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ON LIAPUNOV’S DIRECT METHOD

JAMES S. MULDOWNEY

We shall consider the system of ordinary differential equations

(1) x' = flt, x), te[0,o), xED,

where D is an open connected subset of R* containing the zero vector
and f is a function from [0, ©) X D to R" such that solutions to (1)
exist locally in the Carathéodory sense (cf. [4, p. 42]). We denote by
£L(1) the class of real-valued functions V(t, x) on [0, ©) X D such that
V(¢, 2(t)) is nonincreasing whenever x(t) is a solution of (1). A suf-
ficient condition for V € £(1) is that V be continuous in (¢, x), locally
Lipschitzian in x and satisfy

limsup [V(t + h,x + hf(t,x)) — V(t,x)]/h =0
h—0+

for all (¢, x), when fis continuous (cf. [14, p. 4]).

All of the applications of Liapunov’s direct method with which we
are here concerned are based on the observation that if V € (1) and
(o, %0), (21, x)) are such that £, < ¢, and V(ty, x9) < V(#,, x,;) then there
is no solution x(t) of (1) such that x(t) = xo and x(¢,) = x;.

Notation. (i) A solution x(t) such that x(ty) = xo will often be de-
noted x(t; to, xo).

(ii) If xo € R, r € (0, ), then B(xo, r) = {x:|x — x| < r}, where
| | denotes any norm.

(iii) 2P = {X: X C D}.

(iv) Letx,y € R

plry) =k —yl ifx# o, yF o;
D T

p(x,y)—'x' ify= oo,

p(x, X) = inf {p(x,y) : y € X}, f XCR"

and x — X means p(x, X) — 0.
(v) If XC R" then X and 8X denote the closure and boundary of
X respectively.
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) Ve(t,x) = inf {V(1,x): 0= 7= ¢},
vi
VX(t, x) = sup {V(1,x): 0= 7 = ¢t}.

Definitions. (i) A solution x(t), t= to, exists in the future if there is
a (not necessarily unique) continuation of x(t) throughout [t), ) for
each w > to.

(ii) A solution x(t), t= to, is bounded in D if there is a compact
A C D such that x(¢) € A forall t = ¢,.

(iii) The solutions of (1) are uniformly bounded in D if, for each
compact E C D, there is a compact A(E) C D such that xo EE
implies x(¢; to, xo) € A(E)for all t = ty and all £, = 0.

(iv) A solution x(t), t= to, is unique in the future if it has at most
one continuation throughout [t, o] for each o > t,.

(v) A solution x(t), t= 0, which exists in the future, is stable if, for
each € > 0, there exists a §(€) > 0 such that xo € B(x(0), §(¢)) implies
x(t; 0, xo) exists in the future and x(¢; 0, xo) € B(x(t), €) for all t = 0.

(vi) A solution x(t), t= 0, which exists in the future, is uniformly
stable if, for each € > 0, there exists a 8(¢) > 0 such that xy €
B(x(to), 8(¢)) implies x(t; o, xo) exists in the future and x(¢; to, x9) €
B(x(t), €) for each t = ty and each t, = 0.

Let € be a function from [0, % ) to 2P.

(vii) If E, B are such that EC D, E compact, BC D then ¢
separates E from B, E|C|B, if for each t € [0, ) there exists a
neighborhood U(t) of B such that:

(a) U)NE= Q.

(b) Every connected subset of D which intersects U(t) and E also
intersects Z(t) — (U(¢) U E).

If, furthermore, U above may be chosen independently of ¢ then we
say ¢ separates E from B uniformly and write E| € ||B.

If ACD and BCD then we write A|C|B (A]|¢]|B) if
E|C |B (E| ¢ ||B) for each compact E C A.

For example, consider D = B(0, 1). Let
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ou() = Q 3B (0,%),

Cs(t) = D;

then D|¢,|oD, D C,|aD, D — {0}| ¢5/{0}, D — {0}] 40},
D| 05||aD and D — {0} ¢s|{0}.

Tueorem 0.1. Let V € £(1).

(a) Suppose V(t, x)—> + ® as x— D uniformly on [0, T] for each
T E (0, ).

If V(to, x9) < + ® then each solution x(t; to, xo) exists in the future
(cf. [5],also [11]).

(b) Suppose there is a real-valued function w on D such that
w(x) = + ®©,asx— dD, and w(x) = V(t, x), for (t, x) € [0,0) X D.

