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COMBINATORIAL TECHNIQUES A N D 
ABSTRACT WITT RINGS II 

ROBERT FITZGERALD AND JOSEPH YUCAS 

1. Introduction and terminology. We will follow mainly the 
notation and terminology set up in [2]. Thus (R,GR,BR,qR) is an 
abstract Witt ring as defined in [4] and recall that ÇR : GR X GR —» BR 
is a symmetric bilinear mapping with GR and BR being groups of 
exponent 2. GR has a distinguished element —1 satisfying q(a, —a) = 1, 
and qR satisfies 

For all a, b, c, d G GR, g#(a, b) = g#(c, d) implies 

there exists x G GR with qR(a, b) — <7#(a, x) 

(L) = qR(c,x) = qR(c,d). 

Denote by QR the image of qR in BR and when there is no confusion 
write G = GR, B = BR, q = qR and Q — QR. For a G QR set 
Q(a) = {q{a,x)\x G GR). YR will denote the collection {Q(a)\a G 
Gfl\{l}} and {Qi}^==1 is the collection of distinct elements of YR. For 
a subgroup of Q of BR, the subgroup {x G GR \ Q(x) Ç Q} of GR will 
be denoted by H(Q). We let Hi = H(Qi) and hi = \Hi\. The value set 
of (1, x) is D(l,x) = {y £ GR I # ( -£ , y) = 1}, and, for any subgroup K 
of G/*, let k denote JST\{1}. Finally set g = \GR\. 

In §2 construct a quotient quaternionic mapping q and give some 
technical conditions under which q satisfies (L). This quotient tech­
nique together with the counting technique of [2], proves to be quite 
useful in §3 where we classify Witt rings having a simple Hasse dia­
gram. Specifically, we generalize Cordes' classification [1] of Witt rings 
with < 4 quaternion algebras by classifying all non-degenerate Witt 
rings with \YR\ < 4 (See [3;Chapter 5, §10]) for a statement and proof 
of Cordes' classification using the notation and terminology used here.) 

2. Quotients. Let R be an arbitrary abstract Witt ring with 
associated linked quaternionic mapping q : GR X GR —> BR. For an 
arbitrary subgroup Q of BR set H = H(Q) and define q : GR/H X 
GR/H —• BR/Q by q(a,b) = q(a,b)Q, where ä = aH. 
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PROPOSITION 2.1. q is a non-degenerate quaternionic mapping. 

PROOF, q is clearly bilinear and symmetric. To show q is well defined 
suppose a — a'h for some a, a' G GR and h G H. Then g(a,ò) = 
q(arh,b) G q(a',b)Q(h) Ç q(a',b)Q. Finally, notice that q is non-
degenerate, for, ïîq(aH,bH) = Q V6 G <2#, then ç(a,o) eQVbe GR. 
Hence <J(a) Ç Q and a £ H. ü 

Consequently, ç is a linked quaternionic mapping if and only if q 
satisfies (L). In this case we say that reduction at Q is possible. Note 
that Q(a) = {q(a, 6) | 5 <E GR/H} = {q(a, b)Q \a,beGR} = Q(a)Q/Q. 
ThusYïï={QiQ/Q\QleYR}. 

PROPOSITION 2.2. Suppose reduction at Q(x) is possible. Then 
~R ^ R/I(H) where H = H{Q{x)) and 1(H) = ({(1, -h) \ h G H}). 

PROOF. It suffices to show that the kernel of the natural mapping 
a : R —*• R is contained in 1(H). Let ip G ker a. If ip = ((1, —a)), then 
ä = 1 implies a e H and ((1,—a)) G 1(H). If ip — ((—a,—6)), then 
q(a,b) G Q(x), and thus ((-a,—6)) = ((—x, —c)) for some c G <2#. 
Since ( ( - x , - c > ) = ((1, -x))((l, - c » and x G # , <p G / ( i f ) . In 
general, suppose <p = ( ( a i , a 2 , . . . , a n ) ) . There exists a sequence of 
forms Tp,ïpx,Tp2,... ,lph — 0 in R with each pair lpi, Tpi+l of the form 

^ J = ^ ( c i , C 2 , C 3 , . . . , C n ) ) , ^ i + 1 = ( (3 i ,2 2 ,C3 , . . . ,C n ) ) WÌthJg(ci1C2) = 

q(di,d2) and c~ic2 = c^id2. Now 0 = Tpi - Tpi+l = ( (c i ,c 2 , -d\, -d2)) = 
ci((cic 2 , — Ci5i)) J- —^2((1, —cic2di^2)). Since cic2 = d\d2 and 
ç(c i ,c 2 ) = q(dud2), ( ( l , - c i c 2 d i d 2 ) ) and ((c~ic2-cidi)) are both equal 
toO. As above, ((1, — Cic2did2)), ((cic2 — Cidi)) G 1(H). Consequently, 
Vi - Vi+i £ / ( # ) and since <p = ( ^ - <p2) + (<P2 - <P3) + • " + (<Pk-i ~ 
<Pk)i V € 1(H) a s desired. D 

Note that reduction at an arbitrary subgroup Q of BR is not always 
possible. What follows is an example of such a Q and some rather 
technical conditions under which reduction is possible. We suspect 
that reduction at every Q(x) is possible but the proof eludes us. In any 
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case, some of what follows turns out to be sufficient and quite useful 
for our classification in the next section. 

