ON LIAPUNOV'S DIRECT METHOD

JAMES S. MULDOWNEY

We shall consider the system of ordinary differential equations

(1)
$$x' = f(t, x), \qquad t \in [0, \infty), \quad x \in D,$$

where D is an open connected subset of R^n containing the zero vector and f is a function from $[0, \infty) \times D$ to R^n such that solutions to (1) exist locally in the Carathéodory sense (cf. [4, p. 42]). We denote by $\mathcal{L}(1)$ the class of real-valued functions V(t, x) on $[0, \infty) \times D$ such that V(t, x(t)) is nonincreasing whenever x(t) is a solution of (1). A sufficient condition for $V \in \mathcal{L}(1)$ is that V be continuous in (t, x), locally Lipschitzian in x and satisfy

$$\limsup_{h \to 0+} [V(t+h, x+h f(t, x)) - V(t, x)]/h \le 0$$

for all (t, x), when f is continuous (cf. [14, p. 4]).

All of the applications of Liapunov's direct method with which we are here concerned are based on the observation that if $V \in \mathcal{L}(1)$ and $(t_0, x_0), (t_1, x_1)$ are such that $t_0 < t_1$ and $V(t_0, x_0) < V(t_1, x_1)$ then there is no solution x(t) of (1) such that $x(t_0) = x_0$ and $x(t_1) = x_1$.

Notation. (i) A solution x(t) such that $x(t_0) = x_0$ will often be denoted $x(t; t_0, x_0)$.

- (ii) If $x_0 \in \mathbb{R}^n$, $r \in (0, \infty)$, then $B(x_0, r) = \{x : |x x_0| < r\}$, where | denotes any norm.
 - (iii) $2^D = \{X : X \subset D\}.$
 - (iv) Let $x, y \in \mathbb{R}^n$:

$$\rho(x, y) = |x - y|, \quad \text{if } x \neq \infty, \ y \neq \infty;$$

$$\rho(x, y) = \frac{1}{|x|}, \quad \text{if } y = \infty;$$

$$\rho(x, X) = \inf \{ \rho(x, y) : y \in X \}, \quad \text{if } X \subset \mathbb{R}^n$$

and $x \to X$ means $\rho(x, X) \to 0$.

(v) If $X \subset \mathbb{R}^n$ then \overline{X} and ∂X denote the closure and boundary of X respectively.

Received by the editors September 9, 1969 and, in revised form, December 13, 1969

AMS 1970 subject classifications. Primary 34D05, 34D20; Secondary 34A10, 34A15.

$$V_*(t,x) = \inf \{V(\tau,x): 0 \le \tau \le t\},$$

$$V^*(t,x) = \sup \{V(\tau,x): 0 \le \tau \le t\}.$$

Definitions. (i) A solution x(t), $t \ge t_0$, exists in the future if there is a (not necessarily unique) continuation of x(t) throughout $[t_0, \omega)$ for each $\omega > t_0$.

- (ii) A solution x(t), $t \ge t_0$, is bounded in D if there is a compact $\Delta \subset D$ such that $x(t) \in \Delta$ for all $t \ge t_0$.
- (iii) The solutions of (1) are uniformly bounded in D if, for each compact $E \subset D$, there is a compact $\Delta(E) \subset D$ such that $x_0 \in E$ implies $x(t; t_0, x_0) \in \Delta(E)$ for all $t \ge t_0$ and all $t_0 \ge 0$.
- (iv) A solution x(t), $t \ge t_0$, is unique in the future if it has at most one continuation throughout $[t_0, \omega]$ for each $\omega > t_0$.
- (v) A solution x(t), $t \ge 0$, which exists in the future, is *stable* if, for each $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$ such that $x_0 \in B(x(0), \delta(\epsilon))$ implies $x(t; 0, x_0)$ exists in the future and $x(t; 0, x_0) \in B(x(t), \epsilon)$ for all $t \ge 0$.
- (vi) A solution x(t), $t \ge 0$, which exists in the future, is *uniformly stable* if, for each $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$ such that $x_0 \in B(x(t_0), \delta(\epsilon))$ implies $x(t; t_0, x_0)$ exists in the future and $x(t; t_0, x_0) \in B(x(t), \epsilon)$ for each $t \ge t_0$ and each $t_0 \ge 0$.

Let \mathcal{C} be a function from $[0, \infty)$ to 2^D .

- (vii) If E, B are such that $E \subset D$, E compact, $B \subset \overline{D}$ then \mathcal{L} separates E from B, $E \mid \mathcal{L} \mid B$, if for each $t \in [0, \infty)$ there exists a neighborhood U(t) of B such that:
 - (a) $U(t) \cap E = \emptyset$.
- (b) Every connected subset of D which intersects U(t) and E also intersects $\mathcal{C}(t) (U(t) \cup E)$.

If, furthermore, U above may be chosen independently of t then we say \mathcal{C} separates E from B uniformly and write $E \parallel \mathcal{C} \parallel B$.

If $A \subset D$ and $B \subset \overline{D}$ then we write $A \mid \mathcal{L} \mid B$ $(A \mid \mathcal{L} \mid B)$ if $E \mid \mathcal{L} \mid B$ $(E \mid \mathcal{L} \mid B)$ for each compact $E \subset A$.

