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A DECISION METHOD FOR CERTAIN 
ALGEBRAIC GEOMETRY PROBLEMS 

HAI-PING KO AND SHANG-CHING CHOU 

ABSTRACT. We present a mathematical theorem in alge
braic geometry. The theorem implies a decision method for 
the membership of the set of all the polynomials which fix a 
certain type of algebraic variety denoted by V* by WuWen-
tsiin. The theorem is a generalized form of similar theorems 
developed by Ritt, Wu, and the above authors. And the deci
sion procedure is a natural extension of similar decision pro
cedures introduced by Ritt, Wu, and the second author. 

Wu Wen-tsün's method of mechanical theorem proving in 
geometry is complete for certain elementary geometry prob
lems involving equality only. For the corresponding algebraic 
geometry problem, the method is complete for problems with 
an algebraically closed field as the associated field, but not 
complete for the above type of problems with the field of ra
tional numbers (Q) or the field of real numbers (R) as the 
associated field. As suggested by Wu in 1982, the second au
thor shows a condition for Wu's method to be complete for 
the above problems with R as associated field. We now show 
a more general condition for Wu's method to be complete for 
the above algebraic geometry problems with any field as the 
associated field. 

Background. The algebraic problem to be presented here is ex
tracted from a study of algebraic methods of automated geometry the
orem proving. 

Research in automated geometry theorem proving has been motivated 
by such visions as: (1) providing a mathematical tool for education 
in geometry, (2) studying the basic needs of an intelligent system, 
and (3) advancing the technology of robotics and computer vision. 
Proposed methods of automated geometry theorem proving can be 
classified as either logical or algebraic. For instance, the methods 
introduced by Tarski [10] and Wu Wen-tsiin [12, 13] are considered 
as algebraic. The method introduced by Wu Wen-tsiin has been 
considered as a breakthrough success since the time of Tarski. It 
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has been demonstrated to be efficient and powerful in a wide range 
of geometry problems [1 - 4]. 

The algebraic part of Wu Wen-tsün's method of automated geometry 
theorem proving is a decision problem of the membership in algebraic 
geometry of the following type of sets: 

I(V*(huh2,...ha : ui,u2,...ud)). 

We present a mathematical theorem to extend some theoretical prop
erty of Wu's method from algebraically closed fields to arbitrary fields. 
This extension to the field of real numbers is particularly significant, be
cause Euclidean geometry is a geometry over R and a geometry which 
is mostly frequently used in physical sciences. One of this type of ex
tensions is given in [2]. Our further extension to arbitrary fields here 
has significance in theory and an effect of unifying existing results for 
this type of problem. 

The main theorem. Throughout this paper, suppose K is a field 
and K is an extended field of K. Let n be a positive integer and KK = 
K[yu V2, • • •, Vn] be the polynomial ring of variables yu y2,..., yn over 
K. 

DEFINITION 1. [9] For a nonempty ideal, say if, of KK, a generic 
zero of H is a zero of H, say z = {z\,z2,... ,zn), in an extended field 
of K such that, for any polynomial, say #, in KK, if g(z) — 0 then g is 
an element of H. 