EXAMPLE. Let L be a Witt ring of local type with \GL\ > 16, - 1 ^ 1, 
and take R to be L[{1,£}]. Pick a G GL, a £ D(( l , l ) ) and set 
Q = {l,o(a,t)}. Note that H(Q) = {1}. Choose x G GL, x # - 1 , 
with qL(x,a) ^ 1, then pick y e GL with qL(y,a) = 1 and CJL(X,2/) ^ 1. 
This is possible for otherwise qL(x,y) = lVj/ € D((l,— a)} and 
hence £)((l,~a)) = £>((1, —#)), a contradiction. Now qR{xt,y) — 
QR{x,y)qR{t,y) = qR{x,y)qR(t,ay)qR(t,a) = qR(a,ay)qR(t1ay)qR(t,a) 
since qR{x,y) ^ 1 and qR(a,ay) ^ 1. 

Consequently, q^xt/y) = qR(at,ay)qR(t,a) and qR(xt,y) = 
qR(atya~y). Assuming JR satisfies (L), there exists it; G £?# such that 
qR(xt,y) = q(xt,w) = q(at,w) = q(at,a~y) and thus qR(xt,yw) — 1 
and qR(at,cîyw) = 1. We have qR{xt,yw) = 1 or qR(t,a) and 
qR(at,ayw) = 1 or qR{t,a). Assume first that qR{xt,yw) — 1. Then 
t/w G D((l,— atf)) hence yw; = 1 or —xt. If 2/u> = 1, then w — y 
and qR(at,a) — 1 or qR(t,a). Both choices lead to a contradiction. If 
2/w =' — #£, then w = —x^ and qR(at,—axt) = 1 or qR(t,a). That 
is qR(at,x) = 1 or qR(t,a). Again both choices lead to a contra­
diction. Consequently, qR(xt,yw) = qR{t,a). Applying (L), obtain 
qR(xt,yw) = qR{xt,v) = qR(a,v) = qR{a,t) for some i; E G ß . The 
last equality implies t; = at for some a G D((l,—a)). The middle 
equality implies axt G D((l,—at)). So axt = 1 or —at. axt = 1 is 
clearly impossible and axt = —at implies —ax = a G Z)((l, — a)), again 
a contradiction. D 

PROPOSITION 2.3. LetQ be a subgroup ofBR. If for every x, y G GR, 
withQ(x) Ç Q, Q(y) Ç Q, we have Q(x)Q{y)f\Q Q Q(x)UQ(y)UQ(xy) 
then reduction at Q is possible. 

PROOF. By Proposition 2.1 it is sufficient to show that (L) holds 
for q. Suppose that q(a,b) = tf(c, d)p, for some p G Q. First 
assume a £ H(Q) and c £ H{Q), hence Q(a) C Q and Q(c) C Q. 
Now p G Q(A) • Q(c) H Q, so, by our assumption, p G Q(a) U 
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Q(c) n Q(ac). If p G Q{a) then write p = q(a,e) for some e G 
G^. We have q{c,d) = q(a,b)p = q(a,be). Applying linkage, there 
exists z G GR with q(c,d) = q(c,z) = q(a,z) — q(a,be). Since 
q(a,be) = q(a,b)p G q(a,b)Q we have ç(c, d),<?(c, 2),<7(a,z) G q(a,b)Q. 
Consequently, q(a,b) — q(€L,~z) — q(c,z) = q(c,d). A similar argument 
applies if p G Q{c), so assume p G Q(ac). Write p = q(ac,e) for 
some e G C ^ . Here we have q(a,b) = q{c,d)p — q(c,d)q(ac,e), hence 
q(a,be) = q(c,de). Applying linkage, there exists z G G with q(a,be) — 
q(a,z) = q(c,z) = q(c,de), then q(a,b) = q(a,ze) = q(c,z)q(a,e) = 
q(c,de)q(a,e). Now, q(c,z)q(a,e) = q(ciz)q(a1e)q(ac,e)q(ac,e) = 
ç(c, ze)q(ac, e) = g(c, ze)p and ç(c, de)q(a, e) = q(c, d)p. Consequently, 
q{a,b) = q(a1ze) = q(c,ze)p = q(c,d)p and thus q(a,b) = ~q(ji,~ze) — 
ç(c, zë) = q(c,d). D 

We say that a subgroup Q of BR is comparable with a subgroup Q' 
of BR if either Q Ç Q' or Q' Ç Q. Let Cmp(Q) = {Q(x) G Yß | Q(x) 
is comparable with Q}. 

