ON THE SCHARLAU TRANSFER

BRUNO KAHN

Let F be a field of characteristic $\neq 2$, F_s a separable closure of F and $G_F = \text{Gal}(F_s/F)$. The ring A(F) of monomial representations of G_F is defined as follows: it is the Grothendieck ring of the category of pairs (E, E'), where E and E' are étale F-algebras and E' is a free E-algebra of rank 2 [1, III 2.2]. Such pairs are classified by homomorphisms of G_F in a wreath product $\mathbf{S}_n \int (\mathbf{Z}/2) \simeq O(n, \mathbf{Z}) (loc. cit.)$, so A(F) really depends only on G_F .

On the other hand, write (here) W(F) for the Witt-Grothendieck ring of F (the Grothendieck ring of the category of non-degenerate quadratic forms over F). In [1, III. 2.6] a ring homomorphism $h: A(F) \to W(F)$ was defined; it may be described in (at least) two different ways:

(a) Let (E, E') be a generator of A(F). Since char $F \neq 2$, there is an $a \in E^*$ such that $E' = E[\sqrt{a}]$. Then h(E, E') is the class in W(F) of the quadratic form $q(x) = \operatorname{Tr}_{E/F} ax^2$.

(b) Let $\rho: G_F \to O(n, \mathbb{Z})$ be a homomorphism classifying (E, E'). Then $O(n, \mathbb{Z})$ maps naturally to a Galois-invariant subgroup of $O(n, F_s)$, hence to ρ is associated an element in the nonabelian cohomology set $H^1(G_F, O(n, F_s))$; via [2, p.162, Corollary 1], this element corresponds to a quadratic form $h(\rho)$.

Observe that W(F) also depends only on G_F ; in [1, III.2.7] the question was raised whether or not h depends only on G_F . The aim of this article is to answer this question positively:

THEOREM. The homomorphism h depends only on G_F , and not on the particular field F.

Here is a sketch of the proof. One reduces to proving that, for any finite separable extension E of F, the 'Scharlau transfer' $T: W(E) \rightarrow W(F)$ given by $T(q)(x) = \text{Tr}_{E/F}q(x)$ depends only on G_F and G_E . To

Received by the editors on October, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium

do this, one reduces by dévissage to the case of a quadratic extension; at this stage the proof is reduced to a cohomological lemma which will be proved first. Behind this lemma is a construction imagined by J-P. Serre; I am grateful to him for having let me know about it and allowing me to use it here.

1. A lemma on boundary homomorphisms. Let G be a group and A be a G-module which, as an abelian group, is cyclic of order p^n (p: a prime number). In applications, G will be G_F , a profinite group, so one should think of G-modules as topological G-modules and cohomology of G as cohomology of a profinite group; however the situation is identical in practice so it will be implicit everywhere here.

The action τ of G on A is given by a homomorphism of G in $Aut(\mathbf{Z}/p^n) \simeq (\mathbf{Z}/p^n)^*$. Let $0 \subseteq A' \subseteq A$ be a subgroup (hence a submodule) of A and A'' = A/A'. To the exact sequence $0 \to A' \to A \to A'' \to 0$ are associated boundary homomorphisms:

$$\partial_A : H^i(G, A'') \to H^{i+1}(G, A'), \quad i \ge 0.$$

Another action $\tilde{\tau}$ of G on A will coincide with τ on A' and A''if and only if, for all $g \in G, \tilde{\tau}(g)\tau(g)^{-1} \in (1 + p^r \mathbf{Z})/p^n \mathbf{Z}$, where $p^r = \max(|A'|, |A''|)$. Then $g \mapsto (\tilde{\tau}(g)\tau(g)^{-1}-1)/p^r$ defines an element $\chi \in \operatorname{Hom}(G, \mathbf{Z}/p^{n-r}\mathbf{Z}) = H^1(G, \mathbf{Z}/p^{n-r})$. Write \tilde{A} for the G-module corresponding to this new action $\tilde{\tau}$.

LEMMA 1. Assume that the G-module A' is trivial. If $x \in H^i(G, A'')$, one has

$$\partial_{\tilde{A}}x = \partial_A x + \chi \cdot x,$$

where the cup-product is induced by the pairing $\mathbb{Z}/p^{n-r} \times A'' \to A'$ such that $(n, a'') \mapsto p^r na''$ (with an obvious abuse of notation).

PROOF. For any G-module M, let C(M) be the complex of "non-homogeneous cochains" defining the cohomology of M, as in [2, p. 121]. If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of G-modules, the boundary homomorphism ∂ associated to it is computed as follows on an element $x \in H^i(G, M'')$: choose a representative c of x

in $C^{i}(M'')$ and lift it to a cochain $\tilde{c} \in C^{i}(M)$. Then the differential $d\tilde{c}$ defines a cocycle in $C^{i+1}(M')$, whose class in $H^{i+1}(G, M')$ is precisely ∂x . But let d (respectively \tilde{d}) be the differential of $C^{\cdot}(A)$ (respectively of $C^{\cdot}(\tilde{A})$): the formula which gives the differential of a cochain c (e.g., *loc. cit.*) shows that

$$dc(g_1,\ldots,g_{i+1}) - dc(g_1,\ldots,g_{i+1}) = p^r \chi(g_1)c(g_2,\ldots,g_{i+1}),$$

hence the lemma. \Box

2. The symbol (2, d). From now on, we shall simply write $H^i(G)$ for $H^i(G, \mathbb{Z}/2)$, and $H^i(F, -)$ for $H^i(G_F, -)$.