Let V be the function defined from the power set of KK to the power 
set of K by V{ J) = the set of all elements, say (zi, z2,..., 2n)> of K 
such that, for all polynomials, say f(yi,y2,..., yn), of J, f(zi,z2i ...zn) 
= 0. Let I be the function defined from the power set of K to 
the power set of KK by I(U) = the set of all polynomials, say 
f(yi, 2/2> • • • Î 2/n), of KK such that, for all elements, say (zi, z2,..., zn, 
of (7, f(z\,z2,..., zn) = 0. Here, V(J) is called the (affine) algebraic 
variety determined by J over K and I(U) is called the set of all poly
nomials which fix[/. It is known that all algebraic varieties can be 
decomposed into irreducible components in a unique manner. Let d 
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and r be positive integers and U\, U2,... tzd, #1, £2, • • • #r he variables 
such that n = d + r and {1x1,^2, • • •, Ud) and {#1, #2, • • • ? x r } together 
form {2/1,2/2 j • • • > 2/n}- (We limit d and r to be positive integers mainly 
to simplify our discussion. It is very possible that, with some adjust
ment, d and r can be actually allowed to be nonnegative integers.) Let 
V*(-; i*i, U2,..., Ud) be the function defined from the power set of KK 
to the power set of K by V*( J; u\, Î/2, • • •, Ud) = the union of all the 
irreducible components, say Vf, of V(J) so that I(Vf) has a generic 
zero of form (ui, 1*2,..., ̂ d, #T» #2, • • •, #r) such that iti, 112,..., Ud are 
algebraically independent over K and äT[, ä>ä,..., ä̂ T are algebraic over 
K(ui1U21..., i*d). For convenience, we also denote V({/i, /2, • •., /™}) 
simply by VX/1,/2,... , / m ) , denote V*({ / i , / 2 , . . . / m } ; ^ i , ^ 2 , • • • ,ud) 
simply by V*(/i, / 2 , . . . / m ; Ui,u2, • • • Wd), and denote I{{aua2,..., <rm}) 
simply by /(cri, 0*2,.. .<rm). For the above types of algebraic vari
eties, the field K is called the base field and K is called the asso
ciated field. Given some special type of polynomials /ii,/i2, • • • ,hs 

in KK, the main theorem gives a characterization of members of 
I(V*(h1,h2,...hs : ui,u2,...ud)). 

Let prem denote any pseudo remainder, such as that defined in [6] 
and used in [1]. A pseudo remainder, prem, here may be considered as 
a function from KK • (KK - {0}) • {2/1,2/2, • • •, Un} to KK such that if 
rem=prem(#,/,2/), then 

either rem = 0 or deg(rem, y) < deg(/, y) 

and there exists a polynomial q and a nonzero polynomial / in KK 
satisfying the following properties: 

(1) / • g = q • / + rem; 

(2) every prime factor of / is a factor of the leading coefficient of / 
w.r.t. y. 

We extend the above prem to denote, for a pseudo remainder of succes
sive pseudo divisions, as follows: for m > l, g in KK, / 1 , / 2 , . . . , / m in 
KK-{0}, and z\, z2,... ,zm in {2/1,2/2, • •, 2/n}; prem(#, (/1, / 2 , . . . / m ) , 
(z\,Z2,. •. zm)) is defined as 

prem(<7,/i,zi) if m = 1, and 

prem(prem(#, (/2, / 3 , . . -, / m ) , (z2,23, • • • > *m))> / l ^ i ) otherwise. 

Given a pseudo remainder function prem, and following the notion 
of characteristic set introduced in [9], we define an ^-characteristic 
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set of any set of polynomials as below. (The format of the definition 
here is given in such a way so that we can have a dicussion without 
being involved in the notion of chains [9]. This does not suggest that 
the notion of chains can be eliminated in all related problems. The 
notion of chains has been used to prove theorems such as the Ritt-Wu 
Principle, which we use and state later in this paper.) 

DEFINITION 2. For a set of polynomials, say S, in M , an R-
characteristic set of S is a pair of a finite sequence of polynomials and 
a finite sequence of variables of form ((pi,P2, • • • ,Pr), (# i , #2, • • • > xr)) 
with > 1 such that the p^'s are elements of the radical ideal generated 
by S, and, either (r = 1 and p\ is a nonzero element of K) or all of the 
following conditions are satisfied: 

(CI) (triangularity) (pi,P2, • • • ,Pr) is strictly triangular with respect 
to 
( x i , X 2 , . . . , x r ) , i.e., for all i,pi is an element of K[ui,U2, •. • ,^d, 
Xi ,X2, . . . ,Xi] but not an element of K[u\,U2,... ,Ud,x\,X2,... ,Xj_i]. 