COROLLARY 2.4. Let Q be a subgroup of BR and suppose that 
\/x,y,z G GR with Q{x),Q{y),Q{z) £ Cmp(<2) and at least two of 
Q{x),Q(y),Q(z) comparable. Then reduction at Q is possible. 

PROOF. Let x,y e GR with Q(x) Ç Q, Q(y) Ç Q. Take z = 
xy. Show that Q(x)Q(y) D Q Ç Q(x) U Q(y) U Q(z) . We assume 
Q(x),Q(y),Q(z) £ C m p Q , otherwise it is trivial. By assumption, at 
least two of Q(x),Q(y),Q(z) are comparable. If Q(x) and <3(?/) are 
comparable, then Q(x)Q(y) Ç Q(x) or Q(x/) and it is proved. If Q(x) 
is comparable with Q(z) then either Q(x) Ç Q(xy) or Q(xy) Ç (5(x). In 
the first case Q(x)Q(y) Ç Q(xy) and in the second Q(x)Q(y) Ç Q(x). 
Consequently, in either case Q(x)Q(y) f l Q Ç Q(x) U Q(y) U Q(xy). A 
similar argument works for Q(y) comparable to Q(z). n 

PROPOSITION 2.5. For every x e GR with \Q(x)\ = 2 satisfying 
Va,6 ,c ,d G GÄ , Q(x) Ç Q(a)Q(c) => { 6 , d } U D ( ( l , - a » U Z ? « l , - c ) ) U 
Z)((l, —ac)) Ç £)((!,— #)), reduction at Q(x) is possible. 
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PROOF. TO show reduction at Q(x) is possible it suffices to show that 
(L) holds for q. Suppose q(a, b) = g(c, d)q(x, y). Assume q(x, y) ^ 1 for 
otherwise the result follows from the linkage of q. By the hypothesis, 
there exists z G {b,d} U D(( l , -c ) ) U D((l, - a ) ) U D((l,-ac)) with 
z £ D((li—x)). If z = d, then q(x,d) ^ 1, and since |Q(x)| = 2 we 
have q(x,d) = q(x,y). Applying linkage to q(a,b) = q(cx,d) we obtain 
q(a,b) — q(a,t) = q(cx,t) = q(cx,d) for some £ G G#. Consequently, 
g(ä~,6) = <jf(â,ï) = 5(c, ï) = g(c, d) and (L) holds. A similar argument 
works if z = 6. For the remainder of the proof we can then assume that 
6,d G D( ( l , - x ) ) . If * G D(( l , - c ) ) then ö(a,o) = q(c,dz)q(x,dz). By 
linkage, q(a,b) = q(a,t) = q(cx,t) = q(cx,dz) for some £ G £?#. Note 
that q(cx,dz)j= q(c,d)q(x,z)q(c,z)q(x,d). Since o(c, z) = q(x,d) — 1 
we have q(a~,b) = Ç(ô,ï) = ç(c,£) = $(ë, d) and (L) holds. Again, 
a similar argument works if z G D((l,—a)). Finally we can assume 
D((l, -a)) U D((l, -c)) Ç D((l, - x ) ) . Suppose z G D((l , -ac)) . Here 
tf(a,ò) = q(c,d)q(acx,z) so q(a,bz) — q(cx,d)q(cx,z) = q(cx,dz). 
Applying linkage, q(a,bz) = q(a,t) — q(cx,t) = q(cx,dz) for some t G 
GR. Consequently, q(ayb) = q(a,tz) = q(cx,t)q(az) = q(cx,dz)q(a,z). 
Since q(a,z) = Ö(C,z) we have q(a,b) = q(a,tz) — q(c,tz)q(x,t) = 
q(c,d)q(x,dz), and (L) follows. D 

COROLLARY 2.6. For even/ x G GR\D((l,l)) with \Q(x)\ = 2, 
reduction at Q(x) is possible. 

PROOF. Observe that if {6, d}UD((l, -o»UD(( l , -c))UD((l, -ac)) Ç 
D((l, - x ) ) , then in particular - a , - c G D((l, —#)). But then ac, -ac G 
D((l, -x) ) and it follows that - 1 G D((l, —a:)), a contradiction. D 

COROLLARY 2.7. Suppose the mapping a —> £>((l,a)) 25 an injection. 
Reduction at Q(x) is possible for every x G GR with \Q(x)\ = 2. 

