SOME REPRESENTATION THEOREMS

A. DE KORVIN AND R. J. EASTON

1. Introduction. Much has been written concerning integral representations of continuous linear transformations on spaces of functions. See, for example, [2], [3], [4], [5], [6], [7], [8], [9], [10] and [11]. In all of these articles the functions were defined on a compact Hausdorff space. In [1], the following representation theorem is given. Let H be a normal topological space and let $C_{\mathbf{B}}^{*}(H, \mathbf{R})$ denote the dual of the space of all bounded continuous real-valued functions defined on H. Then, if $\Phi \in C_B^*(H, R)$, $\Phi(f)$ = $\int_{H} f \, du$, where u is a finitely additive, regular, bounded, realvalued measure defined on the field generated by the closed subsets of H. The purpose of this paper is to obtain a similar representation theorem in the vector valued setting of [2], [3], [4], [7], [9], [10] and [11]. The functions are defined on a normal topological space H, with their range spaces being totally bounded subsets of a linear normed space X. The map Φ is bounded and linear from this space of functions to a linear normed space Y and the measure Khas values in $B(X, Y^{**})$, the space of all bounded linear maps from X to the bidual of Y.

In the second part of the paper, results similar to those of R. J. Easton and D. H. Tucker in [2] are obtained. A Lebesgue type theory is developed and a representation theorem is obtained.

The authors point out that these techniques would yield similar results in the setting of Goodrich [5] and [6] and Swong [8].

The authors would also like to thank the referee for his comments, in particular those which allow us to state Theorem 3.2 in its present form.

2. Notations. Let H be a normal topological space and let X and Y be linear normed spaces; let $C_B(H, X)$ denote the space of all X-valued, continuous, and bounded functions defined on H. Let $C_{TB}(H, X)$ denote the functions of $C_B(H, X)$ which are totally bounded, i.e. their range is a totally bounded subset of X, F denotes the field generated by the closed subsets of H, and $S_F(H, X)$ denote the simple functions, over F, from H to X. The dual and bidual of Y will be denoted by Y^* and Y^{**} respectively.

Copyright © Rocky Mountain Mathematics Consortium

Received by the editors February 22, 1970 and, in revised form, May 18, 1970. AMS 1970 subject classifications. Primary 28A45, 46G10.

3. Representation theorems. If $E \in F$, we denote the characteristic function of E by X_E , and for $x \in X$, the X-valued function $X_E \cdot x(t) = X_E(t) \cdot x$. Similarly, $f \cdot x$ is defined for any real-valued function f, and any x in X.

Let f^* be any element of $C_B^*(H, X)$ and let f be any element of $C_B(H, R)$. Define Φ in $C_B^*(H, R)$ by the equation

$$\Phi(f) = f^*(f \cdot x),$$

for x in X. We now make use of the representation theorem on p. 262, Theorem 2 of [1], to obtain a unique regular, finitely additive, bounded, real-valued measure defined on F, which we denote by u_{x, f^*} , such that

$$\Phi(f) = \int_E f \, du_{x, f^*}.$$

Define

$$\boldsymbol{\chi}_{E, x}(f^*) = \boldsymbol{u}_{x, f^*}(E).$$

Then

$$\sup_{\|f^*\|\leq 1} |\chi_{E,x}(f^*)| = \sup_{\|f^*\|\leq 1} |u_{x,f^*}(E)| \leq \sup_{\|f^*\|\leq 1} ||u_{x,f^*}||$$

(variation of u_{x, f^*})

and since

$$||u_{x,f^*}|| = ||\Phi|| = \sup_{||f|| \le 1} |\Phi(f)| = \sup_{||f|| \le 1} |f^*(f \cdot x)| \le ||x||$$

if $||f^*|| \leq 1$, we have $||\mathbf{X}_{E,\mathbf{x}}|| \leq ||\mathbf{x}||$. Furthermore, $\mathbf{X}_{E,\mathbf{x}}$ is clearly linear on $C_B^*(H, X)$ and hence $\mathbf{X}_{E,\mathbf{x}} \in C^{**}(H, X)$.

We now identify the simple function $\chi_E \cdot x$ with the element $\chi_{E, x}$ of $C_B^{**}(H, X)$ since this identification is an isometric isomorphism. See [11], for more detail. From this point on we will not distinguish between the simple function $\chi_E \cdot x$ and its corresponding element $\chi_{E, x}$ in C_B^{**} .

