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SOME REPRESENTATION THEOREMS 
A. DE KORVIN AND R. J. EASTON 

1. Introduction. Much has been written concerning integral repre
sentations of continuous linear transformations on spaces of functions. 
See, for example, [2], [3], [4], [5], [6], [7], [8], [9], [10] 
and [11]. In all of these articles the functions were defined on a 
compact Hausdorff space. In [1], the following representation 
theorem is given. Let H be a normal topological space and let 
CB*(H, R) denote the dual of the space of all bounded continuous 
real-valued functions defined on H. Then, if <1> G CB*(H> K), <&(/) 
— IH f du, where u is a finitely additive, regular, bounded, real-
valued measure defined on the field generated by the closed subsets 
of H. The purpose of this paper is to obtain a similar representation 
theorem in the vector valued setting of [2], [3], [4], [7], [9], 
[10] and [11]. The functions are defined on a normal topological 
space ff, with their range spaces being totally bounded subsets of 
a linear normed space X. The map 4> is bounded and linear from this 
space of functions to a linear normed space Y and the measure K 
has values in B(X, Y**), the space of all bounded linear maps from 
X to the bidual of Y. 

In the second part of the paper, results similar to those of R. J. 
Easton and D. H. Tucker in [2] are obtained. A Lebesgue type 
theory is developed and a representation theorem is obtained. 

The authors point out that these techniques would yield similar 
results in the setting of Goodrich [5] and [6] and Swong [8]. 

The authors would also like to thank the referee for his comments., in 
particular those which allow us to state Theorem 3.2 in its present 
form. 

2. Notations. Let H be a normal topological space and let X and 
Y be linear normed spaces; let CB{H, X) denote the space of all 
X-valued, continuous, and bounded functions defined on H. Let 
CTB(H> X) denote the functions of CB(H, X) which are totally 
bounded, i.e. their range is a totally bounded subset of X, F denotes 
the field generated by the closed subsets of H, and SF(H9 X) denote 
the simple functions, over F, from H to X. The dual and bidual of 
Y will be denoted by Y* and Y** respectively. 
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3. Representation theorems. If E G F, we denote the characteristic 
function of E by XE, and for x G X, the X-valued function XE 'x(t) 
= XE(£) x. Similarly, f-x is defined for any real-valued function / , 
and any x in X. 

Let / * be any element of CB*(H, X) and let / be any element of 
CB(H, R). Define* in CB*(H, R) by the equation 

•(/)=Af-*)> 
for x in X. We now make use of the representation theorem on p. 
262, Theorem 2 of [1], to obtain a unique regular, finitely additive, 
bounded, real-valued measure defined on F, which we denote by 
uXy/*, suchthat 

*(/) = jE fdux,r-

Define 

XE,x(f*)=Ux^(£). 

Then 

sup \XEAf)\ 
lirici 

and since 

K / * l l = 11*11 = sup |d>(/)| = sup \f(f-x)\^\\x\\ 
IWlsi MISI 

if ||/*|| =? 1, we have ||X£,*|| = ||*||. Furthermore, XE,X is clearly 
linear on CB*(H, X) and hence XE,X G C**(H, X). 

We now identify the simple function XE -X with the element XE, % 
of CB**(H, X) since this identification is an isometric isomorphism. 
See [11], for more detail. From this point on we will not distinguish 
between the simple function XE X and its corresponding element 
XE, x in CB** 

LEMMA 3.1. If {eb e2, ' ' % en] & U*M/ partition of H, with e{ G F 
and Xj G X, i = 1, 2, • • -, n, £/ien 

I l n II 
S x<i'*< ^max||xi| |x. 

Ili=i He** i 

PROOF. Consider/* G CB*(H, X), with ||/*|| g 1. Then 

IK,?,*.-"»)«*»!!-!,?, " « I 

= sup K,/*(£)! = sup ||wx,r|| 
iifii^i illusi 

(variation of wx,y*) 
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where u, = Ux,j* Each Ui is a regular, finitely additive, measure on 
F with finite variation. Hence for each i there exists a closed set 
d C ßi such that 

H R * ~ Ci) < 6/3n. 