PROOF. Suppose o(a, 6) = q(c,d)q(x,y). As before we may as­
sume q(x,y) -=r 1, for otherwise the result follows from linkage on o. 
By Proposition 2.5 we may say D( ( l , - a ) ) C D ( ( l , - x ) ) . Remark 
that we may make the assumption that Q(x) Ç Q(a). Otherwise 
q(x,y) — q(a,z) for some z G GR and thus q(a,bz) = q(c,d). Ap-
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plying linkage we obtain q(a, bz) = q{a, t) = a (c, t) = q(c, d) for some 
t G GR. (L) on q now follows. Further, D{{l,-ax)) Ç D{{l,-x)) 
for otherwise GR = D{{l,—x))D{{l,—ax)) since -D((l, — x)) has in­
dex 2 in GR. But then, for an arbitrary g G GR, g = aß for 
some a G D{{\,— #)) , ß G D{{l,—ax)). Consequently, q{x,g) = 
q(x,aß) = q(x,ß) — q{ß,a). That is, Q(a;) Ç Q(a) , another contradic­
tion. Then D ( ( l , - a ) ) , D ( ( l , -ax)) Ç £>((1, - x ) ) . Now £>((!, - a ) ) = 
D ( ( l , - a ) ) n D ( ( l , -x)) Ç D ( ( l , - a x ) ) and D{{1, -ax)) = D((l, -ax))D 
D{{l,-x)) Ç D ( ( l , - a ) ) , thus D ( ( l , - a ) ) = D{{l,-ax)), contradict­
ing our hypothesis. D 

3. T h e Hasse d iagram of Y R . In this section we will take R 
to be non-degenerate and consider the usual Hasse diagram of the 
partially ordered set YR. This is constructed as follows: Represent 
each element of YR as a point (vertex). If Q{a) Ç Q(b) then draw 
an arrow from the point representing Q(a) to that of Q(b). Make the 
following simplifications. The arrows from a point to itself are omitted. 
All arrows that are implied by the transitive property of inclusion are 
omitted. Last, arrange the diagram so that all arrows point upward 
and replace the arrows with lines. 

EXAMPLE. Suppose YR = {<2i,Q2,<93,<24} with QicQ2cQ4, QiC 
Q3 C Q4 and no other containments. Then the Hasse diagram of YR is 
Diagram 1. 

We take a moment to clarify some of the notation which follows. By 
diagram 2 we will mean any Hasse diagram with i on the bottom. 
Similarly, diagram 3 represents any Hasse diagram with diagram 4 on 
the bottom. The counting coefficients Cj are the same as defined in [2]. 

All Witt rings having \YR\ < 4 will be classified but we first proceed 
with the following applications of the block design counting in [2]. 

THEOREM 3.1. Suppose R has Hasse diagram 5. If the counting 
coefficients Cj are non-negative then \Q\\ = 2. 

PROOF. This is a restatement of [2, Theorem 13]. D 
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COROLLARY 3.2. Suppose YR = {Qi}^=1 with Qi c Q2 c 
Then R is of local type. 

cQn. 

PROOF. Show n — 1, and the result follows from [2, Theorem 5]. 
By Theorem 3.1 (as in [2, Corollary 14]), \Qx\ = 2. Suppose n = 2. 
Reduction at Q\ is possible by Corollary 2.4 and Y^ = {Q2/Qi}- By [2, 
Theorem 5], IQ2/Q1I = 2, thus IQ2I = 4. By Cordes' classification [1] 
no such R can exist. Consequently n ^ 2. In general, reduction at Qi 
is possible by Corollary 2.4 and Y^ = {Q2/Q1, Q3/Q1, • • • ,Qn/Qi}-
Here we have | 1 ^ | — n-l and Q2/Q1 C Q3/Q1 C • • • C Qn/Qi- By 
induction, if such a chain of length n > 2 exists then there is a Witt 
ring having a chain of length 2 which is a contradiction. D 

(3.2) answers affirmatively a question posed by M. Kula and he is 
thanked for bringing it to our attention. The proof above, using both 
the counting formula and quotient formation, was the basic motivation 
behind this paper and [2]. 

LEMMA 3.3. Let YR = {Qi} and let a be an element of Hi = H(Qi). 
Let ij = |D((1, —CL)) H Hj\. Then, for any number h > \Qi\: 

(i) 

(Ü) 

1371* 

IQil \Q: 

h\Q 

T + 

hi < 

h\Qir\Qi 

IQi n, 

h\Qi hj< 
IQil fcj, 

for any j with \Qj\ < | , 

(iii) | ^ | < ij for every j . 

PROOF, (i). Since £>«1, -a)) • Hx Ç GÄ, ( |Z>«l,-a»|/i i)fti < ^, 
then ( |D((l , -a)) | /^) /u < t i . Now (|D((1, -a» | /^)Äi |>/ |Qi | - g/h] < 
h[g/\Qi\ - g/h] since h > |Qi| and (i) follows since \D{(l,-a))\/g — 

1/IQ1I. 
(ii). Since |<9i| > IQ1 n Q j | and \Qj\ < h/2 we have 
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so 

and 

IQtHQ,-

hj 

1 

\o7\ > + \QifiQj\h \Qi\\Qj\ fc|Qi 

" 1 

LÎQJÎ 

i" 
h 

> 
\QiriQj\ 

It is sufficient to show that 

+ [\QinQj\h IQxl IQ.-I h\Qx\ 
hj. 