LEMMA 3.1. If $\{e_1, e_2, \dots, e_n\}$ is any partition of H, with $e_i \in F$ and $x_i \in X$, $i = 1, 2, \dots, n$, then

$$\left\|\sum_{i=1}^{n} \chi_{e_{i}} \cdot x_{i}\right\|_{C^{**}} \leq \max_{i} \|x_{i}\|_{X}.$$

PROOF. Consider $f^* \in C_B^*(H, X)$, with $||f^*|| \leq 1$. Then

$$\left\| \left(\sum_{i=1}^{n} \mathbf{X}_{e_i} \cdot \mathbf{x}_i \right) (f^*) \right\| = \left| \sum_{i=1}^{n} u_i(e_i) \right|$$

where $u_i = U_{x_i, f^*}$ Each u_i is a regular, finitely additive, measure on F with finite variation. Hence for each i there exists a closed set $c_i \subset e_i$ such that

$$\|u_i\|(e_i-c_i)<\epsilon/3n.$$

Since H is normal there exists disjoint open sets o_i such that $c_i \subset o_i$ and

 $\|\boldsymbol{u}_i\|(o_i-c_i)<\epsilon/3n,$

also there exist closed G_{δ} sets c_i ' such that

 $c_i \subset c_i' \subset o_i$.

Therefore

$$\left| \sum_{i=1}^{n} u_{i}(e_{i}) - \sum_{i=1}^{n} u_{i}(c_{i}') \right|$$

$$\leq \left| \sum_{i=1}^{n} u_{i}(e_{i}) - \sum_{i=1}^{n} u_{i}(c_{i}) \right| + \left| \sum_{i=1}^{n} u_{i}(c_{i}) - \sum_{i=1}^{n} u_{i}(o_{i}) \right|$$

$$+ \left| \sum_{i=1}^{n} u_{i}(o_{i}) + \sum_{i=1}^{n} u_{i}(c_{i}') \right| \leq \epsilon.$$

Hence

$$\sum_{i=1}^n u_i(e_i) \leq \epsilon + \sum_{i=1}^n u_i(c_i').$$

Since *H* is normal and each c_i is a closed G_{δ} , pick a sequence $\{f_{k,i}\}$ of continuous real-valued functions such that $0 \leq f_{k,i}(t) \leq 1$ for all t and $f_{k,i}(t) = 1$ on c_i , the support of f_{k_i} , supp $f_{k_i} \subset o_i$, and $f_{k,i} \bigvee^k \chi_{c'_i}$, for each *i*. Then

$$\left|\sum_{i=1}^{n} u_i(c_i')\right| = \left|\lim_{k}\sum_{i=1}^{n} \int_{H} f_{k,i}du_i\right|,$$

since

$$\int_{H} |f_{k,i} - \chi_{c_i}| = \int_{u_{k_i} - c_i} |f_{k,i} - \chi_{c_i}| du_i$$
$$\leq 2 \|u_i\| (u_{k_i} - c_i')$$

where $u_{k_i} \supset \text{supp } f_{k_i}$ and the u_{k_i} may be chosen such that $||u_i|| (u_{k_i} - c_i') < 1/k$. We have

$$\int_{H} f_{k_i} du_i = f^*(f_{k_i} \cdot x_i),$$

and so,

$$\begin{aligned} \left| \lim_{k} \sum_{i=1}^{n} \int_{H} f_{k_{i}} \cdot du_{i} \right| &= \lim_{k} \left| f^{*} \left(\sum_{i=1}^{n} f_{k_{i}} \cdot x_{i} \right) \right| \\ &\leq \overline{\lim_{k}} \left\| \sum_{i=1}^{n} f_{k_{i}} \cdot x_{i} \right\| \leq \overline{\lim_{k}} \sup_{t \in H} \left| \sum_{i=1}^{n} f_{k_{i}}(t) \cdot x_{i} \right| \\ &\leq \overline{\lim_{k}} \sup_{t \in H} \sum_{i=1}^{n} |f_{k_{i}}(t)| \|x_{i}\| \\ &\leq \overline{\lim_{k}} \sup_{t \in H} \sum_{i=1}^{n} |f_{k_{i}}(t)| \max_{i} \|x_{i}\|. \end{aligned}$$