Since H is normal there exists disjoint open sets Oi such that Ci C o* 
and 

N|(o< - Ci) < €/3n, 

also there exist closed Gô sets e* ' such that 

C((Z Ci' G Oi. 

Therefore 

| Ì m(*)- 2 «,(<*') I 

I n n I I n n I 

S «*<(*«) " S Wi(Ci) I + S Ui(Ci) ~ S Wi(°i) 
i = l i = l • • i = l i = l • 

+ 1 2 «to) + 2 «*(«•') | = « 

2 «<(ei)^e+ 2 «*(<*')• 
t = l t = l 

Since H is normal and each Ci is a closed Gs, pick a sequence {fk,i} 
of continuous real-valued functions such that Oêfki(t)ê 1 for all 
t and fkti(t) = 1 on a', the support offk., supp/fc. C oh and fk,i\

kXcl, 
for each f. Then 

| 2 «ite') I = I lim 2 \H kidui\, 

since 

[„ \fk,i- X . ; l = f \fKi-Xc,\d^i 

S2|M|(ufc|-c') 
where ufc D supp /fci and the uk may be chosen such that 

HK«k, ~ c ' ' ) < 1/fc- We have 

Hence 
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jHfkidUi=f(fki-xi\ 

and so, 

=iHn7 II £ fki-Xi | | ^ T t a sup K fki(t)-Xi\ 
fe M i=l II fc t 6 H ' i = i 

^ lim sup S lf fc |(t)lN| 
* f G H i = l 

^ lim sup J ) [£.(*)| max ||x<||. 
k tGH » = 1 « 

But, since the supp/fe f are disjoint and 0 ^ ^,i(£) = 1, 

Hence 

Thus 

S A W ^ l foralU G H. 

I n I 

2 "*(<*'.) ^ max ||xj||. 
f = l • i 

( S X e | - x j ) ( / * ) ^ 6 + max| |x, | 

for all € > 0 and for all/*, |[f*|| g 1, so 

2 Xej-xf g max||xi||. 
i = l M i 

As before X and Y are linear normed spaces and B(X, Y**) will 
denote the space of all bounded linear transformations from X to 
Y**. Let K be any finitely additive set function defined on F with 
values in B(X, Y**). 

DEFINITION 3.1. The set function K is said to be weakly regular 
if for each x in X and t/* in Y*, the real-valued set function y*K( -)x is 
regular. 

DEFINITION 3.2. The set function K is said to satisfy the Gowurin 
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property if there exists a constant F such that for any partition 
ei, e2, • • •, en of H, with e{ in F and for any choice of x* in X, the 
following holds: 

II J Kiejxill g P - maxll^llx. 
Il t=i II y** * 

The greatest lower bound of the constants F is called the X-Gowurin 
constant for K. 

DEFINITION 3.3. A function / from H to X is said to be integrable 
with respect to K if for each € > 0 there exists an €-partition of H 
with respect to / , and there exists a point y** in Y** such that for 
each d > 0, there exists a partition F of H into elements of F, such 
that if ei, e2, ' * ', en is any refinement of F, with e{ in F, then for 
any choice of U in eif 

|| y**- £ K(ei)f[ti)^^<d. 

We denote the point y** by /# dK •/ 
Note. It is clear that any function of the form 5)"=1 XE, • x*, F» in F? 

and Xj in X, is integrable and 

[ „ « « ( £ XE, ^ ) = i K(Ei) ' *• 

Now let T denote a continuous linear transformation from CB(H, X) 
toY. 

LEMMA 3.2. For each such T, there exists a finitely additive, 
weakly regular, Gowurin set function K, defined on F with values in 
B(X, Y**), given by 

K(e) • x = r**(X* • x), 

for each e in F and x in X. 

PROOF. Consider a partition {eh e2, * * •, en} of H, with e* in H 
and Xi, x2, • • •, xn in X. We have 

lll,«HHh*(l,x^)L 
S imlll J X.,-^11 a | T | | m a x W , 

II i = i II CB** t 
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from Lemma 3.2. Now for y* in Y* and x in X, let X(e) = y*K(e) x, 
then 

k(e) = y*K(e)-x = y*(T**QCe'x)) = (X,-x)(T*(t/*)) 

= Ux,T*(y*)(e) 

where uXi T*iy*} is regular. 