\QinQj\ 

r i i i 
LlQ>l h\ 

< 
r 1 
[\Qj\ 

11 
h\ 

But /ij/ij < iQiHQjl since the mapping y —> g(a, y) from ü/j to QiDQj 
has kernel £)((!, — a)) H ü/j. Consequently, hj/\Q\ C\Qj\ < ij and 

hj 

\QinQj\ 

_L 1. 

\Q~\~h 
< lj 

j _ 1. 

(iii). Since D((l,-a)) • Hj C G ß , and (|£>((1, -a))\/ij)hj < g then 

0/IQ1I * ÄJ7*J < # a n d hj/\Qi\ < *?•D 

THEOREM 3.4. Suppose R has Hasse diagram 6. Assume \Q\\ < \Qj\ 
for j < s and suppose there is an a G H\ satisfying aHj D H^ = {0} 
/or 2 < j , k < s. If the counting coefficients Cj, j = s + 2 , . . . , n , are 
non-negative then \Qi\ < s. 

PROOF. First recall more notation from [2]. Hj will denote the set 

Hj\VHk€Tj Hk 

where 7) = {Hi \ H{ Ç Hj}, and let h'j = \H'j\. Further ij = 
\D((h-a))nHjl if

3 = \D((l,-a))nH'j\ and Pj = \QiHQjl Now, 
by [2, Proposition 8], 

E y i i_ 
Jj\Q(a)nQ(ay)\ \Q(y)\ zeD{(l,-a)) \Q(*)\. |Q(o)|-

file:///QifiQj/h
file:///QinQj/h
file:///Q~/~h
file:///QiHQjl


COMBINATORIAL TECHNIQUES 695 

Ifi /E # i \ { l , a } , Q(a)DQ(ay) = Q1 and Q(y) = Qx. IfyeHj, 2 < 
j < 5, then Q(a) fl Q(ay) = Qi since aHj H Hk = {0} for 2 < j , fc < 
5, at/ € # s +i and Qi Ç Qs+i. If y € # s +i fl aü/j, 2 < j < s, then 
Q(a)nQ(ay) = QifiQj. If y € # s+i\U*= 1a#7 thenQ(a)nQ(a?/) - Qx. 
Finally, if y G # j , j > s + 1, then Q(a) fl Q(ay) = Qx. The above 
equation becomes 

3=2 

-f /is+i - hi ~2 

3=2 

J=2 

+ 2s-2j! 
IQil \Q ̂ + ^ \ Q i l \ Q 3 \ 

'P^-^^P^-^)^ 
j=s+2 l ^ 1 

2 

lOil 

After simplifying we obtain 

-2 <A 1 ^ 1 

^ IQil P - l ^ « - I O . 

1 1 

+ 
(2s - 2) 

\Qi\2 f^\Qi\\Qj\ f^2Pj\Qs+i\ IQillQ.+il 

+ IQil2 IQil |Q.+il 3=2 

1 
+ IQil \Qj\ PjlQs+i 

(*1) 
2 n 1 

s l 
+ • 

8 - 1 

+ E f^\Qj\ \Q.+i\ IQil + iJ L^IQil IÖ-+1IJ 
n j 

+ E «iiö 
3=8+1 \Qi 

where we redefined /i's+1 and i's+1 to be /is+i and zs+i respectively. 

Recall [2, Lemma 12] that J^?=s+i hj/\Qj\ = S?=s+i c j^ j an<^ 
X)i=«+i*i'/IQil - ££=«+i c j*r % Lemma 3.3(iii), and since c, > 0 
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for j > s + 1, we have 
n -j n 1 n -

E fti|o,|in.| = E i70cihi ^ E c ^ = E^TÔÏÏ-
j=s+l \Qi\ \Qj j = s+l \Q j=s+l Qi\ 

It follows from (*1) and Lemma 3.3 that 

- 2 ^A 1 A 1 
+ • 

(2s - s) 

Qil2 j?2 IQil IQil J?2PÌ\QB+I\ IQil IQs+il 

(*2) > - É -
^ in 

+ 
( s - 1 ) 

+ 1-

Since l / |Q s + i | < l/ |Oil and l / |Qi | < 1/pj, then 

1 E -E; 1 (2s - 2) 
+ ,^ , ,^ , < 0 . 

i = 2 IQi l IQil j?2Pj\Q*+i\ I Q i l l ^ + i , 

Since the left hand side is negative, the right hand side is also. We have 

( o - l ) 2 

\Qi 

fr{ IQil IQ.+1I IQi 
+ 1 < 0 , 

J = 2 IQi 10. s + l | 

Since |Qx| < 1Q_,-|, then 1 - 3/|Qi| < (* - l ) / |Qi | - (s - l ) / |Q.+i | and 
1 - (s + 2)/|Qi | < 0. Consequently, 1 < (s + 2)/|Qi | and |Qi | < s + 2. 
It remains only to show that |<2i| / s + 1. Suppose not. Then, by (*2), 

(2s - 2) -2 Y^ l y x 

(s+i)2~^2(s+mJ\~f^2v\Q^\ + (s+i)\Qs+i\ 
< A j _ ( s - l ) 2 

- 2^ in,i + + i 

and 

- | Q , | |Q , + 1 | * + l 

- 2 3 j r ^ i / s \ 
+ L(s + 1)2 s + 1 

- 1 + 
J=2 

i r A l 2 s - 2 , , J „ 
+ IT;—r - / — + r - (« - i) > 0. 