For example, consider D = B(0, 1). Let

$$\begin{split} \mathcal{L}_1(t) &= \bigcup_{n=1}^{\infty} \ \partial B \ \Big(\ 0, 1 - \frac{e^{-t}}{2n} \Big), \\ \mathcal{L}_2(t) &= \bigcup_{n=1}^{\infty} \ \partial B \ \Big(\ 0, 1 - \frac{e^t}{(e^t + 1)n} \Big), \\ \mathcal{L}_3(t) &= \bigcup_{n=1}^{\infty} \ \partial B \ \Big(\ 0, \frac{e^{-t}}{2n} \Big), \end{split}$$

$$\mathcal{C}_4(t) = \bigcup_{n=1}^{\infty} \partial B \left(0, \frac{1}{n} \right),$$

$$\mathcal{C}_5(t) = D;$$

then $D \| \mathcal{C}_1 \| \partial D$, $D \| \mathcal{C}_2 \| \partial D$, $D - \{0\} \| \mathcal{C}_3 \| \{0\}$, $D - \{0\} \| \mathcal{C}_4 \| \{0\}$, $D \| \mathcal{C}_5 \| \partial D$ and $D - \{0\} \| \mathcal{C}_5 \| \{0\}$.

Theorem 0.1. Let $V \in \mathcal{L}(1)$.

(a) Suppose $V(t, x) \to +\infty$ as $x \to \partial D$ uniformly on [0, T] for each $T \in (0, \infty)$.

If $V(t_0, x_0) < +\infty$ then each solution $x(t; t_0, x_0)$ exists in the future (cf. [5], also [11]).

(b) Suppose there is a real-valued function ω on D such that $\omega(x) \to +\infty$, as $x \to \partial D$, and $\omega(x) \leq V(t, x)$, for $(t, x) \in [0, \infty) \times D$.

If $V(t_0, x_0) < +\infty$, then each solution $x(t; t_0, x_0)$ is bounded in D (cf. [16]).

(c) If there exist real-valued functions ω_1 and ω_2 on D such that ω_1 is bounded above on compact subsets of D, $\omega_2(x) \to +\infty$ as $x \to \partial D$ and $\omega_2(x) \leq V(t, x) \leq \omega_1(x)$ for every $(t, x) \in [0, \infty) \times D$, then the solutions of (1) are uniformly bounded in D (cf. [16]).

Theorem 0.2. Let $V \in \mathcal{L}(1)$.

(a) Suppose V(t, x) > 0, for $x \neq 0$, $t \geq 0$.

If V(0, 0) = 0, then $x(t) \equiv 0$ is a solution of (1) which is unique in the future (cf. [2]).

(b) Suppose there is an increasing function θ on $[0, \infty)$ such that $\theta(0) = 0$ and $\theta(|x|) \leq V(t, x)$ for all $(t, x) \in [0, \infty) \times D$.

If V(0, 0) = 0 and V(0, x) is continuous at x = 0, then $x(t) \equiv 0$ is a solution of (1) which is stable (cf. [15]).

(c) If there exist real-valued functions θ_1 and θ_2 on $[0, \infty)$ such that $\theta_i(0) = 0$, i = 1, 2, θ_2 is increasing and θ_1 is continuous at 0 and $\theta_2(|x|) \le V(t, x) \le \theta_1(|x|)$, for all $(t, x) \in [0, \infty) \times D$ then $x(t) \equiv 0$ is a solution of (1) which is uniformly stable (cf. [15]).

Although stated here only as sufficient conditions, the conditions of Theorems 0.1 and 0.2 are, under very general circumstances also necessary (e.g. cf. [14, Chapter V]). Nevertheless, because of the difficulty of finding functions $V \in \mathcal{L}(1)$ for specific equations of the type (1), it is of interest to relax these conditions. In particular, a number of authors (see [3] and [14, p. 18], for references) have profitably studied functions V satisfying less restrictive requirements than the assumption that V(t, x(t)) be nonincreasing. A more restrictive requirement is often used in other contexts, for example, asymptotic stability. In the present paper we devote our attention to relaxing the restrictions on

the range of V; for example our generalization of Theorem 0.2 (c) allows us to conclude that $x(t) \equiv 0$ is uniformly stable from the existence of a function $V \in \mathcal{L}(1)$ which may be of indefinite sign or even unbounded above and below in every neighborhood of x=0. We also show in Theorems 2 and 3 how an infinite collection of functions V may be used to obtain information about the stability and boundedness of solutions to a system of differential equations.

Theorem 1.1. Let $V \in \mathcal{L}(1)$.

- (a) Suppose there exists a function $\mathcal C$ from $[0, \infty)$ to 2^D such that:
- (i) $V_{\star}(t, x) \to +\infty$, as $x \to \partial D$, $x \in \mathcal{L}(t)$, for each t > 0.
- (ii) $D \mid \mathcal{C} \mid \partial D$.
- If $V(t_0, x_0) < +\infty$ then any solution $x(t; t_0, x_0)$ exists in the future.
 - (b) Suppose there is a real-valued function ω on D such that:
 - (i) $\omega(x) \to +\infty$, as $x \to \partial D$,
 - (ii) if $\mathcal{C}(t) = \{x : V_*(t, x) \ge \omega(x)\}$ then $D \| \mathcal{C} \| \partial D$.
 - If $V(t_0, x_0) < +\infty$ then any solution $x(t; t_0, x_0)$ is bounded in D.
- (c) Suppose there exist real-valued functions ω_1 and ω_2 on D such that:
- (i) $\omega_2(x) \to +\infty$, as $x \to \partial D$, while ω_1 is bounded above on each compact subset of D:
- (ii) if $C_1(t) = \{x : V^*(t, x) \leq \omega_1(x)\}, C_2(t) = \{x : V_*(t, x) \geq \omega_2(x)\}$ then $D \parallel C_i \parallel \partial D$, i = 1, 2.