But, since the supp $f_{k,i}$ are disjoint and $0 \leq f_{k,i}(t) \leq 1$,

$$\sum_{i=1}^{n} f_{k_i}(t) \leq 1 \quad \text{for all } t \in H.$$

Hence

$$\left|\sum_{i=1}^{n} u_{i}(c_{i}')\right| \leq \max_{i} ||x_{i}||.$$

Thus

$$\left(\sum_{i=1}^{n} \chi_{e_{i}} \cdot x_{i}\right) (f^{*}) \leq \epsilon + \max_{i} \|x_{i}\|$$

for all $\epsilon > 0$ and for all f^* , $||f^*|| \leq 1$, so

$$\left\|\sum_{i=1}^n \chi_{e_i} \cdot x_i\right\| \leq \max_i \|x_i\|.$$

As before X and Y are linear normed spaces and $B(X, Y^{**})$ will denote the space of all bounded linear transformations from X to Y^{**} . Let K be any finitely additive set function defined on F with values in $B(X, Y^{**})$.

DEFINITION 3.1. The set function K is said to be weakly regular if for each x in X and y^* in Y^* , the real-valued set function $y^*K(\cdot)x$ is regular.

DEFINITION 3.2. The set function K is said to satisfy the Gowurin

property if there exists a constant P such that for any partition e_1, e_2, \dots, e_n of H, with e_i in F and for any choice of x_i in X, the following holds:

$$\left\| \sum_{i=1}^{n} K(e_i) \cdot x_i \right\|_{Y^{**}} \leq P \cdot \max_{i} \|x_i\|_{X}.$$

The greatest lower bound of the constants P is called the X-Gowurin constant for K.

DEFINITION 3.3. A function f from H to X is said to be integrable with respect to K if for each $\epsilon > 0$ there exists an ϵ -partition of H with respect to f, and there exists a point y^{**} in Y^{**} such that for each d > 0, there exists a partition P of H into elements of F, such that if e_1, e_2, \dots, e_n is any refinement of P, with e_i in F, then for any choice of t_i in e_i ,

$$\left\| y^{**} - \sum_{i=1}^{n} K(e_i) f(t_i) \right\|_{Y^{**}} < d.$$

We denote the point y^{**} by $\int_H dK \cdot f$.

Note. It is clear that any function of the form $\sum_{i=1}^{n} \chi_{E_i} \cdot x_i$, E_i in F, and x_i in X, is integrable and

$$\int_{H} dK \left(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i} \right) = \sum_{i=1}^{n} K(E_{i}) \cdot x_{i}.$$

Now let T denote a continuous linear transformation from $C_B(H, X)$ to Y.

LEMMA 3.2. For each such T, there exists a finitely additive, weakly regular, Gowurin set function K, defined on F with values in $B(X, Y^{**})$, given by

$$K(e) \cdot x = T^{**}(X_e \cdot x),$$

for each e in F and x in X.

PROOF. Consider a partition $\{e_1, e_2, \dots, e_n\}$ of H, with e_i in H and x_1, x_2, \dots, x_n in X. We have

$$\left\| \sum_{i=1}^{n} K(e_{i}) \cdot x_{i} \right\|_{Y^{**}} = \left\| T^{**} \left(\sum_{i=1}^{n} \chi_{e_{i}} \cdot x_{i} \right) \right\|_{Y^{**}}$$
$$\leq \left\| T \right\| \left\| \sum_{i=1}^{n} \chi_{e_{i}} \cdot x_{i} \right\|_{C_{B}^{**}} \leq \left\| T \right\| \max_{i} \left\| x_{i} \right\|,$$

from Lemma 3.2. Now for y^* in Y^* and x in X, let $\lambda(e) = y^*K(e) \cdot x$, then

$$\begin{split} \lambda(e) &= y^* K(e) \cdot x = y^* (T^{**}(\chi_e \cdot x)) = (\chi_e \cdot x) (T^*(y^*)) \\ &= u_{x, T^*(y^*)}(e) \end{split}$$

where $u_{x, T^*(y^*)}$ is regular.

LEMMA 3.3. For f in $C_B(H, R)$ and x in X, $f \cdot x$ is integrable.