Q»+i L ^ P i 5 + X 
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On the other hand, \QX\ < \Qj\, so l/\Qj\ < l/\Qi\ = l / (s + 1) and 

2 . + -i,-i 

< 

(s + l ) 2 s + l 

Y^ 1 / s \ 1 [ ^ 1 2 s - 2 _ 1 

3 
j=2 ^ ' 

2 
+ 

+ 

( s + l ) 2 s + l + 
5 — 1 S 

s + 1 ' s + l 

1 

\Qs+l 

1 

s2 - 2s 4-1 

\Q s+ l I 

J=2 

Eè 
s + l 

2 s + 1 

i=2 ft s + l <o, 

a contradiction. D 

For a subgroup Q of BR let W(Q) = {Qi eYR\QiÇ Q). 

LEMMA 3.5. Suppose QR = U ^ WXQ*) and W(<2*) n W(Qj) = 0 /or 
± j . lfn > 1, JAen |GÄ | < n(n - 2) + 1. 

PROOF. For i = 1 , . . . ,n, let if; = #(Q;) . Fix a £ Hkl a ^ 1. To 
show that |a#i D i7j| < 1 for all i and j with j ^ i, j ^ /i, i ^ /i, 
suppose ax« = Xj and aa^ = x'j for some x«, x\ G # i , £j , x^ G # j . Then 
Xj^ = Xjx'j € HiHHj and Q(XÌ:EJ) Ç QÌCÌQJ. By assumption, x ^ = 1 
so #i = x\ and xy = x^. Now see that, for all i ^ fc , aHi n if; = 0 and 
a# i f)Hk = {a} since HiC\Hk = {1}. Since G ß = U ^ i ^ , a#* Ç 
U^ff,-. Thus liTil < n - 1 and \GR\ = E ^ i f l ^ h 1 ) * 1 < n ( n - 2 ) + l . 
D 

Let Max(rH) = {Q; | Qi Ç Qj =* i = j } . 

LEMMA 3.6. |Max(rÄ)| # 2. 

PROOF. Suppose Max(Yß) = {Qi,<22} and let x e GR. Q(x) C Qi 
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or Q(x) C Q2, thus x € H(Qi) U H{Q2). But GR is not the union of 
two proper subgroups so GR — H(Q\) or GR = H{Q2)- This shows 
that Q2 Ç Qi or Qi Ç Q 2 , a contradiction. D 

THEOREM 3.7. Let R he a finitely generated non-degenerate Witt 
ring. 

(1) 1J\YR\ = 1 then R is a Witt ring of local type with 1 as associated 
Hasse diagram. 

(2) \YR\ ± 2. 

(3) 1J\YR\ = 3 £/ien R is a product of two Witt rings of local type and 
R has associated Hasse diagram 7. 

(4) 1{\YR\ = 4 then R = S[t] with \GS\ = 4 and S is totally degenerate. 
R has associated Hasse diagram 8. 

PROOF. (1). follows from [2, Theorem 5]. 

(2). By Lemma 3.6, there must be an inclusion relation. This is 
impossible by Corollary 3.2. 

(3). First show tha t diagram 9 is the associated Hasse diagram of 
R. Notice that Qi C Q2 C Q3 is not possible by Corollary 3.2. If 
there are no inclusion relations then \GR\ < 4 by Lemma 3.5. Wit t 
rings with \GR\ < 4 have been classified and none of them satisfy the 
criteria. Thus assume YR = {Qi,Q2,Qs} with Q\ C Q3, Q2 Q Q\ and 
Qz Ç Q2- If Q2 Ç Q3 then Lemma 3.6 is contradicted. Consequently 
the diagram must be diagram 10. 

By Theorem 3.4, assume |Qi | = 2. Reduction at Q\ is possible 
by Corollary 2.4 and Y^ = {Qs/Qi,QiQ2/Qi}. By part (2) of this 
theorem, Q3 = Q\Q2, and, by part (1) of this theorem, IQ3I = 2 |Qi | = 
4. Consequently IQ3I = 2 |Qi | = 2IQ2I and we finish by appealing to 
Cordes' classification [1]. 