Then the solutions of (1) are uniformly bounded in D.

Theorem 1.2. Let $V \subseteq \mathcal{L}(1)$.

- (a) Suppose $\mathcal{L}(t) = \{x : V_*(t, x) > 0\}$ is such that $D \{0\} | \mathcal{L} | \{0\}$.
- If V(0, 0) = 0 then $x(t) \equiv 0$ is a solution of (1) which is unique in the future.
 - (b) Suppose there exists a function θ on $[0, \infty)$ such that:
 - (i) θ is increasing and $\theta(0) = 0$,
 - (ii) if $\mathcal{L}(t) = \{x : V_*(t, x) \ge \theta(|x|)\}\ then \ D \{0\} \| \mathcal{L} \| \{0\}.$
- If V(0, 0) = 0 and V(0, x) is upper semicontinuous (u.s.c.) at x = 0 then $x(t) \equiv 0$ is a solution of (1) which is stable.
- (c) Suppose there exist real-valued functions θ_1 and θ_2 on $[0, \infty)$ such that:
 - (i) $\theta_i(0) = 0$, $i = 1, 2, \theta_1$ is continuous at 0 and θ_2 is increasing.
- (ii) If $\mathcal{C}_1(t) = \{x : V^*(t,x) \leq \theta_2(|x|)\}$, $\mathcal{C}_2(t) = \{x : V_*(t,x) \geq \theta_2(|x|)\}$ then $D \{0\} \| \mathcal{C}_i \| \{0\}$, i = 1, 2.

Then $x(t) \equiv 0$ is a solution of (1) which is uniformly stable.

Theorems 0.1 and 0.2 are special cases of Theorems 1.1 and 1.2, respectively, with $D = \mathcal{C}(t) = \mathcal{C}_i(t)$, i = 1, 2.

PROOF OF THEOREM 1.1 (a). Suppose there is a solution $x(t) = x(t; t_0, x_0)$ which does not exist in the future, i.e., x(t) exists on a right-maximal interval $[t_0, T), T < +\infty$. Then $x(t) \to \partial D$ as $t \to T - (cf. [7, p. 12])$. Condition (a) (i) implies that there is a compact subset E of D such that $x_0 \in E$ and

(2) if
$$x \in \mathcal{C}(T) - E$$
, then $V_*(T, x) > V(t_0, x_0)$.

Since (a) (ii) holds, there is a neighborhood U(T) of ∂D such that $E \cap U(T) = \emptyset$ and

if
$$G \subset D$$
, G connected, $G \cap E \neq \emptyset$,

(3)
$$G \cap U(T) \neq \emptyset$$
, then $G \cap \{\mathcal{L}(T) - [U(T) \cup E]\} \neq \emptyset$.

Thus, by (3), there exists t_1 , $t_0 < t_1 < T$, such that $x(t_1) \in \mathcal{L}(T) - [U(T) \cup E]$, and hence

$$\begin{split} V(t_1, x(t_1)) & \geqq V_*(t_1, x(t_1)) \\ & \geqq V_*(T, x(t_1)), \quad \text{since } t_1 < T \\ & \gt V(t_0, x_0), \quad \text{by (2), since } x(t_1) \in \mathcal{L} \ (T) - E. \end{split}$$

But this contradicts $V(t_1, x(t_1)) \leq V(t_0, x_0)$ (i.e., $V \in \mathcal{L}(1)$) so that we must have $T = +\infty$; i.e., x(t) exists in the future.

PROOF OF THEOREM 1.2 (b). If $\epsilon > 0$, (b)(ii) implies that there exists $\delta_1(\epsilon)$, $0 < \delta_1(\epsilon) < \epsilon$, such that:

Every connected set which intersects $B(0, \delta_1(\epsilon))$ and $\partial B(0, \epsilon)$ also intersects $\mathcal{C}(t) - [B(0, \delta_1(\epsilon)) \cup \partial B(0, \epsilon)]$, for each $t \ge 0$.

Since V(0, x) is u.s.c. at x = 0 then, by (b) (i) there exists $\delta(\epsilon)$, $0 < \delta(\epsilon) < \delta_1(\epsilon)$, such that:

(5) If
$$x_0 \in B(0, \delta(\epsilon))$$
 then $V(0, x_0) < \theta(\delta_1(\epsilon))$.