PROOF. Consider $\epsilon > 0$. Since f is bounded and continuous there exists an ϵ -partition $P = \{e_1, e_2, \cdots, e_n\}$ of H with respect to f, with e_i in F for each i. Hence let $y^{**} = T^{**}(f \cdot x)$ and let $\{E_1, E_2, \cdots, E_m\}$ be any refinement of P, with $E_j \in F$. Then if $x_j \in f \cdot x(E_j)$, $x_j = r_j \cdot x$ where $r_j \in f(E_j)$. Therefore,

$$\left\| y^{**-} \sum_{j=1}^{m} K(E_{j}) \cdot x_{j} \right\|_{Y^{**}}$$

$$= \left\| T^{**}(f \cdot x) - T^{**} \left(\sum_{j=1}^{m} \chi_{E_{j}} \cdot r_{j} \cdot x \right) \right\|_{Y^{**}}$$

$$\leq \left\| T \right\| \cdot \left\| f \cdot x - \sum_{j=1}^{m} \chi_{E_{j}} \cdot r_{j} \cdot x \right\|_{C_{B^{**}}}.$$

Consider c^* in C_B^* such that $||c^*|| \leq 1$, then since

$$\int_{H} \chi_{E_{j}} \cdot du_{c^{*}, \tau_{j}x} = \int_{H} r_{j} \cdot \chi_{E_{j}} \cdot du_{c^{*}, x}$$

we have

$$\left| \left(f \cdot x - \sum_{j=1}^{m} \chi_{E_j} \cdot r_j \cdot x \right) (c^*) \right|$$

= $\left| \int_{H} f \cdot du_{c^*, x} - \int_{H} \sum_{j=1}^{m} \chi_{E_j} \cdot r_j du_{c^*, x} \right| \leq \epsilon \cdot ||x||_X.$

The previous lemma along with Lemma 3.1 gives us the following Riesz representation theorem.

THEOREM 3.1. Let T be a continuous linear transformation from $C_B(H, X)$ to Y, then there exists a unique weakly regular, finitely additive, $B(X, Y^{**})$ valued, Gowurin set function defined on F, such that

$$[T(f \cdot x)]^{**} = \int_H dK(f \cdot x)$$

for all f in $C_B(H, R)$ and all x in X.

PROOF. The existence of K follows from Lemma 3.1, and from Lemma 3.3, we have that for all f in $C_B(H, R)$ and x in X,

$$T^{**}(f \cdot x) = [T(f \cdot x)]^{**} = \int_{H} dK(f \cdot x).$$

The uniqueness will follow from the same technique as we will use in Theorem 3.2.

THEOREM 3.2. Let T be a continuous linear transformation from $C_B(H, X)$ to Y, then there exists a unique, finitely additive, weakly regular, Gowurin set function defined on F, with values in $B(X, Y^{**})$ such that every f in $C_{TB}(H, X)$ is integrable with respect to K. Moreover,

$$T^{**}(f) = \int_H dK \cdot f,$$

for all f in $C_{TB}(H, X)$.

PROOF. From Lemma 3.2, let K be the finitely additive, weakly regular, Gowurin set function, defined on F, which is given by the equation

$$K(e) \cdot x = T^{**}(X_e \cdot x).$$

From Theorem 3.1 it will follow that each f in $C_{TB}(H, X)$ is integrable with respect to K, and that

$$T^{**}(f) = \int_{H} dK \cdot f,$$

once it is shown that the collection of functions of the form $\{f \cdot x\}$, f in $C_B(H, R)$ and x in X, are dense in $C_{TB}(H, X)$ in the uniform norm. This is shown as follows: given f in $C_{TB}(H, X)$, and $\epsilon > 0$, there exists a finite cover $N(f(t_i), \epsilon/2)$ of the range of f. Let

$$V_i = \{t | \|f(t) - f(t_i)\| < \epsilon \},\$$

and

$$W_i = \{t | || f(t) - f(t_i) || < \epsilon/2 \},\$$

then

$$\bigcup_{i=1}^n W_i \supset H \quad \text{and} \quad \overline{W}_i \subset V_i.$$

Let H_i be the union of all the \overline{W}_i contained in V_i . By Urysohn's

lemma there exists $\{g_i\}$ continuous with $0 \leq g_i \leq 1$, $g_i = 1$ on H_i , and g = 0 off V_i . Let

$$h_1 = g_1, \qquad h_2 = (1 - g_1) \cdot g_2, \cdots,$$

$$h_n = (1 - g_1)(1 - g_2) \cdots (1 - g_{n-1})g_n,$$

then

$$h_1 + h_2 + \cdots + h_n = 1$$
, and $h_i = 0$ off V_i ,

and

$$\left\|\sum_{i=1}^{n} h_{i}x_{i} - f\right\| < \epsilon$$

where $x_i = f(t_i)$.