If $a \in F^*$, write (a) or $(a)_F$ for the image of a in $H^1(F)$ via Kummer theory; if $a, b \in F^*$, the cup-product $(a) \cdot (b)$ will often be written (a, b). When $G_F \simeq G_{F'}$, the classes $(-1)_F$ and $(-1)_{F'}$ in $H^1(G_F)$ need not coincide (e.g., take finite fields for F and F'); however, for any $x \in H^1(F)$, one has the formula $(-1)_F \cdot x = x^2$, hence $(-1)_F \cdot x = (-1)_{F'} \cdot x$. The aim of this paragraph is to show that similarly, the map $x \mapsto (2)_F \cdot x$ depends only on G_F (and not on Fitself). To prove this we use a construction imagined by Serre (personal communication).

Again let G be any group. If $\alpha \in H^1(G)$, let $\mathbf{Z}(\alpha)$ be the G-module with support \mathbf{Z} , with action given by $g \cdot a = (-1)^{\alpha(g)}a$. For $n \geq 2$, set $\mathbf{Z}/n(\alpha) = \mathbf{Z}(\alpha)/n$. Let $\partial_{\alpha} : H^1(G) \to H^2(G)$ be the boundary associated to the exact sequence $0 \to \mathbf{Z}/2 \to \mathbf{Z}/4(\alpha) \to \mathbf{Z}/2 \to 0$.

LEMMA 2. The following are equivalent:

- (i) $\partial_{\alpha} = 0;$
- (ii) $H^1(G, \mathbb{Z}/4(\alpha)) \to H^1(G)$ is onto;
- (iii) For any $x \in H^1(G), \alpha \cdot x = x^2$.

PROOF. (i) \iff (ii) is obvious. To see (i) \iff (iii), observe that $\partial_o x = Sq^1x = x^2$ and use Lemma 1.

Let $\varepsilon \in H^1(G)$ satisfy the equivalent conditions of Lemma 2: e.g., if $G = G_F, \varepsilon = (-1)_F$ will do. Following Serre, we associate to ε a "secondary boundary homomorphism" $\delta_{\varepsilon} : H^1(G) \to H^2(G)$ as follows. We have a commutative diagram with exact rows:

in which the unique column is a short exact sequence, whence a commutative diagram in cohomology (solid arrows):

Let $x \in H^1(G)$ and \tilde{x} be a lift of x in $H^1(G, \mathbb{Z}/4(\varepsilon))$. Since the column in the above diagram is exact, $\delta \tilde{x}$ only depends on x: this defines $\delta_{\varepsilon} x$.

Let $\omega \in H^1(G)$ be another element; write $\mathbb{Z}/8(\varepsilon, \omega)$ for the *G*-module supported by $\mathbb{Z}/8$, with action given by $g \cdot x = (-1)^{\varepsilon(g)} 5^{\omega(g)} x$.

LEMMA 3. The following are equivalent: (iv) $H^1(G, \mathbb{Z}/8(\varepsilon, \omega)) \to H^1(G, \mathbb{Z}/4(\varepsilon))$ is onto; (v) for all $x \in H^1(G), \delta_{\varepsilon} x = \omega \cdot x$.

Once again this is a simple application of Lemma 1. For example, if $G = G_F$, then $\omega = (2)_F$ satisfies (iv) and (v).

Let $\chi \in H^1(G) = \text{Hom}(G, \mathbb{Z}/2)$; to χ corresponds its kernel H_{χ} . If $\chi \cdot x = 0$ for all $x \in H^1(G)$, we shall call H_{χ} a ghost subgroup of G. The main lemma in this article is

MAIN LEMMA. Assume that there is $\varepsilon_o \in H^1(G)$ such that, for any ghost subgroup $H \subseteq G$, $\operatorname{Res}_H^G \varepsilon_o$ satisfies conditions (i)-(ii) of Lemma 2 for H. Then the boundary δ_{ε} constructed above does not depend on the choice of ε satisfying (i)-(iii) (for G).

PROOF. It is enough to show $\delta_{\varepsilon} = \delta_{\varepsilon_o}$. Condition (iii) shows that $\chi = \varepsilon - \varepsilon_o$ has kernel a ghost subgroup H of G. We may assume $\chi \neq 0$, hence (G:H) = 2; then there is a long exact sequence

$$\to H^{i-1}(G) \xrightarrow{\cdot \chi} H^i(G) \xrightarrow{\operatorname{Res}} H^i(H) \xrightarrow{\operatorname{Cor}} H^i(G) \to \cdots$$

For i = 2, this shows that Res $: H^2(G) \to H^2(H)$ is injective. By construction, Res $\varepsilon = \operatorname{Res} \varepsilon_o$, hence $\mathbf{Z}(\varepsilon)$ and $\mathbf{Z}(\varepsilon_o)$ are *H*-isomorphic. Therefore, for all $x \in H^1(G)$, Res $\delta_{\varepsilon} x = \delta_{\operatorname{Res} \varepsilon_o}(\operatorname{Res} x) = \operatorname{Res} \delta_{\varepsilon_o} x$, and $\delta_{\varepsilon} x = \delta_{\varepsilon_o} x$.

