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O N T H E S C H A R L A U T R A N S F E R 

BRUNO KAHN 

Let F be a field of characteristic ^ 2 , Fs a separable closure of F and 
Gp — Gal ( F s / F ) . The ring A(F) of monomial representations of GF 
is defined as follows: it is the Grothendieck ring of the category of pairs 
{E, E'), where E and E1 are étale F-algebras and E' is a free F-algebra 
of rank 2 [1, III 2.2]. Such pairs are classified by homomorphisms of 
G F in a wreath product S n J ( Z / 2 ) ~ 0(n, Z) (loc. cit.), so A(F) really 
depends only on GF-

On the other hand, write (here) W(F) for the Witt-Grothendieck ring 
of F (the Grothendieck ring of the category of non-degenerate quadratic 
forms over F). In [1, III. 2.6] a ring homomorphism h : A(F) —> W(F) 
was defined; it may be described in (at least) two different ways: 

(a) Let (E, E') be a generator of A(F). Since char F / 2, there is an 
a e E* such that E' = E[y/â\. Then h(E,E') is the class in W(F) of 
the quadratic form q(x) — Tr E/Fa%2-

(b) Let p : GF —> 0 ( n , Z) be a homomorphism classifying (E,Ef). 
Then 0 ( n , Z) maps naturally to a Galois-invariant subgroup of 0 ( n , F s ) , 
hence to p is associated an element in the nonabelian cohomology set 
H1(GF,0(TI, FS)); via [2, p.162, Corollary 1], this element corresponds 
to a quadratic form h(p). 

Observe that W(F) also depends only on GF] in [1, III.2.7] the 
question was raised whether or not h depends only on G F - The aim of 
this article is to answer this question positively: 

THEOREM. The homomorphism h depends only on GF, and not on 
the particular field F. 

Here is a sketch of the proof. One reduces to proving that , for any 
finite separable extension E of F , the 'Scharlau transfer' T : W(E) —• 
W(F) given by T(q)(x) = Tr E/Fq(x) depends only on GF and GE- TO 
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do this, one reduces by dévissage to the case of a quadratic extension; 
at this stage the proof is reduced to a cohomological lemma which will 
be proved first. Behind this lemma is a construction imagined by J-P. 
Serre; I am grateful to him for having let me know about it and allowing 
me to use it here. 

1. A l e m m a on boundary h o m o m o r p h i s m s . Let G be a group 
and A be a G-module which, as an abelian group, is cyclic of order 
p n (p: a prime number). In applications, G will be Gp, a profinite 
group, so one should think of G-modules as topological G-modules 
and cohomology of G as cohomology of a profinite group; however the 
situation is identical in practice so it will be implicit everywhere here. 

The action r of G on A is given by a homomorphism of G in 
Aut(Z/pn) ~ (Z /p n )* . Let 0 Ç A' Ç A be a subgroup (hence a 
submodule) of A and A" = A/A1. To the exact sequence 0 —• A' —> 
A —> A" —• 0 are associated boundary homomorphisms: 

dA : H'iCA") - • # i + 1 ( G , i 4 ' ) , i > 0. 

Another action f of G on A will coincide with r on A' and A" 
if and only if, for all g e G,f(g)r(g)-1 e (1 + p r Z ) / p n Z , where 
p r = max(|j4' | , \A"\). Then g i—• {r{g)r{g)~l — l ) / p r defines an element 
X e H o m ( G , Z / p n - r Z ) = Hl(G,Z/pn-r). Write A for the G-module 
corresponding to this new action f. 

LEMMA 1. Assume that the G-module A' is trivial. IfxE Hl(G, A"), 
one has 

d^x = ÖAX + x ' x, 

where the cup-product is induced by the pairing Z/pn~r x A" —• A' such 
that {n,a") *-^prna" {with an obvious abuse of notation). 

