THE BOUNDARY OF A VERTICALLY CONNECTED CUBE IS TAME

L. D. LOVELAND ${ }^{1}$

A subset X of E^{3} is defined to be vertically connected if the intersection of each vertical line with X is a connected set. The following question, stated here in terms of the above definition, appears in $\S 9.3$ of [2]:

Is the boundary of a vertically connected crumpled cube in E^{3} a tame 2 -sphere?

In this note we present an affirmative answer to the question.
We define a crumpled cube in E^{3} to be the union of a 2 -sphere in E^{3} with either of its complementary domains. Thus if C is a crumpled cube in E^{3}, then the closure of the complementary set $\left(E^{3}-C\right)$ is also a crumpled cube which we shall denote by C^{*}. Notice that C and C^{*} are not homeomorphic. The boundary of a crumpled cube C, denoted by $\mathrm{Bd} C$, is a 2 -sphere; and the set $C-\mathrm{Bd} C$ is called the interior of C and is denoted by Int C. We shall make use of J. W. Cannon's $*$-taming set theory for crumpled cubes in E^{3} [4]. A subset X of E^{3} is defined to be a $*$-taming set for crumpled cubes in E^{3} if X is closed and satisfies the following condition: if C is a crumpled cube in E^{3} such that $X \subset C$ and $B d C$ is locally tame modulo X, then $\operatorname{Bd} C$ is tame from Int C^{*}. Thus if C^{*} is a compact crumpled cube, X is a *-taming set in $C\left(=\left(C^{*}\right)^{*}\right)$, and $\operatorname{Bd} C$ is locally tame modulo X, then C^{*} is a 3 -cell.
The properties of $*$-taming sets which we shall need are given in [4] and [5]. In particular we shall use the following results:
(1) The closed countable union of $*$-taming sets is a $*$-taming set [4].
(2) The closed union of nondegenerate vertical intervals in E^{3} is a *-taming set [5, Theorem 4].
(3) Each tame nondegenerate subcontinuum of a 2-sphere in E^{3} is a $*$-taming set [4].
(4) Theorem 1 of [5] which is stated in the second paragraph of the following proof.

Theorem. If a crumpled cube C in E^{3} is vertically connected, then the boundary of C is a tame 2-sphere.

[^0]Proof. The fact that C is a 3-cell comes directly from Theorem 4 of [5] since the set C^{*} is the union of nondegenerate vertical rays. We shall show that the boundary S of C is tame from Int C^{*} by exhibiting C as the countable union of $*$-taming sets (see statement (1) above).

Let P be a vertical plane and choose a coordinate system for E^{3} such that P is the $x-z$ plane. For each real number r we denote the plane parallel to P which contains $(0, r, 0)$ by $P(r)$, and we let $X(r)=P(r) \cap C$. For each positive number t we let $X^{t}(r)$ be the union of all components of $X(r)$ having diameter no smaller than t, and we let $X^{t}=\left\{X^{t}(r) \mid r\right.$ is a real number $\}$. Cannon proved [5, Theorem 1] that, for each $i, X^{1 / i}$ is a $*$-taming set. We shall obtain a $*$-taming set X in S such that $C=\left(\cup_{i=1}^{\infty} X^{1 / i}\right) \cup X$. Once this is accomplished it will follow that C is a $*$-taming set [4], and consequently that S is tame from Int C^{*}.

For each point x of E^{3} let $L(x)$ denote the vertical line containing x, let $X=\{x \in S \mid L(x) \cap \operatorname{Int} C=\varnothing$ and $L(x) \cap C \neq \varnothing\}$, and let π denote the vertical projection of E^{3} onto a horizontal plane Q where Q lies below C. Let $A=\{x \in Q \mid L(x) \cap$ Int $C \neq \varnothing\}$, let $B=\{x \in Q \mid L(x) \cap C=\varnothing\}$, and let $R=\pi(X)$. It is clear that A and B are disjoint open sets, that $Q=A \cup B \cup R$, and that R is the closed set $Q-(A \cup B)$. Our object is to show that R is a simple closed curve because X would then lie on the vertical cylinder through R and would consequently be tame. We shall prove that R is a simple closed curve and use this fact later to show that X is a *-taming set.

In order to show that R is a simple closed curve it suffices to show that $R=\mathrm{Bd} A$ and that the bounded, open subset A of Q is also connected, simply connected, and 0 -ulc [6]. (This result is also given in [7, p. 167].) For $p \in R$ we note that each point of $\pi^{-1}(p)$ is arcwise accessible from Int C. Since π is continuous this means that R is arcwise accessible from A at p and implies that $R \subset \mathrm{Bd} A$. In a similar manner we use the fact that Int C is arcwise connected to show that A is arcwise connected. Thus $R=\mathrm{Bd} A$ and A is connected. To show that A is simply connected we let J be a simple closed curve in A, and we let D denote the disk in Q bounded by J. Let H be a vertical annulus whose boundary components are J and another simple closed curve above C, and let $U=H \cap$ Int C. Clearly U is an open subset of H, and we claim that U contains a simple closed curve K that is essential (bounds no disk) in H. One way to obtain K is to note that if $f x g$ is a short horizontal arc in U, then $U-L(x)$ is connected and hence arcwise connected. (The set $U-L(x)$ $=(\pi \mid \operatorname{Int} C)^{-1}(J-x)$ is connected because $J-x$ is connected and $\pi \mid$ Int C is an open map with connected point inverses.) Thus
the simple closed curve K can be selected to lie in the union of $f x g$ with an arc from f to g which lies in $U-L(x)$.