(4) Show that the associated Hasse diagram must be diagram 11. 
There is no chain of length 4 by Corollary 3.2. Suppose tha t the 
associated Hasse diagram contains a chain of length 3, say Q\ C Q2 C 
Q3. If Q4 C Q3 we contradict Lemma 3.6. Three possible cases follow 
(see Diagram 12): 

Case (i). Reduction at Q4 is possible by Corollary 2.4. In Y^ we have 
Q1Q4/Q4 Q Q2Q4/Q4 Ç Qs/Q4- By Corollary 3.2, there is equality 
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at each spot. That is, G1G4 = Q2Q4 = Gß- Now reduction at Gi is 
also possible by Corollary 2.4. In the resulting Witt ring R, \Y-^\ < 3 
and Q2/Q1 Ç Q3/Q1' By part (2) of this theorem, \Y^\ = 3 and 
thus R is the product of two Witt rings of local type. In particular 
IG2/G1I = IQ1Q4/Q1I = 2 and IQ3/Q1I = 4. But recall G1G4 = Q3, a 
contradiction. 

Case (ii). Reduction at Q4 is possible. The resulting Witt ring has 
YR = {QIQA/QAMQ^QZ/QA} with Q1Q4/Q4 Ç Q 2 /Q 4 C Q3/Q4. 
By Corollary 3.2 we have equality in both spots. But then G2 = G3> a 
contradiction. 

Cöse (iii). For convenience, relabel the diagram 13. By [2, Theorem 
13], |Qi| = 2. Reduction at Q\ is possible and the resulting Witt ring 
has YJÏ = {Q2lQ\,Q$/Qi,Q4/Qi}' By part (3) of this theorem, R is a 
product of two Witt rings of local type. In particular, IG2I — 2|Gi| = 
4, IQ3I = 2|Qi| = 4 and |Q4 | = 2|Q2| = 8. Fix a e H2\H1. Applying 
[2, Proposition 8] we obtain 

(hi - l)\ + (h2 - 2 / n ) ^ + (h2 - 1)± + (A3 - Ä i ) ^ 

+ (A4 » 2/13 -h2 + 2 / l i )— + (A3 - Al) jg 

= ( n - ^ 2 + ( Ì2 ~ ^1)4 + (*3 - n ) j + («4 - i 3 - i2 + n ) g + 1 - 2* 

After simplifying and using i4 = D((l, —a)) = 0/IG2I = #/4 = /M/4 we 
obtain 

— (2fti -f ft2 + 2/13) - j = g(«i + 22 + i 3 ) . 

Now, the mapping ü/j —» Q2 fi Gj via /i —• q(a,, /i) has kernel 
D{(li—a))nHj. Consequently, hi < 2i\, h2 < 4z*2 and I13 < 2i$ 
since Q2 H Qi = Qi, G2 H G2 = G2 and G2 H G3 = Gì- J t follows 
that (2/ii + /12 + 2/i3)/32 < (z'i + 22 -f 23)/8. From the above equation 
—1/4 > 0, a contradiction. Thus the associated Hasse diagram has 
no chain of length 3. If |Max(Fß)| = 1, say Gi>G2>G3 C Q\, then 
there are no inclusions among Gi>G2,G3 o r there would be a chain 
of length > 3. We then have diagram 14 as desired. Recall that 
I max(Y#)| ^ 2 by Lemma 3.6. Suppose |Max(Y#)| = 3. We have three 
possible cases (see diagram 13). In each case reduction at G4 1S possible 
by Corollary 2.4 yielding each time a Witt ring R with \Y^\ = 3 and 
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no inclusion relations, contradicting part (3) of this theorem. Finally, 
if |Max(Yfl)| = 4, then Lemma 3.5 implies \G\ < 8. Such Witt rings 
have been classified and none have this YR. Consequently, diagram 16 
is the associated Hasse diagram of R. 

To finish the proof it suffices to show that IQ4I < 4, for the result 
follows from Cordes' classification [1]. Without loss of generality 
assume |Qi| < \Q2\ < |Q3 |. Fix a G Hx. Note \aH2 fi H3\ < 1 as 
in Lemma 3.5 since H2 D H3 = {1}. If \aH2 C\ H3\ = 0 then |Qi| = 2 
by Theorem 3.4. If \aH2 n H3\ = 1 then, by [2, Proposition 8], 

(hi - 2) 
1 

IQi + 
1 1 

+ (h3 - 2) 

+ (h3 - 2) 

QiDQ3\\Q2 

1 + (ft2 - 2) 

+ (h2 - 2) 

1 

1 

IQil IQ2I 
1 

+ 
1 1 

\QinQ2\\Q3\ 

IQil \Qs 
1 

\QinQ2\\Q4\ 
1 

I Q i n Q 3 | | Q 4 | 
+ (A4 - Ai - 2A2 - 2Ä3 + 6) 

1 

IQil IQ3I 

= ( ï l - 1 ) ^ + f e - 1 ) ^ + ( î 3 - 1 ^ 

+{h*-h^-hi-h^2)m+l-w\ 
The following is obtained by simplifying: 

1 

IQi IQil IQ4IJ 
fci + 

1 

LIQil IO2I 
-h 

1 

+ 
1 

(*3) + 

LIQil IQ3I 

1 

+ 
1 

IQiHQal IQ4I 
2 

IQil IQ4 

Q i H Q s l IQ4I 

2 

IQil IQ4IJ 
A3 

IQil \Q< 
-A4 

IQil2 
J=2 

+ 

IQil IQil 

+ 

j = 2 
I Q i n Q i | | Q 4 | 

IQi n Q3I IQ2I I Q i n Q 2 | | Q 3 

" 1 1 " 

"\07\. 
h + 

1 

.m 
+ 

1 

"ioli. 
3 

I IQil 

Ì2 + 

1 

IQ 

1 1 

.m~W\. 
1 

2I I Q 3 I + 1 < 

IQil IQ4I. 