LEMMA 3.3. For fin CB(H, R) and x in X,f-x is integrable. 

PROOF. Consider e > 0. Since / is bounded and continuous there 
exists an e-partition P = {eu e2> * * ', en} of H with respect to fi 
with ei in F for each i. Hence let y** = T**(f-x) and let {£i, E2, 
- - -, Em} be any refinement of F, with Ej G F. Then if Xj Œf'x(Ej), 
Xj = rj-x where rç Çzf(Ej). Therefore, 

m 

= || T**(f'x) - T** ( J XE /rrx)| 

II i=i II cB* 

Consider c* in CB* such that ||c*|| ^ 1, then since 

XE • dUç*, r x = ?j ' XEj * duc*, x 

we have 

|.(/'x- 5 V'"*) (c*) 

= J f'dUc*iX - f XEi'rjdu(*^ ^ € - | | x 

The previous lemma along with Lemma 3.1 gives us the following 
Riesz representation theorem. 

THEOREM 3.1. Let T be a continuous linear transformation from 
CB(H, X) to Y, then there exists a unique weakly regular, finitely 
additive, B(X, Y**) valued, Goumrin set function defined on F, such 
that 

[T(f-x)]**=\HdK(f-x) 
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for all fin CB(H, R) and all xin X. 

PROOF. The existence of K follows from Lemma 3.1, and from 
Lemma 3.3, we have that for a l l / in CB(H, R) and x in X, 

T**(j.x)= [T(f-x)]** = | dK(f-x). 

The uniqueness will follow from the same technique as we will 
use in Theorem 3.2. 

THEOREM 3.2. Let T be a continuous linear transformation from 
CB(H, X) to Y, then there exists a unique, finitely additive, weakly 
regular, Gowurin set junction defined on F, with values in B(X, Y**) 
such that every f in CTB(H, X) is integrahle with respect to K. 
Moreover, 

T**(f)= \H dK-f 

forallfinCTB(H,X). 

PROOF. From Lemma 3.2, let K be the finitely additive, weakly 
regular, Gowurin set function, defined on F, which is given by the 
equation 

K(e)'x=T**(Xe-x). 

From Theorem 3.1 it will follow that each / in CTB(H, X) is 
integrable with respect to K, and that 

T**(f) = jH dK -f, 

once it is shown that the collection of functions of the form {f * x}, 
fin CB(H, R) and x in X, are dense in CTB(H, X) in the uniform norm. 
This is shown as follows: given fin CTB(H, X), and e > 0, there exists 
a finite cover N(f(ti), c/2) of the range off Let 

V i = { t | | l / ( * ) - / ( * ) | | < e } , 

and 

W , = { t | | l f ( t ) - / ( * ) | | < e / 2 } , 

then 

Ü Wi D H and W{ C V<. 
i = l 

Let Hi be the union of all the Wt contained in V*. By Urysohn's 
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lemma there exists {gi} continuous with 0 a gi â 1, gi = 1 on H^ 
and g = 0 off Vi. Let 

hi = gi, h2 = (1 - gx) • g2, • • ', 

K = (1 - gi)(l - g2) ' * ' (1 - g»-i)g», 

then 

hx + fc2 H- • • • 4- hn = 1, and /ii = 0 off V*, 

and 

2 hiXi - f 
i = l 

<€ 

where x{ = f(t{). 
Now suppose K' is any other weakly regular, finitely additive, 

Gowurin, B(X, Y**) valued set function defined on F such that 
indK - /exists for all / in CTB{H, X). Then for / in CB(H, R) and 
x in X, we have from Theorem 3.1 for y* in Y*? 

(T(f-x),y*)= (\H dK'(f-x),y*). 
Therefore 

(T(f • x), y*) = < / •* , T*(y*)) = ^ fdux, ,,<„.,. 