Consider $x(t) = x(t; 0, x_0)$; if there exists T > 0 such that $x(t) \in \partial B(0, \epsilon)$ then, by (4) there exists $t_1, 0 < t_1 < T$, such that

$$x(t_1) \in \mathcal{C}(T) - [B(0, \delta_1(\epsilon)) \cup \partial B(0, \epsilon)]$$

and hence

$$\begin{split} V(t_1,x(t_1)) & \geqq V_*(T,x(t_1)), & \text{ since } t_1 < T \\ & \geqq \theta(|x(t_1)|), & \text{ since } x(t_1) \in \mathcal{Q}\left(T\right) \\ & \geqq \theta(\delta_1(\epsilon)), & \text{ since } |x(t_1)| \geqq \delta_1(\epsilon) \\ & \gt V(0,x_0), & \text{ by (5), since } |x_0| < \delta(\epsilon) \end{split}$$

contradicting $V \in \mathcal{L}(1)$. The conclusion of Theorem 1.2 (b) is now apparent.

PROOF OF THEOREM 1.2 (c). If $\epsilon > 0$, it follows from (c) (ii) that there exists $\delta_2(\epsilon)$, $0 < \delta_2(\epsilon) < \epsilon$, such that:

(6) Every connected set which intersects $B(0, \delta_2(\epsilon))$ and $\partial B(0, \epsilon)$ also intersects $\mathcal{C}_2(t) - B(0, \delta_2(\epsilon))$ for each $t \geq 0$.

There exists $\delta_1(\epsilon)$, $0 < \delta_1(\epsilon) < \delta_2(\epsilon)$, such that:

(7)
$$\theta_1(\delta_1(\epsilon)) < \theta_2(\delta_2(\epsilon)).$$

There exists $\delta(\epsilon)$, $0 < \delta(\epsilon) < \delta_1(\epsilon)$, such that:

(8) Every connected set which intersects
$$B(0, \delta(\epsilon))$$
 and $\partial B(0, \delta_1(\epsilon))$ also intersects $\mathcal{C}_1(t) \cap B(0, \delta_1(\epsilon))$.

We assert that if $x_0 \in B(0, \delta(\epsilon))$, then $x(t; t_0, x_0) \in B(0, \epsilon)$ for all $t \ge t_0$ and all $t_0 \ge 0$. If there were a solution x(t) such that $x(t_0) = x_0 \in B(0, \delta(\epsilon))$ and $x(T) \in \partial B(0, \epsilon)$ for some $T > t_0$ then, by (6) and (8), there exist t_1 and t_2 such that $t_0 < t_1 < t_2 < T$ and

$$x(t_1) \in \mathcal{L}_1(T) \cap B(0, \delta_1(\epsilon)), \quad x(t_2) \in \mathcal{L}_2(T) - B(0, \delta_2(\epsilon)).$$

Therefore,

$$\begin{split} V(t_2, \mathbf{x}(t_2)) & \geqq V_*(T, \mathbf{x}(t_2)) \\ & \geqq \theta_2(|\mathbf{x}(t_2)|), \quad \text{since } \mathbf{x}(t_2) \in \mathcal{L}_2(T) \\ & \geqq \theta_2(\boldsymbol{\delta}_2(\boldsymbol{\epsilon})), \quad \text{since } |\mathbf{x}(t_2)| > \boldsymbol{\delta}_2(\boldsymbol{\epsilon}) \\ & > \theta_1(\boldsymbol{\delta}_1(\boldsymbol{\epsilon})), \quad \text{by } (7) \\ & \geqq \theta_1(|\mathbf{x}(t_1)|), \quad \text{since } |\mathbf{x}(t_1)| < \boldsymbol{\delta}_1(\boldsymbol{\epsilon}) \\ & \geqq V^*(t, \mathbf{x}(t_1)), \quad \text{since } \mathbf{x}(t_1) \in \mathcal{L}_1(T) \\ & \geqq V(t_1, \mathbf{x}(t_1)), \end{split}$$

i.e.,
$$V(t_2, x(t_2)) > V(t_1, x(t_1))$$
, contradicting $V \in \mathcal{L}(1)$.

The proofs of the other sections of Theorems 1.1 and 1.2 follow a similar pattern to those above. These are not the most general results that can be obtained in this direction. For example, the conclusion of Theorem 1.1 (b) holds if $\lim_{x\to\partial D}\omega(x)=a>V(t_0,\,x_0)$ (cf. [9]) and, in fact, a solution $x(t;\,t_0,\,x_0)$ exists in the future (is bounded) if $\mathcal{L}(t)=\{x:V_*(t,x)>V(t_0,x_0)\}$ satisfies $\{x_0\}\mid\mathcal{L}\mid\partial D(\{x_0\}\mid\mathcal{L}\mid\partial D)$. Also we may have $\lim_{x\to\partial D}V(t,\,x)\leqq V(t_0,\,x_0)$ for all $(t_0,\,x_0)$ and still conclude that the solutions are uniformly bounded; this is the case if

the function $V(t, x) = (1/|x|) \sin^2 |x| (D = R^n)$ belongs to the class $\mathcal{L}(1)$, since $V_*(t, x) = V^*(t, x) = V(t, x)$ and if $\mathcal{L}_1(t) = \{x : V(t, x) = 0\}$ and $\mathcal{L}_2(t) = \{x : V(t, x) > 0\}$ then $D \| \mathcal{L}_i \| \partial D$, i = 1, 2.