If V(ty, x0) < + , then each solution x(t; to, xo) is bounded in D
(of [16)).

(c) If there exist real-valued functions w, and wy on D such that w,
is bounded above on compact subsets of D, wy(x)—> +® as x— dD
and wy(x) = V(t, x) = w(x) for every (t, x) € [0, ) X D, then the
solutions of (1) are uniformly bounded in D (cf. [16]).

TueoreMm 0.2. Let V € £(1).

(a) Suppose V(t,x) > 0, for x# 0,t= 0.

If V(0,0) = 0, then x(¢) = 0 is a solution of (1) which is unique in the
future (cf. [2]).

(b) Suppose there is an increasing function 8 on [0, ®) such that
6(0) = 0 and 6(|x|) = V(¢t, x) forall (t,x) € [0, ) X D.

If V(0, 0) = 0 and V(0, x) is continuous at x = 0, then x(t) =0 is a
solution of (1) which is stable (cf. [15]).

(c) If there exist real-valued functions 6, and 65 on [0, ©) such that
0,0) = 0, i = 1,2, 8, is increasing and 0, is continuous at 0 and 6(|x|)
= V(t,x) = 0,(|x]), forall (t,x) € [0, ) X Dthenx(t) = 0isasolution
of (1) which is uniformly stable (cf. [15]).

Although stated here only as sufficient conditions, the conditions
of Theorems 0.1 and 0.2 are, under very general circumstances also
necessary (e.g. cf. [14, Chapter V]). Nevertheless, because of the
difficulty of finding functions V € £(1) for specific equations of the type
(1), it is of interest to relax these conditions. In particular, a number of
authors (see [3] and [14, p. 18], for references) have profitably studied
functions V satisfying less restrictive requirements than the assumption
that V(¢, x(t)) be nonincreasing. A more restrictive requirement is
often used in other contexts, for example, asymptotic stability. In the
present paper we devote our attention to relaxing the restrictions on
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the range of V; for example our generalization of Theorem 0.2 (c)
allows us to conclude that x(t) = 0 is uniformly stable from the existence
of a function V € £(1) which may be of indefinite sign or even un-
bounded above and below in every neighborhood of x = 0. We also
show in Theorems 2 and 3 how an infinite collection of functions V may
be used to obtain information about the stability and boundedness of
solutions to a system of differential equations.

TraeoreM 1.1. Let V € £(1).

(a) Suppose there exists a function C from [0, ®) to 2P such that:

(i) V, (t,x)—> + o, ,asx—> dD,x € C(t), foreach t > 0.

(ii) D|¢|oD.

If V(ty, x) < +x then any solution x(t; to, xo) exists in the
future.

(b) Suppose there is a real-valued function w on D such that:

(i) o(x)—> +®,asx— dD,

(ii) if € (t) = {x: V(t, x) = w(x)} then D|| C|0D.

If V(to, xo) < + ® then any solution x(t; to, xo) is bounded in D.

(c) Suppose there exist real-valued functions w, and wy on D such
that:

(i) wa(x)—> +®, as x— 3D, while w, is bounded above on each
compact subset of D:

(i) if Ci(t) = {x: V¥(t, ) = w,(x)}, Calt) = {x: V, (&, x) = wy(x)}
then D|| €D, i = 1,2.

Then the solutions of (1) are uniformly bounded in D.

Tueorem 1.2. Let V € £(1).

(a) Suppose C(t) = {x: Vi (t, x) > 0} is such that D — {0}| ¢|{0}.

If V(0, 0) = 0 then x(t) = 0 is a solution of (1) which is unique in
the future.

(b) Suppose there exists a function 6 on [0, ® ) such that:

(i) @isincreasing and 6(0) = 0,

(i) if €(t) = {x: Vi(t,x) = 6(|x|)} then D — {0}|| €| {0}.

If V(0, 0) = 0 and V(0, x) is upper semicontinuous (u.s.c.) at x =0
then x(t) = 0 is a solution of (1) which is stable.

(c) Suppose there exist real-valued functions 6, and 6, on [0, ®)
such that:

(i) 6:0) =0, i = 1,2, 0, is continuous at 0 and 0, is increasing.

(i) If €x(t) = {x: V¥(6,) = O,(Jx])}, Calt) = {x: Vi(tx) Z 63(Jx])}
then D — {0}|| Z;[|{0},i= 1, 2.