(C2) (nonzero initials) Let l\,l<i,..AT be leading coefficients of 
Pi ,P2, . -,Pr w.r.t. x i , X 2 , . . . , x r respectively. Then, for each i = 
2 , 3 , . . . , r , p r e m ( / i , ( p 1 , p 2 , P i - i ) , ( ^ i , ^ 2 , . - - , ^ - i ) ) is nonzero in KK, 

(C3) (zero remainders) For every element, say g, of S, 
we have prem (g, (pi,P2, •• >Pr)i (xi ,%2, ••• ,%r)) = 0- For conve

nience, we shall simply call P = (pi,P2, • •. ,pr)
 a n Ä-character-

istic set of S and ( x i , X 2 , . . . , x r ) triangular variables of P . Further
more, the ^-characteristic set P , or ((pi,P2, • •. ,pr), (#i»#2>.. . , x r ) ) , 
is said to be irreducible with ui,U2,... , t£<2 as independent variables 
if rf > 1, n = d + r, u\,U2,..., tid and a?i, ^ 2 , . . . , x r together form 
2/1,2/2, • • • ? 2/n, and the following condition is satisfied: 

(C4) [Ritt-irreducibility] If Ko is the field K( i i i , Ü2, . • • ^d), then pi is 
a nonzero irreducible polynomial of Äo[^i]> and, for each i = 2 , . . . , r , 
if Ki-i is defined as the quotient field Äi_i[xi_i] / Ideal(pj_i) , then pi 
is a nonzero irreducible polynomial of KÌ-\[XÌ\. 

It is known from the Ritt-Wu Principle [13] that , for any nonempty 
set, say 5 , of nonzero polynomials, P-characteristic sets exist. Fur
thermore, if S is a finite set and prem can be evaluated in an algo-
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rithmic manner, then there is an algorithmic method to obtain an R-
characteristic set of S. This method merely uses a finite sequence of 
prem operations. We give a statement of the Ritt-Wu Principle as 
follows: 

RITT-WU PRINCIPLE. Suppose hi, h2,..., hs are nonzero polynomials 
in KK, (s > 1). Then, for any linear ordering on {yi,y2, • • •, yn}, say 
<, there exists an algorithm to find an R-characteristic set of form 
((fl, f2, • • - , fr),(xuX2, . . . ,Xr)) with XX < X2 < • • • < Xr. 

In the above case, if f\ is an element of K, then V(hi,h2,...,hs) = 
V(/i , f2, • • •, fr) is empty. If / i is not an element of K and we let 
li be the leading coefficient of fi w.r.t. Xi, for each i = 1,2, . . . , r , 
and J = h - h h, then V(hi,h2,. •. ,hs) is the disjoint 
union of V(fu f 2 , . . . , fr) - V(I) and V(fx,f2, •. •, /r , / ) . Multiple Ä-
characteristic sets exist. For instance, if S = {x + y,x — y} and prem 
is any pseudo remainder function, then each of the following sequences 
is an irreducible ^-characteristic set of S with (x, y) as its triangular 
variables: (x, y), (x, x + y), (x, (x 4- l)(x + 2/)). 

Our main theorem is 

THEOREM 1. Suppose in KK, S = {/ii,/i2,...,/is} (s > 1) has 
an irreducible R-characteristic set, say ((pi,P2, • • • >Pr)> (^i?^2? • • • ?xr)) 
with Ui,u2,... ,Ud eis independent variables. Let H be the ideal gener
ated by hi, h2,..., hs in KK, and Hi = {g : g is an element of KK, 
and prem((7, (pi,p2, • • -Pr), {^i,x2,.. >xr)) = 0}. Suppose d is a posi
tive integer and ui, u2,..., Ud are variables such that Ui, u2,..., Ud and 
Xi,x2,..., xr together form yi, y2,..., yn. Then Hi is a prime ideal 
containing H. Furthermore, if the condition: 

(SI) V* = V*(hi,h2,.. .hs;ui,u2,.. .Ud) is nonempty is satisfied, 
then 

(Dl) F* is an irreducible algebraic variety, V* — V(Hi) and Hi = 
I(V*) = I(V(H1))i and 

(D2) for any prime ideal H' in KK, if H C Hf C I(V*), then 
H' = Hi. 
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This theorem is a generalized form of similar theorems in [9, 13 , 8, 
2, and 7]. If K is algebraically closed, then condition (SI) follows from 
conditions (C1)-(C4). But in case K is not algebraically closed, then 
(SI) does not necessarily follow. 