Now suppose K' is any other weakly regular, finitely additive, Gowurin, $B(X, Y^{**})$ valued set function defined on F such that $\int_H dK \cdot f$ exists for all f in $C_{TB}(H, X)$. Then for f in $C_B(H, R)$ and x in X, we have from Theorem 3.1 for y^* in Y^* ,

$$\langle T(f \cdot x), y^* \rangle = \left\langle \int_H dK'(f \cdot x), y^* \right\rangle.$$

Therefore

$$\langle T(f \cdot x), y^* \rangle = \langle f \cdot x, T^*(y^*) \rangle = \int_H f du_{x, T^*(y^*)}.$$

Since

$$U_{x, T^*(y^*)}(e) = \langle \mathbf{X}_e \cdot x, T^*(y^*) \rangle = \langle T^{**}(\mathbf{X}_e \cdot x), y^* \rangle$$
$$= \langle K(e) \cdot x, y^* \rangle,$$

let

$$\lambda(e) = \langle K'(e) \cdot x, y^* \rangle.$$

Then by showing that

$$\int_{H} f \cdot d\lambda = \int_{H} f \, du_{\mathbf{x}, T^{*}(y^{*})}$$

for all f in $C_B(H, R)$, since λ and $u_{x, T^*(y^*)}$ are regular, we conclude from the uniqueness of the measure in [1, p. 262], that $\lambda = u_{x, T^*(y^*)}$.

Consider X_e , e in F, then

$$\int_{H} X_{e} d\lambda = \lambda(e) = \langle K'(e) \cdot x, y^{*} \rangle = \left\langle \int_{H} dK'(X_{e} \cdot x), y^{*} \right\rangle.$$

Hence,

$$\int_{H} f d\lambda = \left\langle \int_{H} dK'(f \cdot x), y^{*} \right\rangle,$$

and since

$$\left\langle \int_{H} dK'(f \cdot x), y^* \right\rangle = \int_{H} f du_{x, T^*(y^*)},$$

we have $\lambda = u_{x, T^*(y^*)}$. Thus

$$\langle K(e) \cdot x, y^* \rangle = \langle K'(e) \cdot x, y^* \rangle$$

for all x in X and y^* in Y^{*}, and therefore K = K'.

4. DEFINITION 4.1. A function f from H to X is said to be integrable with respect to K, over a set E in F, if for each $\epsilon > 0$, there exists an ϵ -partition of E with respect to f, and there exists a point y^{**} in Y^{**} such that for each d > 0, there exists a partition P of E into elements of F, such that if e_1, e_2, \dots, e_n is any refinement of P, with e_i in F, then for any choice of t_i in e_i ,

$$\|y^{**} - \sum_{i=1}^{n} K(e_i) \cdot f(t_i)\|_{Y^{**}} < d.$$

We denote y^{**} by $\int_E dK \cdot f$.

LEMMA 4.1. Consider E in F. If K is any finitely additive set function defined on F with values in $B(X, Y^{**})$, which satisfies the Gowurin property over H, then for any two partitions $\{P_1, P_2, \dots, P_n\}$ and $\{Q_1, Q_2, \dots, Q_m\}$ of E, with P_i and Q_j in F, and for any choice of x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_m in X, then

$$\left\| \sum_{i=1}^{n} K(P_{i}) \cdot x_{i} - \sum_{i=1}^{m} K(Q_{i}) \cdot y_{j} \right\|_{Y^{**}} \leq W \max_{i, j} \|x_{i} - y_{j}\|_{X}$$

where W denotes a Gowurin constant for K.

PROOF. This follows directly from the fact that if $\{e_1, e_2, \dots, e_n\}$ is a partition of E, $\{e_1, e_2, \dots, e_n, H - E\}$ is a partition of H and the fact that K is Gowurin over H.

THEOREM 4.1. If f is any K-integrable function over H and E is any element of F, then f is K-integrable over E. Moreover, $\int_E dK \cdot f = \int_H dK(X_E \cdot f)$.