Since 

t/x, T*(,*)(e) = (X, • x, r*(y*)> = (T**(Xe • x), t/*> 

= (K(e) -x9y*)9 

let 

A(e) = (K'(e) -x,y*>. 

Then by showing that 

J H f ' d k = \Hfdu*>T*(y*î 

for all / in CB(H, R), since X and ux, T*(y*) are regular, we conclude 
from the uniqueness of the measure in [1, p. 262], that A = ux^ r*(y*y 

Consider Xe, e in F, then 

\H Xedk = k(e) = <K'(e) • x,t/*> = ( JH dK'(Xe ' x),y* ) . 

Hence, 

j „ M = (jHdK'(/--*),y*), 
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and since 

{\HdK'(S-x),y*)=\Hfdux,T^), 

we have X = uX} r*(y*>. Thus 

(K(e) - * , y * > = (K'(e) •*,*/*> 

for all x in X and t/* in Y*, and therefore K = K '. 

4. DEFINITION 4.1. A function/from H to X is said to be integrable 
with respect to K, over a set E in F, if for each e > 0, there exists an 
€-partition of E with respect to f and there exists a point t/** in 
Y** such that for each d > 0, there exists a partition F of E into 
elements of F, such that if e1? e2, ' ' ', en is any refinement of F, with 
e» in F, then for any choice of ti in ^ , 

II«/**- ± K(eO-/(*) | |^<d. 

We denote j / * * by JE rfK • / 

LEMMA 4.1. Consider E in F. If K is qny finitely additive set 
function defined on F with values in B(X, Y**), which satisfies the 
Gowurin property over H, then for any two partitions {Piy F2, • • *,Fn} 
and {Qi, Q2, ' ' > Qm} of E, with P{ and Q, in F, and for any choice 
of Xi, x2, ' ' *, xn and yÌ7 y2, ' * •, ym in X, then 

II ± K(Pi) • Xi - § K(ô) • j J I ^ W max ||x, - j ^ , 
II i = i i = i IIY** U 

where W denotes a Gowurin constant for K. 

PROOF. This follows directly from the fact that if {eÌ7 e2, • • •, en} 
is a partition of E, {eu e2, • • -, £n, H — E} is a partition of H and 
the fact that K is Gowurin over H. 

THEOREM 4.1. If f is any K-integrable function over H and E 
is any element of F, then f is K-integrable over E. Moreover, 
JEdK-f= fHdK(XE • / ) . 

PROOF. Consider a sequence {€n} of positive numbers such that 
£n \ 0 a s n ~~* °° • For each n, there exists an €n-partition of E 
with respect to f If we denote this partition by F€ = {P\n, P2

n, 
• • -, Fr

n
(n)} and we let yn = St r=iK(ptn)/(^n) for a choice of Un in 
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?in, then from Lemma 4.1, {yn} forms a Cauchy sequence in Y** 
and hence converges to a y** in Y** since Y** is complete. Also 
from Lemma 4.1 it follows that the convergence to y** does not 
depend on the choice of tin in Pf. 

For the last part of the theorem we note that if we let Fr
n(n)+i 

= H - E, then 

yn=r{nJ£l KLPfjKE -f(tin) 

which converges to fH dK(XE ' f). 
From Theorem 3.2, we have: 

COROLLARY 4.1. Every f in CTB(H, X) U SF(H, X) is K-integrable 
over every E in F. 

DEFINITION 4.2. If G is a finitely additive set function defined 
on F with values in a linear normed space S, the semivariation of 
G over a set E in F is defined to be 

Ü ( G , E ) = sup | | i nCiei) 

where the supremum is taken over all finite partitions {e1? e2, • • -, en} 
of E, with ei in F, and over all finite collections {fi, r2, • • -, rn} of 
real numbers with |r» | = 1 for all i. 

We now denote P(H, X) = span (CTB(H, X) U SF(H, X)) and for 
/ in P(H, X) we let X/(E) = fE dK • f. Then A/ is a finitely additive 
set function from F to Y**. For f any bounded function from H to 
X, we will use the notation | | / | |c = sup,en|[f(£)||x- Hence for f 
in P(H, X) since K is Gowurin, 

||V(E)|| ^ WK | |/| |C 

where WK denotes the Gowurin constant for K over H. From 
Lemma 4, p. 320 of [1] , we conclude that 

V(XF, E) =Ì 2WK | |/ | |c 

for all E in F. 

