative diagram in cohomology (solid arrows):

Let $x \in H^{1}(G)$ and \tilde{x} be a lift of x in $H^{1}(G, \mathbf{Z} / 4(\varepsilon))$. Since the column in the above diagram is exact, $\delta \tilde{x}$ only depends on x : this defines $\delta_{\varepsilon} x$.
Let $\omega \in H^{1}(G)$ be another element; write $\mathbf{Z} / 8(\varepsilon, \omega)$ for the G-module supported by $\mathbf{Z} / 8$, with action given by $g \cdot x=(-1)^{\varepsilon(g)} 5^{\omega(g)} x$.

Lemma 3. The following are equivalent:
(iv) $H^{1}(G, \mathbf{Z} / 8(\varepsilon, \omega)) \rightarrow H^{1}(G, \mathbf{Z} / 4(\varepsilon))$ is onto;
(v) for all $x \in H^{1}(G), \delta_{\varepsilon} x=\omega \cdot x$.

Once again this is a simple application of Lemma 1. For example, if $G=G_{F}$, then $\omega=(2)_{F}$ satisfies (iv) and (v).
Let $\chi \in H^{1}(G)=\operatorname{Hom}(G, \mathbf{Z} / 2)$; to χ corresponds its kernel H_{χ}. If $\chi \cdot x=0$ for all $x \in H^{1}(G)$, we shall call H_{χ} a ghost subgroup of G. The main lemma in this article is

MAIN LEmmA. Assume that there is $\varepsilon_{o} \in H^{1}(G)$ such that, for any ghost subgroup $H \subseteq G$, $\operatorname{Res}_{H}^{G} \varepsilon_{o}$ satisfies conditions (i)-(ii) of Lemma 2 for H. Then the boundary δ_{ε} constructed above does not depend on the choice of ε satisfying (i)-(iii) (for G).

Proof. It is enough to show $\delta_{\varepsilon}=\delta_{\varepsilon_{o}}$. Condition (iii) shows that $\chi=\varepsilon-\varepsilon_{o}$ has kernel a ghost subgroup H of G. We may assume $\chi \neq 0$, hence $(G: H)=2$; then there is a long exact sequence

$$
\rightarrow H^{i-1}(G) \xrightarrow{\cdot \chi} H^{i}(G) \xrightarrow{\mathrm{Res}} H^{i}(H) \xrightarrow{\mathrm{Cor}} H^{i}(G) \rightarrow \cdots
$$

For $i=2$, this shows that Res : $H^{2}(G) \rightarrow H^{2}(H)$ is injective. By construction, $\operatorname{Res} \varepsilon=\operatorname{Res} \varepsilon_{o}$, hence $\mathbf{Z}(\varepsilon)$ and $\mathbf{Z}\left(\varepsilon_{o}\right)$ are H-isomorphic. Therefore, for all $x \in H^{1}(G)$, $\operatorname{Res} \delta_{\varepsilon} x=\delta_{\operatorname{Res} \varepsilon_{o}}(\operatorname{Res} x)=\operatorname{Res} \delta_{\varepsilon_{o}} x$, and $\delta_{\varepsilon} x=\delta_{\varepsilon_{o}} x$.

Corollary. For a field F, the map $x \rightarrow(2)_{F} \cdot x$ only depends on G_{F}.

Indeed, $\varepsilon_{o}=(-1)_{F}$ satisfies the hypothesis of the Main Lemma.
3. The Scharlau transfer in a separable extension. Recall that $W(F)$ may be defined by generators and relations:
generators: $\langle a\rangle, a \in H^{1}(F)$;
relations: $\langle a\rangle+\langle b\rangle=\langle c\rangle+\langle d\rangle$ if $a+b=c+d$ and $a \cdot b=c \cdot d$.
Hence $W(F)$ only depends on G_{F}. Let E / F be a finite, separable extension. To a quadratic form q over E, associate the quadratic form over F defined by $T(q)(x)=\operatorname{Tr}_{E / F} q(x)$: this defines a homomorphism $T_{E / F}: W(E) \rightarrow W(F)$. In this section, we shall prove

Proposition 1. The map $T_{E / F}$ only depends on G_{E} and G_{F}.