Example 1. Consider the system

(9)
$$x_1' = x_2, \quad x_2' = (t - |x_1|^{-1/2})x_1$$

which is equivalent to the scalar equation

$$x'' + (|x|^{-1/2} - t)x = 0.$$

Let $V(t, x_1, x_2) = |x_1|^{3/2} (4/3 - t|x_1|^{1/2}) + x_2^2$; then $(d/dt)V(t, x_1(t), x_2(t)) = -(x_1(t))^2 \le 0$ whenever $(x_1, x_2)(t)$ is a solution of (9). Also $V_*(t_1, x_1, x_2) = V(t, x_1, x_2) > 0$ whenever $(x_1, x_2) \in \mathcal{L}(t)$, where

$$\mathcal{C}(t) = \{(x_1, x_2) \neq (0, 0) : 0 \le |x_1| < 16/(9t^2)\}.$$

Then $R^2 - \{0\} | \mathcal{C} | \{0\}$ and the solution $(x_1, x_2)(t) \equiv (0, 0)$ is unique in the future, by Theorem 1.2 (a).

Notice that $V(t, x_1, x_2) \rightarrow -\infty$ as $t \rightarrow +\infty$ if $x_1 \neq 0$.

Example 2. Consider the scalar equation

(10)
$$x' = a(t)|x|^{1/2} \sin(1/x) , \quad \text{if } x \neq 0, \\ = 0, \quad \text{if } x = 0,$$

where a(t) is of constant sign $(a(t) \le 0, \text{ say})$. Define $V(x) = \cos(1/x)$ if $x \ne 0$, V(0) arbitrary. Then

$$\frac{d}{dt}V(x(t)) = a(t)|x(t)|^{-3/2}\sin^2\frac{1}{x(t)} \le 0$$

whenever $x(t) \neq 0$ is a solution of (10). Let $\theta_1(r) = \theta_2(r) = r$, $r \geq 0$. It can be seen that the functions \mathcal{C}_i , i = 1, 2, as defined in Theorem 1.2 (c) satisfy $R - \{0\} \parallel \mathcal{C}_i \parallel \{0\}$ and hence the solution $x(t) \equiv 0$ of (10) is uniformly stable.

Example 3. The system

(11)
$$x_1' = x_2$$
, $x_2' = -\phi(x_1, x_2)x_2 - h(x_1)$, $\phi(x_1, x_2) \ge 0$,

where ϕ and h are continuous, is equivalent to the Liénard equation

$$x'' + \phi(x, x')x' + h(x) = 0.$$

Theorem 1.1 (c) with

$$V(x_1, x_2) = 2H(x_1) + x_2^2$$
, where $H(x) = \int_0^x h$,

implies that the solutions are uniformly bounded if

$$\limsup_{|x|\to\infty}H(x)=+\infty.$$

In particular it is known that if $\lim_{|x|\to\infty} H(x) = +\infty$ then the solutions of (11) are uniformly bounded (cf. Utz [12]). The reader is also referred to the paper of Willett and Wong [13] where the role of the function $\phi(x_1, x_2)$ is investigated more thoroughly.

Theorem 1.2 (c), with V as above, implies that $(x_1, x_2)(t) \equiv (0, 0)$ is a solution of (11) which is uniformly stable if there exists a sequence $\{\alpha_n\}$ such that

$$(-1)^n \alpha_n > 0, \qquad H(\alpha_n) > 0, \qquad \lim_{n \to \infty} \alpha_n = 0.$$

In particular these conditions hold if xh(x) > 0, $x \neq 0$, in a neighborhood of x = 0.

For a study of some equations it may be convenient to use more than one (and possibly infinitely many) functions V. For example, if, for each $\epsilon > 0$, there exists a $\delta(\epsilon)$, $0 < \delta(\epsilon) < \epsilon$ and $V_{\epsilon}(t, x)$ such that:

- (i) $V_{\epsilon}(t, x(t))$ is nonincreasing when x(t) is a solution of (1) and $x(t) \in B(0, \epsilon)$.
- (ii) $\mathcal{L}_{\epsilon}(t) = \{x : V_{\epsilon^*}(t,x) > \sup V_{\epsilon}(0,y), |y| < \delta(\epsilon)\}$ satisfies $\partial B(0,\epsilon) |\mathcal{L}_{\epsilon}|B(0,\delta(\epsilon))$.

Then $x(t) \equiv 0$ is a solution of (1) which is stable. We illustrate this by extending some known results for the systems

(12)
$$x_1' = x_2, \quad x_2' = -\phi(x_1, x_2)x_2 - h(x_1) + e(t),$$

(13)
$$x_{1}' = \frac{1}{p(t)} x_{2}, \quad x_{2}' = -q(t)f(x_{1})$$

which are equivalent to the scalar equations

$$x'' + \phi(x, x')x' + h(x) = e(t), \qquad (p(t)x')' + q(t)f(x) = 0,$$

respectively.

THEOREM 2. Suppose

- (i) ϕ and h are continuous on R^2 and R, respectively, and $\phi \ge 0$.
- (ii) There exist $\alpha_n \in (n, \infty)$, $\alpha_{-n} \in (-\infty, -n)$, $n = 1, 2, \cdots$, such that

$$\lim_{n\to\infty} \{H(\alpha_{\pm n}) + H(\beta_n)\} = +\infty,$$

where
$$H(x) = \int_0^x h$$
 and $H(\beta_n) = \inf \{ H(x) : x \in [\alpha_{-n}, \alpha_n] \}$.