DEFINITION 3. [13] If polynomials P i ,P2 , - - - ,P r , and variables 
ui,U2,- •• ,Ud, XI,X2T •. ,xr satisfy conditions (CI) , (C2) and (C4), 
then a generic point of P = (pi,P2,- • • ->Pr) is defined as zero, say 
(ui, u2, • • • ,Ud,Xi,X2, • • • ,xr), of pi,P2> • • ,Pr hi an extended field of 
K with i*i, it2, • • •, Ud algebraically independent over K. 

Also rioted in [7], a generic point defined here is different from a 
generic zero defined for ideals in general. It can be proved that if 
P — (PiiP2, • • • ,Pr) satisfies conditions (CI) , (C2) and (C4), then any 
generic point of P is a generic zero of ideal Hi as defined in the following 
Lemma. 

LEMMA 1. Suppose in KK, {hi,h2, • • • ,hs} (s > 1) has an 
irreducible R-characteristic set ((pi,P2, • • • ,Pr) , (^i 5^2, • • •, xr)) with 
v>i,U2,.. • ->ud as independent variables, and condition (SI) is satisfied. 
Let point a = (ui, U2,..., Ud, x\, X2, • • . , xr) in Kr be a generic point of 
P,H = Ideal(/ii,/i2, • • -hs) in KK, and Hi = {g : g is an element of 
KK, and prem(<7, {pi,P2, • • • ,Pr) , (xi,x2i... , x r ) ) = 0} . Then Hi is a 
prime ideal containing H, and a is a generic zero of Hi. Furthermore, 
g is an element of Hi if and only if one of the following conditions is 
satisfied: 

(1) a is a zero of g, and 

(2) there exists a polynomial, say q, in K[ui, U2,... Ud] such that q • g 
is an element of H. 

The proof is an obvious extension of the proofs of [2; Appendix 2, 
Theorems 1 & 2] and [3, Theorem(9.3)]. D 

LEMMA 2. For a proper prime ideal H in KK, if a is a zero of H 
of transcendence degree d and the transcendence degree of the quotient » 
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field of KK/H over K is d, then a is a generic zero of H. 

The proof of this Lemma follows almost directly from [11, p. 155]. • 

Now we prove Theorem 1. Suppose, in KK, S = {hi, /12,. • •, hs} has 
an irreducible ^-characteristic set, say ((pi,P2» • • • >Pr)> (#1, #2, • • •, #r)) 
with ui, U2,..., Ud as independent variables. Then Hi is a prime ideal 
containing H in KK, by Lemma 1. Suppose V* is nonempty. Let V be 
an irreducible component of V* and O~Q — (ui, IL2,. •., Ud-, x~ï, x~2,.. •, äv) 
be a generic zero of I{V) such that ui, U2,... ,Ud are algebraically inde
pendent over K and x 1, u?21 • • • 1 Xy are algebraic over K(ui,u2,..., Ud). 
Since iJ Ç /(^(fir)) Ç I(V*(H)) Ç I{V), a0 is also a zero of H. Be
cause of Lemma 1(2), for every element, say h, of Hi, there exists q in 
K[ui,U2,..., Ud] such that q-h is an element of H, thus g(ao)-/i(cro) = 0. 
Since the u^s in <Jo are algebraically independent, g(<7o) is nonzero, so 
ero is a zero of h and thus a zero of H\. But I(V) = {# : # is an element 
of If if and #(<ro) — 0}> a n d thus u i Ç /(F7) . The transcendence de
gree of the quotient field of KK/I(V) is d and thus the transcendence 
degree of the quotient field of KK/Hi over K is greater than or equal 
to d. But H Ç Hi and, in H, xi, X2,... xr are algebraically dependent 
on {ui, U2,..., Wd}, and thus the transcendence degree of the quotient 
field of KK/Hi is less than or equal to d. Therefore, the transcendental 
degree of KK/Hi is equal to d. By Lemma 2, <J0 is also a generic zero 
of Hi and Hx = I(V). This implies V(Hi) = V, Hy(Hx)) = Hu 

and V* = V — V(Hi) is irreducible. This proves (Dl). The proof for 
(D2) becomes obvious by using Lemma 2 again for H' between H and 
I(V*). u 