PROOF. Consider a sequence $\{\epsilon_n\}$ of positive numbers such that $\epsilon_n \searrow 0$ as $n \to \infty$. For each *n*, there exists an ϵ_n -partition of *E* with respect to *f*. If we denote this partition by $P_{\epsilon_n} = \{P_1^n, P_2^n, \cdots, P_{r(n)}^n\}$ and we let $y_n = \sum_{i=1}^{r(n)} K(P_i^n) f(t_i^n)$ for a choice of t_i^n in

 P_i^n , then from Lemma 4.1, $\{y_n\}$ forms a Cauchy sequence in Y^{**} and hence converges to a y^{**} in Y^{**} since Y^{**} is complete. Also from Lemma 4.1 it follows that the convergence to y^{**} does not depend on the choice of t_i^n in P_i^n .

For the last part of the theorem we note that if we let $P_{r(n)+1}^n = H - E$, then

$$y_n = \sum_{i=1}^{r(n)+1} K(P_i^n) X_E \cdot f(t_i^n)$$

which converges to $\int_H dK(\mathbf{X}_E \cdot f)$.

From Theorem 3.2, we have:

COROLLARY 4.1. Every f in $C_{TB}(H, X) \cup S_F(H, X)$ is K-integrable over every E in F.

DEFINITION 4.2. If G is a finitely additive set function defined on F with values in a linear normed space S, the semivariation of G over a set E in F is defined to be

$$v(G, E) = \sup \left\| \sum_{i=1}^{n} r_i G(e_i) \right\|_{s}$$

where the supremum is taken over all finite partitions $\{e_1, e_2, \dots, e_n\}$ of E, with e_i in F, and over all finite collections $\{r_1, r_2, \dots, r_n\}$ of real numbers with $|r_i| \leq 1$ for all i.

We now denote $P(H, X) = \text{span}(C_{TB}(H, X) \cup S_F(H, X))$ and for f in P(H, X) we let $\lambda_f(E) = \int_E dK \cdot f$. Then λ_f is a finitely additive set function from F to Y^{**} . For f any bounded function from H to X, we will use the notation $||f||_C = \sup_{t \in H} ||f(t)||_X$. Hence for f in P(H, X) since K is Gowurin,

$$\|\boldsymbol{\lambda}_f(E)\| \leq W_K \|f\|_C$$

where W_K denotes the Gowurin constant for K over H. From Lemma 4, p. 320 of [1], we conclude that

$$V(\boldsymbol{\lambda}_{F}, E) \leq 2W_{K} \| f \|_{C}$$

for all E in F.

LEMMA 4.2. For f in P(H, X), $v(\lambda_f, H) = 0$ if and only if $\int_E dK \cdot f = \theta_{Y^{**}}$ for all E in F.

PROOF. The proof follows easily from the inequality

$$\left\|\int_{E} dK \cdot f\right\|_{Y^{**}} \leq v(\lambda_{f}, H).$$

DEFINITION 4.3. If f_1 , $f_2 \in P(H, X)$ we say that f_1 is equivalent to f_2 , $f_1 \sim f_2$, if and only if $\int_E dK \cdot f_1 = \int_E dK \cdot f_2$ for all E in F.

It follows from Lemma 4.2, that $f_1 \sim f_2$ if and only if $v(\lambda_{f_1-f_2}, H) = 0$. Moreover, this relation is an equivalence relation on P(H, X), and we denote the equivalence class determined by f, by [f].

DEFINITION 4.4. For f in P(H, X), we define

$$\|[f]\|_1 = \|[f]\|_K^1 = v(\lambda_f, H).$$

The fact that $\|\cdot\|_{K}^{1}$ is a norm on the collection $\tilde{P}(H, X)$ of equivalence classes [f], f in P(H, X) follows from Lemma 4.2 and the following easily established lemma.

LEMMA 4.3. For f_1 and f_2 in P(H, X), if we denote $\lambda_1(E) = \int_E dK \cdot f_1$, $\lambda_2(E) = \int_E dK \cdot f_2$, and $(k\lambda_1)(E) = \int_E dK \cdot (kf_1)$, then

(a) $v(\lambda_1 + \lambda_2, H) \leq v(\lambda_1, H) + v(\lambda_2, H)$, and

(b) $v(k\lambda_1, H) = |k|v(\lambda_1, H)$.