LEMMA 4.2. For f in P(H, X), v(kf, H) = 0 if and only if SE dK - f 
= 0Y** for all Ein F. 

PROOF. The proof follows easily from the inequality 

[ dK / II gü(V,H). 
1 £ Il Y** 
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DEFINITION 4.3. If fÏ9 f2 €= P(H, X) we say that fa is equivalent 
to/2> fi~fe, if and only if/£ dK • fi = ÎE dK • f2 for all E in F. 

It follows from Lemma 4.2, that fi ~~ f2 if and only if Ü(X/J-/2 , H) — 0. 
Moreover, this relation is an equivalence relation on P(H, X), and 
we denote the equivalence class determined byf by [f]. 

DEFINITION 4.4. For fin P(H, X), we define 

Hfih=Hf]U = ^H). 
The fact that || * ||K *S a norm on the collection P(H, X) of equiv

alence classes [f\, f in F(H? X) follows from Lemma 4.2 and the 
following easily established lemma. 

LEMMA 4.3. For fY and f2 in P(H9 X), if we denote k\(E) 
= JEdK-fl9 k2(E)= fEdK-f29 and (fc\i)(F) = SE dK- (kf), then 

(a) U(AI + À2, H) g v(kl9 H) + Ü(X2, H), and 

Q>)v(kkl9H)= \k\v(kl9H). 

DEFINITION 4.5. We define the space LK
l(H, X) to be the com

pletion of P(H, X), the completion being in the norm || • ||K-

COROLLARY. The collection SF(H, X) is dense in the space LK
l(H9 X) 

in the norm || • ||K. 

PROOF. This follows directly from the inequality 

v(kfi H) g 2WK\\f\\c 

for a l l / in P{H, X) and for all E in F. 
REMARK. It is pointed out by the authors that the results of §3 in 

[2] could all be proved in this setting, the reader is referred to that 
paper for statements and proofs. 

5. A representation theorem. Consider K as above and suppose 
that G is any finitely additive set function defined on F with values 
in B(X, Z**), Z being a linear normed space. 

DEFINITION 5.1. The set function G is said to be strongly Lipschitz 
with respect to K if and only if there exists a constant F such that 
for any E in F, any partition {eÌ9 e2, • • -, en} of £, with ei in F, 
and any collection {xÌ9 x29 • • •, xn} of elements of X, then there 
exists a partition {EÌ9 E2, • • -, Em} of H and a collection {aÌ9 

<*2> ' ' *> otm} of real numbers with Ej in F and |cç| = 1, such that 

|| 2 G(ßj) • Xi || ZM ^ P || Y K(et n E , ) ^ | |^ 
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The greatest lower bound of the numbers P is called the strong 
Lipschitz constant for G with respect to K 

LEMMA 5.1. If K satisfies the Gowurin property and G is strongly 
Lipschitz with respect to K, then G is Gowurin over H. 

PROOF. The proof follows directly from the definition, the Gowurin 
constant for G being less than or equal to the product of the Gowurin 
constant for K and the strong Lipschitz constant for G. 

The representation theorem and its converse are now stated, the 
proofs being very similar to those in [2]. 

THEOREM 5.1. Let A be any continuous linear transformation 
from LK1(H, X) to a linear normed space Z, then there exists a finitely 
additive set function G, defined on F with values in B(X, Y**), such 
that G satisfies the strong Lipschitz condition with respect to K, 
and such that [A(f)]**= JHdG •/, for all f in LK

l(H, X\ the 
integral being defined as before. 

PROOF. We simply point out that A is continuous on LK\H, X) 
in the norm || • ||c, and refer the reader to [2] for details. 

THEOREM 5.2. Let G be any additive set junction defined on F 
with values in B(X, Z**), where G is strongly Lipschitz with respect 
to K. Then JH dG -f exists for all f in LK

l(H, X) and defines a 
continuous linear transformation from LK1(H, X) to Z**. 
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