Corresponding decision method. Suppose that if is a field for 
which both subraction and nonzero division for elements in K can be 
evaluated in an algorithmic manner. An example of such a field is Q, 
or any finite field. Then the pseudo remainder defined in [6] and [1] 
can be evaluated in an algorithmic manner for polynomials in KK. In 
this case, the previous theorem implies a decision procedure for the 
membership of I(V*(S; U1U2,..., Ud)) for a special type of S. We state 
a theorem in terms of decision procedures as follows: 
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THEOREM 2. Suppose S — {^ i , / i 2 , . . . , ^ s } (s > 1) has an irre
ducible R-characteristic set, say ((pi,P2, • • • ,Pr) , (#i»#2» • • • j#r))> in 
KK with u\,U2,.. • ,Ud as independent variables such that condition 
(SI) 25 satisfied. Then a necessary and sufficient condition for any poly
nomial g in KK to be a member of I(V*(pi,p2, • • • ,Pr ;^ i>^2, • • • ,Ud)) 
is prem(<7(pi,p2, • • • ,Pr) , (x\,X2, • • • ,Xr)) — 0. Therefore, as long as 
the pseudo remainder function prem can be evaluated in an algorith
mic manner, there is an algorithm to determine the membership of 
I(V*(S;ui,u2,...,ud)). 

Condition (SI) can be proved as a consequence of conditions (Cl ) -
(C4) if one of the following conditions is satisfied: 

(1) K is algebraically closed, 

(2) K = K = R = t h e field of real numbers, and there exist nonempty 
open intervals 0\,02,— ?Od in R such that if ui € Oi for all i, 
then pi = 0, p2 — 0 , . . . and pr = 0 has a common solution for 
(x\,x2,.. • ,xr) in R. 

The former condition is assumed in [9] and [13]. The latter condition 
is suggested by Wu in 1982 and introduced by the second author in [2]. 

Suppose that there is an algorithm to evaluate prem. In the above, 
we have an algorithmic method to determine the membership of an 
ideal of form I(V*(hi,h2,..., hs;ui,U2,... ,u<i)) with foi,/i2» • • •,^« 
and ui,U2,...,Ud satisfying conditions (CI) , (C2), (C3), (C4) and 
(SI). From an application point of view, such as to introduce a totally 
mechanical method in the area of automated geometry theorem proving 
based on Wu Wen-tsiin's method, it is important to investigate whether 
all the above conditions can be checked in an algorithmic manner. 
Note that checking of conditions (CI) , (C2) and (C3) can be easily 
performed in an algorithmic manner. However, checking conditions 
(C4) and (Si) do not seem to be easy to do. We know that , in case 
deg(pi,Xi) < 2 for all i, condition (C4) can be easily checked in an 
algorithmic manner as demonstrated in [2]. In general, Hermann [5] 
and others have introduced algorithmic methods to check condition 
(C4), and we believe that Tarski's [10] and related methods can be 
used to check condition (SI) for the case when K = R . All the general 
methods seem not to be easy to use at this time. 
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An application in automated geometry theorem proving. 
The very first step in automated geometry theorem proving by alge
braic methods is to convert a given geometry problem to an algebraic 
problem. It is emphasized by Wu Wen-tsün and now generally recog
nized that this first step is, in fact, extremely hard to accomplish in a 
precise manner. This is because almost all known geometry statements 
are true subject to some unstated conditions, called nondegenerate con
ditions, which can often be poorly-defined and very hard to identify. 
For this reason, it is proposed by Wu Wen-tsün that to determine the 
truth value of such poorly-defined statements, what one should actu
ally determine is the "generically truth value." We consider such an 
approach realistic and valuable. Further studies and development have 
been planned by many researchers and are expected to grow in time. 
Our algebraic geometry problem is extracted from this type of auto
mated geometry theorem proving. We use two examples in Euclidean 
plane geometry to give a descripton of the above type of automated ge
ometry theorem proving and to explain the role of our main theorem. 
The readers are referred to [4] for a rich collection of other examples. 

EXAMPLE 1. [3, Example (2.1) (Parallelogram Theorem)] Let points 
A,B,C,D form a parallelogram so that AB, CD are parallel and 
AD, BC are parallel. Let lines AC and BD intersect at point E. Then 
E is the midpoint of diagonal AC and diagonal BD, but E does not 
necessarily have equal distance from points A and D. 