If e is measurable and $\int_0^t |e|$ exists and is finite for each $t \in [0, \infty)$ then the solutions of (12) exist in the future.

If, in addition, $\int_0^\infty |e| < +\infty$ then the solutions of (12) are uniformly bounded.

REMARKS. If $H(x) \ge H_0 > -\infty$ for all x then the condition (ii) is simply

$$\limsup_{|x|\to\infty}H(x)=+\infty.$$

This result has been proved by Antosiewicz [1] for the case $H(x) \ge 0$, $\lim_{|x| \to \infty} H(x) = +\infty$.

For the case $e(t) \equiv 0$ see Example 3 above; in this case there is no restriction on $H(\beta_n)$.

PROOF. Let $V_n(t, x_1, x_2) = (2H(x_1) - 2H(\beta_n) + x_2^2)^{1/2} - \int_0^t |e|, t \in [0, \infty), x_1 \in (\alpha_{-n}, \alpha_n), x_2 \in R, n = 1, 2, \cdots$. If $(x_1, x_2)(t)$ is a solution of (12) then

(14)
$$\frac{d}{dt}V_n(t, x_1(t), x_2(t)) \leq 0, \quad \text{if } x_1(t) \in (\alpha_{-n}, \alpha_n).$$

Suppose there is a solution $(x_1, x_2)(t)$ which does not exist in the future, i.e., $(x_1, x_2)(t)$ exists on a right-maximal interval $[t_0, T), T < + \infty$. Hence $x_1(t)$ and/or $x_2(t)$ must be unbounded on $[t_0, T)$. Condition (ii) implies that there exists a positive integer n such that $x_1(t_0) \in (\alpha_{-n}, \alpha_n)$ and

(15)
$$H(\boldsymbol{\alpha}_{\pm n}) + H(\boldsymbol{\beta}_n) > 2H(x_1(t_0)) + (x_2(t_0))^2 + \left(\int_{t_0}^T |e|\right)^2.$$

But (14) implies that if $x_1(s) \in (\alpha_{-n}, \alpha_n)$ for $s \in [t_0, t]$ then

$$V_n(t, x_1(t), x_2(t)) \le V_n(t_0, x_1(t_0), x_2(t_0))$$

from which it follows that

$$2H(x_1(t)) + 2H(\beta_n) + (x_2(t))^2$$

$$\leq 4H(x_1(t_0)) + 2(x_2(t_0))^2 + 2\left(\int_{t_0}^{T} |e|\right)^2.$$

Therefore, from (15), $x_1(t) \in (\alpha_{-n}, \alpha_n)$ and $x_2(t)$ is bounded, $t \in [t_0, T)$, so that $[t_0, T)$ is not a maximal interval if $T < +\infty$.

The statement about boundedness follows analogously if we let $T = +\infty$ above.

LEMMA. Suppose:

- (i) f is continuous on R.
- (ii) p and q are measurable and 1/p, q are locally integrable on $[0, \infty)$.

(iii) There exists a function ϕ on $[0, \infty)$ such that ϕ/p and ϕq are nonincreasing.

Let
$$F(x) = \int_0^x f$$
. If $F(x) \ge F_0 > -\infty$ for all $x \in (a, b)$ then

$$V = 2\phi q(F(x_1) - F_0) + \frac{\phi}{p} x_2^2$$

is nonincreasing if $(x_1, x_2)(t)$ is a solution of (13) and $x_1(t) \in (a, b)$.

Proof. We prove this lemma by means of an integration by parts technique used by Klokov [8]. (13) implies

$$\phi qf(x_1)x_1' + \frac{\phi}{p}x_2x_2' = 0.$$

Therefore

$$0 = 2 \int_{t_1}^{t_2} \phi q d(F(x_1) - F_0) + \int_{t_1}^{t_2} \frac{\phi}{p} d(x_2^2)$$

$$= \left[2\phi q(F(x_1) - F_0) + \frac{\phi}{p} x_2^2 \right]_{t_1}^{t_2}$$

$$- 2 \int_{t_1}^{t_2} (F(x_1) - F_0) d(\phi q) - \int_{t_1}^{t_2} x_2^2 d\left(\frac{\phi}{p}\right).$$

Since $d(\phi/p) \leq 0$ and $d(\phi q) \leq 0$ it follows that

$$0 \ge \left[2\phi q(F(x_1) - F_0) + \frac{\phi}{p} x_2^2 \right]_{t_1}^{t_2} = V(t_2) - V(t_1)$$

if $t_1 < t_2$ and $x(s) \in (a, b)$, $t_1 \le s \le t_2$.

Remarks. If pq > 0 and $\log pq$ is locally of bounded variation on $[0, \infty)$ then

$$V = 2 \exp(-N)(F(x_1) - F_0) + \frac{1}{pq(0)} \exp(-P)x_2^2$$

satisfies the hypotheses of the lemma where P(t) and N(t) denote the positive and negative variation respectively of $\log pq$ on [0,t]. In this case $\phi(t) = (1/q(t)) \exp{(-N(t))}$. This result has been proved by Gollwitzer [6], using Stieltjes integral inequalities in the case that p and q are positive, locally of bounded variation and continuous. Here, however, it is not assumed that pq is continuous. If pq is locally absolutely continuous and positive then this is a special case of a result of Petty and Leitmann ([10, Lemma 1]) for a more general equation than (13).