We desire to show that $D \subset A$, so we suppose that there exists a point z in Int D such that z is not in A. Either z belongs to B or to R, and if $z \in B$ there must exist a point of R in Int D, since R separates A from B in Q. Thus we may assume that z lies in R. Our contradiction will be that K can be shrunk to a point in $E^{3}-L(z)$. This is an impossibility since K is a generator for the infinite cyclic fundamental group $\pi_{1}\left(E^{3}-L(z)\right)$. Since $L(z) \cap C$ lies in S we may use [1] to obtain a 2 -sphere S^{\prime} such that $L(z) \cap S^{\prime}=L(z) \cap C, S^{\prime}$ is locally polyhedral modulo $L(z) \cap C$, and $K \subset$ Int S^{\prime}. The crumpled cube $C^{\prime}=S^{\prime} \cup$ Int S^{\prime} has a boundary S^{\prime} which is locally tame modulo the *-taming set $L(z)$ [5, Theorem 4], and $L(z)$ lies in $E^{3}-$ Int C^{\prime}. Thus, from the definition of $*$-taming sets, we see that C^{\prime} is a 3 -cell. Now we know that K can be shrunk to a point in Int C^{\prime}, and consequently K contracts in $E^{3}-L(z)$. It follows that A is simply connected.

We now show that A is 0 -ulc. If this is not the case there must exist a positive number ξ and a sequence $\left\{p_{i}, q_{i}\right\}_{i=1}^{\infty}$ of pairs of points of A such that, for each positive integer i,
(1) $0<d\left(p_{i}, q_{i}\right)<1 / i$ and
(2) p_{i} and q_{i} do not lie in an are in A of diameter less than ξ. We shall show that the existence of such a number $\boldsymbol{\xi}$ and such a sequence of pairs of points of A leads to a contradiction.

For each positive integer i, let $p_{i}{ }^{\prime}$ and $q_{i}{ }^{\prime}$ denote points of $L\left(p_{i}\right) \cap$ Int C and $L\left(q_{i}\right) \cap$ Int C, respectively. Choosing subsequences if necessary, we find that we lose no generality in assuming that the sequences $\left\{p_{i}\right\},\left\{q_{i}\right\},\left\{p_{i}{ }^{\prime}\right\}$, and $\left\{q_{i}{ }^{\prime}\right\}$ all converge, say to points p, q, p^{\prime}, and q^{\prime}, respectively, with $p=q \in R$ and $\left\{p^{\prime}, q^{\prime}\right\}$ $\subset L(p) \cap C=L(q) \cap C$.

It is well known that Int C is 0 -ulc and that each point of $\operatorname{Bd} C$ is arcwise accessible from Int C [8, p. 66]. Thus, for i sufficiently large, there exist arcs P and Q in C, each of diameter less than $\xi / 2$, joining $p_{i}{ }^{\prime}$ and $q_{i}{ }^{\prime}$ to p^{\prime} and q^{\prime}, respectively. The set $P \cup Q \cup(L(p) \cap C)$ clearly contains an arc $\boldsymbol{\alpha}$ from $p_{i}{ }^{\prime}$ to $q_{i}{ }^{\prime}$ which, of necessity, lies in an $\xi / 2$-neighborhood of $L(p) \cap C$. Since Int C is 0 -ulc, the arc $\boldsymbol{\alpha}$ can be approximated by an $\operatorname{arc} \beta$ from $p_{i}{ }^{\prime}$ to $q_{i}{ }^{\prime}$ which lies in Int C and also in an $\xi / 2$-neighborhood of $L(p) \cap C$. The set $\pi(\beta)$ lies in A, has diameter less than ξ, and contains an arc from p_{i} to q_{i}. This is in contradiction to the properties of the sequence $\left\{p_{i}, q_{i}\right\}$, and our claim that A is 0 -ulc is established.

Now X is known to be tame for it lies in a vertical cylinder generated by the simple closed curve R. Since X is vertically connected and pro-
jects under π to the connected set R, it is clear that X is connected. This insures that X is a taming set [3], and consequently X is also a *-taming set [4]. We note that $C=X \cup\left(\bigcup_{i=1}^{\infty} X^{1 / i}\right)$, and the result follows.

References

1. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 19, 300.
2. C. E. Burgess and J. W. Cannon, Embeddings of surfaces in E^{3}, Rocky Mt. J. Math. 1 (1971), 259-344.
3. J. W. Cannon, Characterizations of taming sets on 2 -spheres, Trans. Amer. Math. Soc. 147 (1970), 289-299.
4. __, *-taming sets for crumpled cubes. I: Basic properties, Trans. Amer. Math. Soc. (to appear).
5. -_, *-taming sets for crumpled cubes. II: Horizontal sections in closed sets, Trans. Amer. Math. Soc. (to appear).
6. R. L. Moore, A characterization of Jordan regions by properties having no reference to their boundaries, Proc. Nat. Acad. Sci. U.S.A. 4 (1918), 364-370.
7. M. H. A. Newman, Elements of the topology of plane sets of points, 2nd ed., Cambridge Univ. Press, Cambridge, 1951. MR 13, 483.
8. R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R. I., 1963. MR 32 \#440.

Utah State University, Logan, Utah 84321

[^0]: Received the the editors February 24, 1970 and, in revised form, March 21, 1970. AMS 1970 subject classifications. Primary 55A30, 57A10.
 Key words and phrases. Tame 2-spheres, tame surfaces, embeddings in E^{3}, surfaces in E^{3}, *-taming sets, vertically connected.
 ${ }^{1}$ This research was partially supported by NSF-GP-8454.