EXAMPLE 2. [3] (Simson Theorem) From a point D on the circum
scribed circle of a triangle ABC, perpendiculars are drawn to the sides 
of the triangle. Then the feet of the perpendiculars are collinear. 

To convert the above problems to algebraic problems, note that, 
for any coordinate system of a Euclidean plane geometry, if points 
A\, A2,A%, A4, ̂ 5 have the coordinates 

A1 = (XI, Yl), A2 = (X2, Y2), A3 = (XS, F3), 

A4 = (X4,Y4), A5 = (Xò,Y5), 

then the following geometric relations can be represented by the fol
lowing corresponding sets of polynomials in K = R, meaning that the 
given geometric relation holds if and only if the corresponding coordi
nates are common zeros of the given set of polynomials in R: 
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(1) points A\,A2,Az are collinear -

X2YS - XI YS - XS Y2 + XI Y2 + XS Yl - X2 F l , 

(2) point As is the midpoint of points A\,A2 -

I H - J 2 - 2 - I 3 , 

F1 + F 2 - 2 F 3 , 

(3) lines A1A2 and As A4 are parallel -

(X2 - X1)(F4 - YS) - (X4 - X3)(F2 - F l ) , 

(assume: points A1.A2.As are noncollinear and points ^3,^4 are 
distinct); 

(4) lines A1A4, A2AS are perpendicular -

(F3 - F2)(F4 - F l ) + (XS - X2)(X4 - XI) , 

(assume: points A\,A\ are distinct and points A2, As are distinct); 

(5) the distance from A\ to A2 is equal to the distance from As to 
A4-

{XI - X2)2 + (F l - F2)2 - (XS - X4)2 - (F3 - F4)2 . 

The above type of polynomials are not uniquely determined; but we 
shall assume that the notion of "generically true" will be defined w.r.t. 
a specific set of algebraic formulations for elementary geometric rela
tionships such as the above. In the notion of "generically true", it 
is also assumed that, for each statement in a large class of geomet
ric problems, there are points, called arbitrary points, whose positions 
can be arbitrarily chosen and all the positions of other points in the 
given statements are then determined in a "dependent manner", i.e., 
the number of their solutions will then be finite. Let K be the field that 
characterizes all the possible coefficients of the basic algebraic formu
las, K be the field that characterizes possible values of the coordinates 
of points u\,U2,... ,Ud be variables representing "free coordinates" of 
the arbitrary points, and #i,#2, • • • ->xr be variables representing the 

http://A1.A2.As
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remaining coordinates of all the points. Then it is possible to use vari
ables ui,u2i ••• ,Ud, Xi,x2j... ,xr and polynomials hi,h2l... ,hs, g 
in KK — K[ui,U2,...,Ud, x\,#2,. • •,xr] to characterize the given 
geometry statement in the following form: 

The given geometry statement is true if and only if the following 
condition is satisfied. 

If a is a solution for (u\,u2, • • • ,Ud,xi,x2i • • • ,xr) to 
the following system of equations in K and a does 
not correspond to any degenerate case of the given 
geometry statement: 

h\(u\,u2,..., ud, xi, x2,..., xr) = 0, 

h2{ui ,U2,...,Ud,XuX2,...i Xr) = 0, 

hs(ui,u2,... ,ud,xi,x2, •.. ,xr) = 0, 

then cris also a solution to g(ui,u2,.. .Ud,x\,x2,.. .xr) 
= 0. 

Here, the hypothetical conditions of the given geometry statement are 
represented by polynomials h\, h2,..., hs, and the conclusion is repre
sented by g. Then the given geometric statement, or the conclusion g, 
is said to be generically true if and only if 

(Gl) g is a member of I(V*(h\,h2,.. .hs; WI,Î/2> .. . ^ ) ) . 

With some precise adjustment of the above notions, it can be proved 
that if a geometry statement is generically true then the given geometry 
statement is true subject to some algebraic condition of form 

I(ui,u2, ...ud,xi,x2,... xr) # 0. 