PROOF. For any G-module M , let C'(M) be the complex of 
"non-homogeneous cochains" defining the cohomology of M , as in [2, 
p. 121]. If 0 —• M' —• M —• M" —• 0 is a short exact sequence of G-
modules, the boundary homomorphism d associated to it is computed 
as follows on an element x G Hl{G, M"): choose a representative c of x 
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in C*(Af") and lift it to a cochain c G C*(Af). Then the differential dc 
defines a cocycle in GZ+1(M'), whose class in i7z+1(G, M') is precisely 
dx. But let d (respectively d) be the differential of C'(A) (respectively 
of C'{A))\ the formula which gives the differential of a cochain c (e.g., 
loc. cit.) shows that 

dc(gi,..., gi+i) - dc(gi,...,&+i) = p rx(#i )c(#2, • • • ,#+i ) , 

hence the lemma. D 

2. The symbol (2,d). From now on, we shall simply write Hl{G) 
for H^G, Z/2), and H{(F, - ) for H^Gp, - ) . 

If a G F*, write (a) or (a)^ for the image of a in Hl{F) via 
Kummer theory; if a,6 G F*, the cup-product (a) • (fr) will often 
be written (a, 6). When G^ ~ Gpf, the classes (—l)p and (—1)F' 
in Hl(Gp) need not coincide (e.g., take finite fields for F and F'); 
however, for any x G H1 (F), one has the formula ( —1)F • # = #2> 
hence (—1)F # = (—1)F'-#- The aim of this paragraph is to show 
that similarly, the map x »—• ( 2 ) F # depends only on G F (and not on F 
itself). To prove this we use a construction imagined by Serre (personal 
communication). 

Again let G be any group. If a G H1 (G), let Z(a) be the G-module 
with support Z, with action given by g • a = ( — l)a^a. For n > 2, 
set Z/n(a) = Z(a)/n. Let ft* : tf^G) -+ # 2 (G) be the boundary 
associated to the exact sequence 0 —> Z/2 —> Z/4(a) —> Z/2 —> 0. 

LEMMA 2. Tfte following are equivalent: 

(i) 0a = 0; 

(ii) Hl(G,Z/4(a)) -> /^(G) is onto; 

(iii) For any x € Hl(G),a - x — x2. 

PROOF. (i)<£=>(ii) is obvious. To see (i)<=^(iii), observe that d0x = 
Sqïx = x2 and use Lemma 1. 

Let e G H1 (G) satisfy the equivalent conditions of Lemma 2: e.g., 
if G = GF,£ = ( —1)F will do. Following Serre, we associate to e a 
"secondary boundary homomorphism" 8£ : H

l(G) —> H2(G) as follows. 
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We have a commutative diagram with exact rows: 

0 > Z /2 > Z/4(e) > Z /2 > 0 

i i l 
0 > Z/2 > Z/8(e) > Z/4(e) > 0 

i 
Z/2 

in which the unique column is a short exact sequence, whence a 
commutative diagram in cohomology (solid arrows): 

Hl{G,Z/±{e)) • H\G) —^— H2(G) 

i i i 
HUCZ/SCe)) > H\G,Z/4(s)) —L^H2(G) 

I ,-< 
Let x E H1 (G) and £ be a lift of x in i f ^ G , Z/4(e)) . Since the 

column in the above diagram is exact, Ox only depends on x: this 
defines 6£x. 

Let u G Hl(G) be another element; write Z/8(e,u;)for the G-module 
supported by Z /8 , with action given by g • x = ( — ìy^ò^^x. 

LEMMA 3. The following are equivalent: 

(iv) Hl(G,Z/8{e,Lü)) - • Hl(G,Z/4(e)) is onto; 

(v) /or a// x e Hl(G),6£x = u • x. 

Once again this is a simple application of Lemma 1. For example, if 
G = GFI then u = (2)p satisfies (iv) and (v). 

Let x £ Hl(G) = Horn (G, Z/2) ; to x corresponds its kernel Hx. If 
X • x = 0 for all x G H1 (G), we shall call Hx a #/ios£ subgroup of G. 
The main lemma in this article is 
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MAIN LEMMA. Assume that there is e0 G H1 (G) such that, for any 
ghost subgroup H Ç G, Res#£0 satisfies conditions (i)-(ii) of Lemma 2 
for H. Then the boundary 6£ constructed above does not depend on the 
choice of e satisfying (i)-(iii) (forG). 