DEFINITION 4.5. We define the space $L_{K}^{1}(H, X)$ to be the completion of $\tilde{P}(H, X)$, the completion being in the norm $\|\cdot\|_{K}^{1}$.

COROLLARY. The collection $\tilde{S}_F(H, X)$ is dense in the space $L_K^{1}(H, X)$ in the norm $\|\cdot\|_K^1$.

PROOF. This follows directly from the inequality

$$v(\lambda_f, H) \leq 2W_K \|f\|_C$$

for all f in P(H, X) and for all E in F.

REMARK. It is pointed out by the authors that the results of $\S3$ in [2] could all be proved in this setting, the reader is referred to that paper for statements and proofs.

5. A representation theorem. Consider K as above and suppose that G is any finitely additive set function defined on F with values in $B(X, Z^{**})$, Z being a linear normed space.

DEFINITION 5.1. The set function G is said to be strongly Lipschitz with respect to K if and only if there exists a constant P such that for any E in F, any partition $\{e_1, e_2, \dots, e_n\}$ of E, with e_i in F, and any collection $\{x_1, x_2, \dots, x_n\}$ of elements of X, then there exists a partition $\{E_1, E_2, \dots, E_m\}$ of H and a collection $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ of real numbers with E_i in F and $|\alpha_i| \leq 1$, such that

$$\left\| \sum_{i=1}^{n} G(e_i) \cdot x_i \right\|_{Z^{**}} \leq P \left\| \sum_{i,j}^{n,m} K(e_i \cap E_j) \alpha_j x_i \right\|_{Y^{**}}$$

The greatest lower bound of the numbers P is called the strong Lipschitz constant for G with respect to K.

LEMMA 5.1. If K satisfies the Gowurin property and G is strongly Lipschitz with respect to K, then G is Gowurin over H.

PROOF. The proof follows directly from the definition, the Gowurin constant for G being less than or equal to the product of the Gowurin constant for K and the strong Lipschitz constant for G.

The representation theorem and its converse are now stated, the proofs being very similar to those in [2].

THEOREM 5.1. Let A be any continuous linear transformation from $L_{K}^{1}(H, X)$ to a linear normed space Z, then there exists a finitely additive set function G, defined on F with values in $B(X, Y^{**})$, such that G satisfies the strong Lipschitz condition with respect to K, and such that $[A(f)]^{**} = \int_{H} dG \cdot f$, for all f in $L_{K}^{1}(H, X)$, the integral being defined as before.

PROOF. We simply point out that A is continuous on $L_{K^{1}}(H, X)$ in the norm $\|\cdot\|_{C}$, and refer the reader to [2] for details.

THEOREM 5.2. Let G be any additive set function defined on F with values in $B(X, Z^{**})$, where G is strongly Lipschitz with respect to K. Then $\int_H dG \cdot f$ exists for all f in $L_K^{-1}(H, X)$ and defines a continuous linear transformation from $L_K^{-1}(H, X)$ to Z^{**} .

BIBLIOGRAPHY

1. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.

2. R. J. Easton and D. H. Tucker, A generalized Lebesgue-type integral, Math. Ann. 181 (1969), 311-324.

3. J. R. Edwards and S. G. Wayment, A unifying representation theorem, • Math. Ann. (submitted).

4. C. Foiaş and I. Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev. Math. Pures. Appl. 5 (1960), 729-752. MR 24 #A1618.

5. R. K. Goodrich, A Riesz representation theorem in the setting of locally convex spaces, Trans. Amer. Math. Soc. 131 (1968), 246-258. MR 36 #5731.

6. ——, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636.

7. M. Gowurin, Über die Stieltjesche Integration abstrakter Funktionen, Fund. Math. 27 (1936), 254-268.

8. K. Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964), 270-291; errata, ibid. 157 (1964), 178. MR 29 #2642.

9. D. H. Tucker, A note on the Riesz representation theorem, Proc. Amer. Math. Soc. 14 (1963), 354-358. MR 26 #2865.

10. ——, A representation theorem for a continuous linear transformation on a space of continuous functions, Proc. Amer. Math. Soc. 16 (1965), 946-953. MR 33 #7865.

11. D. J. Uherka, Generalized Stieltjes integrals and a strong representation theorem for continuous linear maps on a function space, Math. Ann. 182 (1969), 60-66. MR 40 #705.

Indiana State University, Terre Haute, Indiana 47809