This is easy to see in the case when {hi,h2,... ,/is} has an irreduc
ible ^-characteristic set, say ((pi,p2,... ,p r)7 (xi,x2,... ,x r ) ) , with 
u\, u2,..., Ud as independent variables and V* (hi, h2,... hs ; 
iti, u2y... Ud) nonempty. For in this case, if the given geometric state
ment is generically true, then condition (Gl) is satisfied and so, by 
Theorem 2, the following condition is satisfied: 
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(G2) prem(#, ( p i , p 2 , . • • , p r ) , ( s i , z 2 , • • • , z r ) ) = 0. 

If polynomial / is the product of all the leading coefficients of p^s w.r.t. 
Xi's, then, for some nonnegative integer t, the following remainder 
formula holds: 

I1 • 9 = Qi • Pi + Q2 • P2 + • • • + qr ' Pr-

So, the given geometry statement is true as long as / ^ 0. 

We now prove Examples 1 and 2 by using the above notions and 
prove the "generically t ru th value" of each of the given conclusions. 
(An elementary part of Wu's method can be used as an heuristic 
method to determine the t ru th value of many geometry statements, 
provided degenerate cases are well understood in an either explicit 
or implicit manner. However, a discussion in this direction does not 
seem to be appropriate to be introduced in this paper and thus is 
not provided.) The definition of prem can be the one introduced 
in either [6] or [1]. In either example, we have K = Q, K — 
R, and the given {hi,h2, • • • ,hs} has an irreducible i2-characteristic 
set ((pi,p2, • • • ->Pr), (xi ,X2, . •. ,xr)) with u\,u2,. • •,Ud as independent 
variables and V*(h\, h2,..., hs; u\, u2,..., Ud) is nonempty. So, for any 
conclusion, say characterized by g = 0, to be generically true, it is 
necessary and sufficient that condition (G2) is satisfied. 

P R O O F O F E X A M P L E 1. Let 

A = (0,0), B = (Ul, 0), C = (U2, US), 

D = (X1,X2), E = (XS, X4), 

(Ul, u2,. • -, ud) = (Ul, 172, US, Uh Uh, U6), 

(xx,x2,... ,xr) = (Xl,X2,X3,XA). 

Let 

hi = U\ {X2 - US) (AB, CD are parallel), 
h2 = (U2 - Ul) X2 - US XI (AD, BC are parallel), 
h3 = US XS - U2 X4 (A,E,C are collinear), 
/14 = -XI XA + [ / l X 4 + X2 XS - Ul X2 (B, E, D are collinear), 
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FIGURE 1. 

gi = 2 X3 - £72 (gi,g2 : E is the midpoint of A, C), 
g2 = 2X4- [73, 
g3 = 2 XS-Xl-Ul (g3,g4 : E is the midpoint of J5, £>), 
p4 = 2 I 4 - X2, 
^ = - ( X 4 - X2)2 + X42 - (X3 - XI)2 + X3 2 (AE = DE). 

We have at least two irreducible jR-characteristic sets for {hi, h2, . • •, hs}, 

namely the list of following polynomials: 

Pl = Ul US (XI - U2 + 171), 
p2 = £71 (X2 - 173), 
p3 = £71 US (2 X3 - 172), 
P4 = t71 *72£73 ( 2 X 4 - f 7 3 ) , 

and the list 

P l = -171 173 (XI - 172 + 171), 
p2 = £71 (X2 - £73), 
P3 = -(U2 X2 XS - US XI XS + £71 £73 X3 - £71 £72 X2), 
P4 = - ( £ 7 2 X 4 - * 7 3 X 3 ) . 

For either one of them, gi satisfies condition (G2) for all i = 1,2,3,4, 
but gw does not. So, g^s are generically true conclusions for all 
i — 1,2,3,4, but gw is not. D 

PROOF OF EXAMPLE 2. Let point O be the center of the circum
scribed circle and 

O = (0,0), A = (£71,0), B = (£72, XI) , C = (£73, X2), 

D = (£74, X3), E = (X4, X5), F = (X6, X7), G = (X8, X9), 
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(ulìu2,...,ud) = (Ul,U2,U3,U4), 

(xi, x2, - •., xr) = (XI, X2, X3, X4, X5, X6, X7, X8, X9), 

FIGURE 2. 