COROLLARY. For a field F, the map $x \to (2)_F \cdot x$ only depends on G_F .

Indeed, $\varepsilon_o = (-1)_F$ satisfies the hypothesis of the Main Lemma.

3. The Scharlau transfer in a separable extension. Recall that W(F) may be defined by generators and relations:

generators:
$$\langle a \rangle, a \in H^1(F);$$

relations: $\langle a \rangle + \langle b \rangle = \langle c \rangle + \langle d \rangle$ if a + b = c + d and $a \cdot b = c \cdot d$.

Hence W(F) only depends on G_F . Let E/F be a finite, separable extension. To a quadratic form q over E, associate the quadratic form over F defined by $T(q)(x) = \text{Tr}_{E/F}q(x)$: this defines a homomorphism $T_{E/F}: W(E) \to W(F)$. In this section, we shall prove

PROPOSITION 1. The map $T_{E/F}$ only depends on G_E and G_F .

PROOF. Step 1. Proposition 1 is true for quadratic extensions.

Indeed, suppose E/F quadratic, hence $E = F(\sqrt{d})$; the class $(d) \in H^1(F)$ is the character of G_F with kernel G_E . Let $a \in H^1(E)$: we have

to prove that $T\langle a \rangle$ only depends on G_F . But there are $x, y \in H^1(F)$ such that $T\langle a \rangle = \langle x \rangle + \langle y \rangle$; by [1, II.2.1] one has

$$x + y = \operatorname{Cor}_{E/F} a + (d);$$
$$x \cdot y = \mathbf{N}(a) + (2, d),$$

where **N** is the multiplicative transfer.

Obviously x + y depends only on G_E and G_F ; by the Main Lemma this is the same for $x \cdot y$. Therefore $T_{E/F}\langle a \rangle$ only depends on G_E and G_F .

Step 2. The general case. We will proceed with a standard dévissage argument, as in [1, II.] The following lemma is well-known [3].

LEMMA 4. Let K/F be a finite extension of odd degree. Then Res : $W(F) \rightarrow W(E)$ is injective.

Let F' be another field such that $G_F \simeq G_{F'}, \phi : G_{F'} \to G_F$ an isomorphism and E' the extension of F' corresponding to $\phi^{-1}(G_E)$. If $x \in W(E)$, we wish to show that $T_{E'/F'}\phi^*x = \phi^*T_{E/F}x$, where ϕ^* is the isomorphism induced by ϕ^* on Witt groups. Let \tilde{E} be the Galois closure of E over $F, K \subseteq E$ the fixed field of some Sylow 2-subgroup of Gal (E/F) and K' the extension of F' which corresponds to K via $\phi: K/F$ and K'/F' have the same odd degree. By Lemma 4, it will be enough to show that

(*)
$$\operatorname{Res}_{K'/F'}T_{E'/F'}\phi^*x = \phi^*\operatorname{Res}_{K/F}T_{E/F}x.$$

The étale K-algebra $K \otimes_F E$ is a direct product of extensions K_i/K which are filtered by successive quadratic extensions. By repeatedly applying Proposition 1 for a quadratic extension, we find that $T_{K'_i/K'}$ Res $_{K'_i/E'}\phi^*x = \phi^*T_{K_i/K}$ Res $_{K_i/E}x$ for all i, and therefore that (*) holds. \square 4. Proof of the theorem. Keep the notations as just above. We have to prove that the diagram

$$\begin{array}{ccc} A(F) & \stackrel{h}{\longrightarrow} & W(F) \\ \phi^* \downarrow & & \phi^* \downarrow \\ A(F') & \stackrel{h'}{\longrightarrow} & W(F') \end{array}$$

commutes. Let $x = (E, E[\sqrt{a}]) \in A(F)$ be a generator. The image h(x) is the class in W(F) of $\operatorname{Tr}_{E/F}ax^2$. Up to splitting E into its minimal ideals, we may assume that E is a field; then Proposition 1 shows that $\phi^*T_{E/F}\langle a \rangle = T_{E'/F'}\langle \phi^*, a \rangle$, hence $\phi^*h(x) = h'(\phi^*x)$. \Box

REFERENCES

1. B. Kahn, Classes de Stiefel-Whitney de forms quadraticques et de représentations galoisiennes réelles, Invent. Math. 78 (1984), 223-256.

2. J.-P. Serre, Corps Locaux, Hermann, Paris, 1968.

3. T.A. Springer, Sur les formes quadratiques d'indice zéro, C.R. Acad. Sci. Paris 234 (1952), 1517-1519.

Université de Paris 7, Ufr de Mathématiques, 5e Étage, tour 45-55, 75251 Paris Cedex 05, France