Proof. Step 1. Proposition 1 is true for quadratic extensions.
Indeed, suppose E / F quadratic, hence $E=F(\sqrt{d})$; the class $(d) \in$ $H^{1}(F)$ is the character of G_{F} with kernel G_{E}. Let $a \in H^{1}(E)$: we have
to prove that $T\langle a\rangle$ only depends on G_{F}. But there are $x, y \in H^{1}(F)$ such that $T\langle a\rangle=\langle x\rangle+\langle y\rangle$; by [1, II.2.1] one has

$$
\begin{aligned}
x+y & =\operatorname{Cor}_{E / F} a+(d) ; \\
x \cdot y & =\mathbf{N}(a)+(2, d),
\end{aligned}
$$

where \mathbf{N} is the multiplicative transfer.
Obviously $x+y$ depends only on G_{E} and G_{F}; by the Main Lemma this is the same for $x \cdot y$. Therefore $T_{E / F}\langle a\rangle$ only depends on G_{E} and G_{F}.

Step 2. The general case. We will proceed with a standard dévissage argument, as in [1, II.] The following lemma is well-known [3].

Lemma 4. Let K / F be a finite extension of odd degree. Then Res : $W(F) \rightarrow W(E)$ is injective.

Let F^{\prime} be another field such that $G_{F} \simeq G_{F^{\prime}}, \phi: G_{F^{\prime}} \rightarrow G_{F}$ an isomorphism and E^{\prime} the extension of F^{\prime} corresponding to $\phi^{-1}\left(G_{E}\right)$. If $x \in W(E)$, we wish to show that $T_{E^{\prime} / F^{\prime}} \phi^{*} x=\phi^{*} T_{E / F} x$, where ϕ^{*} is the isomorphism induced by ϕ^{*} on Witt groups. Let \tilde{E} be the Galois closure of E over $F, K \subseteq E$ the fixed field of some Sylow 2-subgroup of $\operatorname{Gal}(E / F)$ and K^{\prime} the extension of F^{\prime} which corresponds to K via $\phi: K / F$ and K^{\prime} / F^{\prime} have the same odd degree. By Lemma 4 , it will be enough to show that

$$
\begin{equation*}
\operatorname{Res}_{K^{\prime} / F^{\prime}} T_{E^{\prime} / F^{\prime}} \phi^{*} x=\phi^{*} \operatorname{Res}_{K / F} T_{E / F} x . \tag{*}
\end{equation*}
$$

The étale K-algebra $K \otimes_{F} E$ is a direct product of extensions K_{i} / K which are filtered by successive quadratic extensions. By repeatedly applying Proposition 1 for a quadratic extension, we find that $T_{K_{i}^{\prime} / K^{\prime}} \operatorname{Res}_{K_{i}^{\prime} / E^{\prime}} \phi^{*} x=\phi^{*} T_{K_{i} / K} \operatorname{Res}_{K_{i} / E} x$ for all i, and therefore that (*) holds.
4. Proof of the theorem. Keep the notations as just above. We have to prove that the diagram

commutes. Let $x=(E, E[\sqrt{a}]) \in A(F)$ be a generator. The image $h(x)$ is the class in $W(F)$ of $\operatorname{Tr}_{E / F} a x^{2}$. Up to splitting E into its minimal ideals, we may assume that E is a field; then Proposition 1 shows that $\phi^{*} T_{E / F}\langle a\rangle=T_{E^{\prime} / F^{\prime}}\left\langle\phi^{*}, a\right\rangle$, hence $\phi^{*} h(x)=h^{\prime}\left(\phi^{*} x\right)$.

REFERENCES

1. B. Kahn, Classes de Stiefel-Whitney de forms quadraticques et de représentations galoisiennes réelles, Invent. Math. 78 (1984), 223-256.
2. J.-P. Serre, Corps Locaux, Hermann, Paris, 1968.
3. T.A. Springer, Sur les formes quadratiques d'indice zéro, C.R. Acad. Sci. Paris 234 (1952), 1517-1519.

Université de Paris 7, Ufr de Mathématiques, 5e Étage, tour 45-55, 75251
Paris Cedex 05, France