Let 

fti = - X I 2 - U22 + Ul2 (OA = OB), 
h2 = -X22 - U32 + Ul2 (OA = OC), 
h3 = - X 3 2 - UA2 + Ul2 [OA = OD), 

(/14, h$ : E is the perpendicular foot from D to ylB) 

h4 = U2 X5 - Ul X5 - XI X4 + tf 1 XI , 

fc5 = * 1 (X5 - X3) + (E/2 - Ul) (X4 - J74), 

(/i6, h-j : F is the perpendicular foot from D to AC) 

h6 = U3X7- U2 XI - X2 X6 + X I X6 -f [72 X2 - C/3 XI , 
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h7 = (X2 - XI) (X7 - X3) + ((73 - C/2) (X6 - C/4), 

{hs, /19 : G is the perpendicular foot from D to BC) 

hs = -C/3 X9 + U1X9 + X2 X8 - (71 X2, 
h9 = (C/1 - (73) (X8 - C/4) - X2 (X9 - X3), 

g = X6 X 9 - X 4 X 9 - X 7 X8+X5 X8+X4 X 7 - X 5 X6, {D, E, F are collinear). 

We have at least two irreducible ^-characteristic sets for {hi, hi,... ,hs}, 
namely, the list of the following polynomials: 

Pi = - X I 2 - C/22 + C/12, 
p2 = - X 2 2 - C/32 + C/12, 
p3 = - X 3 2 - C/42 + C/12, 
p4 = (C/2-C/1) (2 (71 X4 + X1 X3 + C/2 C/4-C/1 Ui-Ul C/2-C/12), 
p5 = ((72 - (71) (2 C/1 X5 - C/2 X3 - C/1 X3 + C/4 XI - (71 XI) , 

p6 = 2 X I X2 X6 + 2 C/2 (73 X6 - 2 C/12 X6 + (73 X2 X3 -
C/2 X2 X3 - (73 XI X3 + C/2 XI X3 - (73 XI X2 - C/2 XI X2 + 
C/32C/4-2 C/2 C/3 (74 4-C/22 C/4-C/2 C/32-C/22C/3 + C/l2 (73 + C/l2 C/2, 
p7 = (C/3 - C/2) (2 XI X2 X7 + 2 C/2 C/3 X7 - 2C/12X7 -
2 XI X2 X3 - C/32X3 - C/22X3 + 2(712X3 + (73 (74 X2 - C/2 C/4 X2 -
(72 (73 X2 + (722X2 - C/3 C/4 XI + C/2 (74 XI + C/32X1 - (72 (73 XI) , 
p8 = (C/3-C71) (2 (71 X8 + X2 X3 + C/3 Ui-Ul U4-U1 (73-C/l2), 
P9 = (C/3 - C/1) (2 C/1 X9 - (73 X3 - C/1 X3 + C/4 X2 - C/1 X2), 

and the list of the following polynomials: 

Pi = - X I 2 - C/22 + C/12, 
p2 = - X 2 2 - C/32 + C/12, 
P3 = - X 3 2 - C/42 + C/12, 

Pi = (XI2 + C/22-2 C/1 C/2 + C/12) X4 + ((71-(72) XI X3-C/1 X l 2 + 
(-C/22 + 2 C/1 C/2 - C/l2)C/4, 
p5 = (C/2 - C/1) X5 - XI X4 + (71 XI , 

p6 = (X2 2 -2 XI X2+Xl 2 +C/3 2 -2 (72 (73+C/22)X6+((C/2-C/3) X2+ 
(C/3-C/2) XI) X3-C/2 X22 + (C/3 + C/2) XI X2-C/3 X l 2 + (-(732 + 
2 (72 C/3 - C/22) C/4, 
P7 - (C/3 - C/2) X7 + (XI - X2) X6 + C/2 X2 - C/3 XI , 

Ps = (X22 + C/32 - 2 C/1 C/3 + (712) X8 + (C/1 - C/3) X2 X3 - C/1 X22 + 
(-C/32 + 2 C/1 C/3 C/l2)C/4, 
p9 = (C/1 - C/3) X9 + X2 X8 - C/1 X2. 
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For either one of them, g satisfies condition (G2) and thus is a generi-
cally true conclusion, o 
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