PROOF. It is enough to show 6£ = 6£o. Condition (iii) shows that 
X = e — e0 has kernel a ghost subgroup H of G. We may assume \ ^ 0, 
hence (G : H) = 2; then there is a long exact sequence 

-> W-^GY^H^G^H^Hf-^H^G) -> • • • 

For z = 2, this shows that Res : H2(G) —» H2(H) is injective. By 
construction, Rese = Res£0, hence Z(e) and Z(e0) are if-isomorphic. 
Therefore, for all x € -H"X(G), Restar = <5R,es e0 (^ e s x ) — Res££ox, and 
<5ex = 8£ox. 

COROLLARY. For a field F, the map x —> (2)F • x only depends on 
GF. 

Indeed, e0 = (—1)F satisfies the hypothesis of the Main Lemma. 

3. The Scharlau transfer in a separable extension. Recall that 
W(F) may be defined by generators and relations: 

generators: {a},a € HX(F); 

relations: (a) + (b) = (c) -f (d) if a + b = c + d and a-b — cd. 

Hence W(F) only depends on GF> Let E/F be a finite, separable 
extension. To a quadratic form q over E, associate the quadratic form 
over F defined by T(q)(x) = TTE/FQ(X): thus defines a homomorphism 
TEiF ' W(E) —> W(F). In this section, we shall prove 

PROPOSITION 1. The map TE/F °nly depends on G E and Gp> 

PROOF. Step 1. Proposition 1 is true for quadratic extensions. 

Indeed, suppose E/F quadratic, hence E = F(y/d); the class (d) G 
H1 (F) is the character of GF with kernel GE- Let a e H1 (E): we have 
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to prove that T(a) only depends on GF> But there are x,y e H1 (F) 
such that T(a) = (x) + (y); by [1, II.2.1] one has 

x + ?/ = Cor E/Fa + (d); 

x-y = N(a) + {2,d), 

where N is the multiplicative transfer. 

Obviously x + y depends only on G E and GF', by the Main Lemma 
this is the same for x • y. Therefore TE/FÌ0)

 o n ly depends on G E and 
GF. 

Step 2. The general case. We will proceed with a standard dévissage 
argument, as in [1, IL] The following lemma is well-known [3]. 

LEMMA 4. Let K/F be a finite extension of odd degree. Then 
Res : W(F) -» W(E) is injective. 

Let F' be another field such that GF — GF',<I> • GF' —> GF an 
isomorphism and Ef the extension of F' corresponding to (J>~1(GE)> If 
x G W(E)Ì we wish to show that TE'/F,(I>*X — <\>*TEIFX>> where (j>* is 
the isomorphism induced by 0* on Witt groups. Let E be the Galois 
closure of E over F,KCE the fixed field of some Sylow 2-subgroup 
of Gal {E/F) and K' the extension of F' which corresponds to K via 
(j) : K/F and K'/F' have the same odd degree. By Lemma 4, it will be 
enough to show that 

(*) Res K'/F'TE'/F'<I>*X — 0*Res K/FTE/FX-

The étale K-algebra K ®jr E is a direct product of extensions Ki/K 
which are filtered by successive quadratic extensions. By repeat­
edly applying Proposition 1 for a quadratic extension, we find that 
TK'./K'ltes K'./E'<l>*x — <l>*TKi/KResKi/E

x for all i, and therefore that 
(*) holds. D 
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4. Proof of the theorem. Keep the notations as just above. We 

have to prove that the diagram 

A(F) —h—> W(F) 

A(F') —^-> W(F') 

commutes. Let x = (E, E[yfa\) € A(F) be a generator. The image h(x) 

is the class in W(F) of Tr g/pax2. Up to splitting E into its minimal 

ideals, we may assume that E is a field; then Proposition 1 shows that 

<I>*TE/F(a) = TE>/F,(</>*,a), hence </>*h(x) = ti{(j)*x). u 
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