Our main purpose in the following theorem is to extend known stability results for (13) to the case where F may change sign infinitely often in a neighborhood of an equilibrium and to extend boundedness theorems to include the possibility $\liminf_{|\mathbf{x}| \to \infty} F(\mathbf{x}) = -\infty$. We achieve this by the use of one-parameter families of Liapunov functions.

In Theorem 3, whenever $\lim_{t\to\infty} \lambda(t)$ exists for some function λ we denote this limit by $\lambda(\infty)$.

THEOREM 3. Let conditions (i), (ii), and (iii) of the lemma hold.

- (a) Suppose:
- (i) $\phi(t)/p > 0$, $\phi q(t) > 0$, for each $t \in [0, \infty)$.
- (ii) There exist $\alpha_n \in (n, \infty)$, $\alpha_{-n} \in (-\infty, -n)$, $n = 1, 2, \cdots$, such that

$$\lim_{n\to\infty} F(\alpha_{\pm n}) + \left[\frac{\phi q(0)}{\phi q(t)} - 1\right] F(\beta_n) = +\infty$$

for each $t \in [0, \infty)$, where

$$F(\beta_n) = \inf \{ F(x) : x \in [\alpha_{-n}, \alpha_n] \}.$$

Then the solutions of (13) exist in the future.

Furthermore if (a) (i) and (a) (ii) hold at $t = +\infty$ then the solutions of (13) are uniformly bounded.

- (b) Suppose:
- (i) $\phi(t)/p > 0$, $\phi(t) > 0$, for each $t \in [0, \infty)$.
- (ii) For each $\epsilon > 0$ there exist $\alpha_{\epsilon} \in (0, \epsilon)$, $\alpha_{-\epsilon} \in (-\epsilon, 0)$ such that

$$F(\alpha_{\pm \epsilon}) + \left[\frac{\phi q(0)}{\phi q(t)} - 1\right] F(\beta_{\epsilon}) > 0$$

for each $t \in [0, \infty)$, where

$$F(\beta_{\epsilon}) = \inf \{ F(x) : x \in [\alpha_{-\epsilon}, \alpha_{\epsilon}] \}.$$

Then $(x_1, x_2)(t) \equiv (0, 0)$ is a solution of (13) which is unique in the future.

If (b) (i) and (b) (ii) hold at $t = +\infty$ then $(x_1, x_2)(t) \equiv (0, 0)$ is also uniformly stable.

Remarks. If $F(x) \ge F_0 > -\infty$ for all x, then condition (a) (ii) is $\lim \sup_{|x| \to \infty} F(x) = +\infty$ and is independent of ϕq .

If $\tilde{F}(x) > 0$, $x \neq 0$, in a neighborhood of x = 0 then condition (b)(ii) holds independently of ϕq , since $F(\beta_{\epsilon}) = 0$.

Also if pq is nondecreasing and positive we may choose $\phi = 1/q$ and then (a) (ii) and (b) (ii) are $\limsup_{|x| \to \infty} F(x) = +\infty$ and $F(\alpha_{+\epsilon}) > 0$,

respectively, without any restriction on $F(\beta_n)$ or $F(\beta_{\epsilon})$ since, in this case, $\phi q(0)/\phi q(t) - 1 = 0$.

Proof of Theorem 3(b). By the lemma, the function $V_{\epsilon} = 2\phi q\{F(x_1) - F(\beta_{\epsilon})\} + \phi x_2^2/p$, for each $\epsilon > 0$, is nonincreasing whenever $(x_1, x_2)(t)$ is a solution of (13) satisfying $x_1(t) \in (\alpha_{-\epsilon}, \alpha_{\epsilon})$. Hence

(16)
$$2\phi q(t) \left\{ F(x_1(t)) + \left[\frac{\phi q(t_0)}{\phi q(t)} - 1 \right] F(\beta_{\epsilon}) \right\} + \frac{\phi}{p}(t)(x_2(t))^2 \\ \leq 2\phi q(t_0) F(x_1(t_0)) + \frac{\phi}{p}(t_0)(x_2(t_0))^2$$

for each $t \ge t_0$ such that $x(s) \in (\alpha_{-\epsilon}, \alpha_{\epsilon}), t_0 \le s \le t$.

We first prove that $(x_1, x_2)(t) \equiv (0, 0)$ is a solution which exists and is unique in the future. Suppose $x_1(0) = x_2(0) = 0$ and $|x_1(T)| = \epsilon > 0$ for some T > 0; then $x_1(t_1) = \alpha_{\pm \epsilon}$ for some $t_1, 0 < t_1 < T$. We assume that t_1 is the least such number and hence, from (16)

$$2\boldsymbol{\phi}q(t_1) \left\{ F(\boldsymbol{\alpha}_{\pm\epsilon}) + \left[\frac{\boldsymbol{\phi}q(0)}{\boldsymbol{\phi}q(t_1)} - 1 \right] F(\boldsymbol{\beta}_{\epsilon}) \right\} + \frac{\boldsymbol{\phi}}{p} (t_1)(x_2(t_1))^2 \leq 0$$

which is obviously false if (b)(i) and (b)(ii) hold for each $t \in [0, \infty)$. Thus $x_1(t) \equiv 0$ and, for every $\epsilon > 0$,

$$\frac{\boldsymbol{\phi}}{n}(t)(x_2(t))^2 \leq 2\left[\boldsymbol{\phi}q(t) - \boldsymbol{\phi}q(t_0)\right] F(\boldsymbol{\beta}_{\epsilon}).$$

But $F(\beta_{\epsilon}) = o(1)$ as $\epsilon \to 0$ so that $x_2(t) \equiv 0$.