^4 

Notice that reduction at Q\ is possible and the resulting Witt ring R 
has |Yß| < 3. First eliminate the case when \Y^\ = 3. Here we obtain 
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4|Qi| - |Q4 | = 2IQ1Q2I = 2IQ1Q3I and thus \QX H Q2\ = |Q2 | /2, 
IQi H Q3I _= IQ3I/2. Reduction at Q2 is also possible yielding a 
Witt ring R. If |1%| = 1 then Q1Q2 = Q4, a contradiction. Thus 
11=| = 3 yielding 4|Q3 | = IQ4I and reduction at Q$ is possible 
yidding 4|Q3| = \Q*\. We have |Q4 | /4 = |Qi| = \Q2\ = IQsl and 
IQi H Q2I = IQiHQal = IO1I/2. Now 7Jii^2 C # 3 . Otherwise, 
there exists x\ € H\, X2 G ff2 with X i ^ £ ff3- Consequently, 
#1#2 £ ffl Uff2 Uff3 SO Q(xiX2) = (?4- But Q{X\X2) Ç (5(^l)Q(^2) = 
Q1Q2, another contradiction. In the same way ffiif3 c H2. Now 
\aH2\ > 1, aH2 Ç aH2 D H3 and |aff2 fl ff3| < 1- So aH2 = aH2 n H3 

and \aH2\ = 1. Similarly |aff3| = 1. So aH2 = aH2C\H3 and \aH2\ = 1. 
Similarly |aff3| = 1. Thus |ff2| = |ff3| = 2. Also ffiff3 Q H2 implies 
|ffi| = 2. 

By (*3) with /14 = g and 14 = ff/|<9i| we have 

3 g _ 3 , 3 . 3 , g 9 _ 

IQ1I2 + *\Qi\2 ~ Wi\H + 4 |Qi | ' 2 + 4|QX | Î3 + 4|Q!|2 2|Qx| + 

w\+é\=3il+3i2+3h+\orr18+4m 

12 
- — = 321+ 3i2 + 3i3 - 18 + 4|Qi|. 
IWil 

Consequently |Qi| is a 2-power which divides 12, i.e., |Qi| = 2 or 
4. If |<3i| = 2 then 16 = 3(ii + %2 + 13) which is impossible, and if 
|<2i| = 4, then 5 = 3(z*i + %2 + «3) which is again impossible. Therefore 
assume | 1 ^ | = 1. Here IQ4I = 2|Qi|, Q1Q2 = Q1Q3 = Q4 and then 
\Q2\ = 2\Qi fi Q2I and |Q3 | = 2\Qi n Q ^ Suppose now that this is 
reduced at Q2. The resulting Witt ring ~R has |3%| < 3. If |1%| = 3 

R R 

then IQ4/G2I = 2IQ1Q2/Q2I. But Q1Q2 = Q±, a contradiction. 
Consequently |K=| = 1 and IQ4I = 2|<22|- Reduction at Q3 yields a 
Witt ring of local type and IQ4I = 2|Q3|. We have 
(*4) I |Q4 | = IQ^ = |Q2| = |Q3| and 

| Q i n Q a | = | Q i n Q 3 | = i |Q i | . 

Recall our purpose is to show that IQ4I < 4. Consequently, it suffices 
to show IQil = 2. Recall that if \aH2 D H3\ = 0 then |Qi| = 2 by 
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Theorem 3.4, so assume \aH2 fl H3\ — 1. By (*3) and Lemma 3.3 it 
follows that 

IQi 

1 

j = 2 •^ÌQiriQjWQiì 

+ 
l 

+ + • 
6 

IQiHQal IQ2I |QinQ 2 | IQ3I IQil IQ4I 
3 1 - _ _ _1__ _ 2 _ 

Using (*4) and simplifying yields -3 / |Q i | 2 > - 4 / | Q i | + 1, so |Qx|2 -
4|Qi| + 3 < 0 and (|Qi| - 3)(|Qi| - 1) < 0. This implies |Qi| < 3 and 
since IQil is a 2-power, \Qi\ — 2. D 
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A 
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DIAGRAM 11. 

3 3 3 

1 4 1 1 
DIAGRAM 12. (i), (ii) and (iii) 

1 
DIAGRAM 13. 
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A 
DIAGRAM 14. 

1 2 3 1 2 3 1 2 3 

' T V V 
4 4 4 

DIAGRAM 15. (i), (ii) and (iii) 

4 

A 
1 2 3 

DIAGRAM 16. 
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