The statement about uniform stability follows from the fact that (16) implies

(17)
$$2\phi q(\infty) \left\{ F(x_1(t)) + \left[\frac{\phi q(0)}{\phi q(\infty)} - 1 \right] F(\beta_{\epsilon}) \right\} + \frac{\phi}{p} (\infty) (x_2(t))^2$$

$$\leq \phi q(0) F(x_1(t_0)) + \frac{\phi}{p} (0) (x_2(t_0))^2$$

if $x(s) \in (\alpha_{-\epsilon}, \alpha_{\epsilon})$, for $t_0 \le s \le t$. Now suppose (b) (i) and (b) (ii) hold at $t = +\infty$. Since F is continuous at 0 and F(0) = 0 there exists a $\delta(\epsilon) > 0$ such that if $|(x_1, x_2)(t_0)| < \delta(\epsilon)$ then the right-hand side of (17) is strictly less than

$$2\phi q(\infty) \left\{ F(\alpha_{\pm \epsilon}) + \left[\frac{\phi q(0)}{\phi q(\infty)} - 1 \right] F(\beta_{\epsilon}) \right\}.$$

Thus $x_1(t) \in (\alpha_{-\epsilon}, \alpha_{\epsilon}) \subset (-\epsilon, \epsilon)$ for all $t \ge t_0$. Then $F(x_1(t)) \ge F(\beta_{\epsilon})$ for $t \in [t_0, \infty)$ and therefore

$$\frac{\phi}{p}(\infty)(x_2(t))^2 \leq \phi q(\infty) \{ F(\alpha_{\pm \epsilon}) - F(\beta_{\epsilon}) \} = o(1)$$

as $\epsilon \to 0$.

Part (a) may be proved similarly by considering the functions

$$V_n = 2\phi q \{F(x_1) - F(\beta_n)\} + \frac{\phi}{p} x_2^2, \quad n = 1, 2, \cdots$$

ACKNOWLEDGMENTS. The author is indebted to Professor J. W. Macki for his comments on this paper. Research supported by the National Research Council of Canada, grant NRC A-7197.

REFERENCES

- 1. H. A. Antosiewicz, On non-linear differential equations of the second order with integrable forcing term, J. London Math. Soc. 30 (1955), 64-67. MR 16, 477.
- 2. F. Brauer and S. Sternberg, Local uniqueness, existence in the large, and the convergence of successive approximations, Amer. J. Math. 80 (1958), 421-430. MR 20 #1806.
- 3. F. Brauer, The use of comparison theorems for ordinary differential equations, Proc. NATO Advanced Study Institute, Padua, Italy, Edizioni "Oderisi," Gubbio, 1966, pp. 29-50.
- 4. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022.
- 5. R. Conti, Sulla prolungabilità della soluzioni di un sistema di equazioni differenziali ordinarie, Boll. Un. Mat. Ital. (3) 11 (1956), 510-514. MR 18, 736.
- **6.** H. E. Gollwitzer, Non-linear second order differential equations and Stieltjes integrals, University of Tennessee Technical Report, Knoxville, Tenn., 1969.
- 7. P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270.
- 8. Ju. A. Klokov, Some theorems on boundedness of solutions of ordinary differential equations, Uspehi Mat. Nauk 13 (1958), no. 2(80), 189-194, English transl., Amer. Math. Soc. Transl. (2) 18 (1961), 289-294. MR 20 #2527; MR 23 #A1881.
- 9. J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57–65. MR 36 #5454.
- 10. C. M. Petty and G. Leitmann, A boundedness theorem for a nonlinear, nonautonomous system, Monatsh. Math. 68 (1964), 46-51. MR 28 #4191.
- 11. A. Strauss, A note on a global existence result of R. Conti, Boll. Un. Mat. Ital. (3) 22 (1967), 434-441. MR 37 #1673.
- 12. W. R. Utz, Boundedness and periodicity of solutions of the generalized Liénard equation, Ann. Mat. Pura Appl. (4) 42 (1956), 313-324.
- 13. D. W. Willett and J. S. W. Wong, The boundedness of solutions of the equation $\ddot{x} + f(x, \dot{x}) + g(x) = 0$, SIAM J. Appl. Math. 14 (1966), 1084-1098. MR 34 #7901.

- 14. T. Yoshizawa, Stability theory by Liapunov's second method, Publ. Math. Soc. Japan, no. 9, The Mathematical Society of Japan, Tokyo, 1966. MR 34 #7896.
- 15. On the stability of solutions of a system of differential equations, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 29 (1955), 27-33. MR 17, 738.
- 16. Liapunov's function and boundedness of solutions, Funkcial. Ekvac. 2 (1959), 95–142. MR 22 #5789.

University of Alberta, Edmonton, Alberta, Canada