Then x(t) = 0 is a solution of (1) which is uniformly stable.

Theorems 0.1 and 0.2 are special cases of Theorems 1.1 and 1.2,
respectively, with D = C(t) = €t), i=1,2.
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Proor oF THeoreM 1.1 (a). Suppose there is a solution x(t)
= x(t; ty, xo) which does not exist in the future, i.e., x(t) exists on a
right-maximal interval [#, T), T < + . Then x(t)—> dD as t—> T —
(cf. [7, p. 12]). Condition (a) (i) implies that there is a compact sub-
set E of D such that xy € E and

(2) ifx &€ ¢ (T)—E, then Vi (T, x) > V(ty, xo).

Since (a) (ii) holds, there is a neighborhood U(T) of dD such that
ENU(T) = @ and

if G C D, Gconnected, GN E # @,
GNUT) # @, then GN {€(T) — [UT) U E]} # @.

Thus, by (3), there exists t;, to < ¢; < T, such that x(t;,) € €(T)
— [U(T) U E], and hence

V(1 x(t))) = Vi (ty, x(t1))
= V, (T, x(t;)), sincet; < T
> V(to, x0), by (2), since x(t;) € ¢ (T) — E.

But this contradicts V(t;, x(¢;)) = V(to, x9) (i.e., VE £(1)) so that
we must have T = + o i.e., x(¢) exists in the future.

Proor oF THEOREM 1.2 (b). If € > 0, (b)(ii) implies that there exists
81(€), 0 < 8,(¢) < €, such that:

(3)

Every connected set which intersects B(0, &,(¢)) and
(4)  9B(0, €) also intersects €(t) — [B(0, 8,(e ))U aB(0, €)],
for each t = 0.

Since V(0, x) is uws.c. at x =0 then, by (b) (i) there exists §(e),
0 < 8(e) < 8,(€), such that:

(5) If xog € B(0, 8(¢)) then V(0, xy) < 6(8,(€)).

Consider x(t) = x(t; 0, x¢); if there exists T > 0 such that x(t) €
dB(0, €) then, by (4) there exists ¢, 0 < t; < T, such that

x(t;) € ¢ (T) — [B(0, 8,(¢)) U aB(0, €)]
and hence
V(t1, x(t1)) = V, (
o
(3

T, x(t;)), sincet; < T
t1)|), since x(t;) € ¢ (T)
1(€)),  since |x(t;)| = 8y(e)

V(0, x9), by (5), since |xo| < 8(€)

IIV

IIV
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contradicting V € £(1). The conclusion of Theorem 1.2 (b) is now
apparent.

Proor oF THeorREM 1.2 (c). If e > 0, it follows from (c) (ii) that there
exists dy(€), 0 < 82(€) < €, such that:

Every connected set which intersects B(0, 83(e))
(6) and dB(0, €) also intersects Cy(t) — B(0, 8s(€))
for each t = 0.

There exists §;(€), 0 < §;(e) < 8,(€), such that:
) 01(81(€)) < 62(82(€)).
There exists §(¢), 0 < 8(e) < 8,(¢), such that:

8) Every connected set which intersects B(0, &(e))
and 4B(0, 8,(¢)) also intersects € (t) M B(0, ;(€)).

We assert that if xo € B(0, 8(¢)), then x(¢; ty, xo) € B(0, €) for all
t=t, and all to= 0. If there were a solution x(f) such that x(to)
= x9 € B(0, 8(¢)) and x(T) € dB(0, €) for some T > t; then, by
(6) and (8), there exist ¢ and ¢, such that ¢y < ¢, < t, < T and
x(t) € €i(T) N B(0,8,(¢)),  x(t2) € ¢o(T) — B(0, 8x(e)).
Therefore,
V(ty, x(t2)) = Vi (T, x(t2))
= 05(|x(t2)|), since x(ts) € Co(T)
= 05(8(€)), since |x(t2)] > 8y(€)
> 0,(8.(¢)), by (7)
= 0,([x(t1)), since |x(£1)] < 81(€)
= V*(¢, x(t,)), sincex(t)) € ¢ (T)
= V(ty, x(t)),

ie., V(ta, x(t2)) > V(t,, x(t,)), contradicting V € £(1).

The proofs of the other sections of Theorems 1.1 and 1.2 follow a
similar pattern to those above. These are not the most general results
that can be obtained in this direction. For example, the conclusion of
Theorem 1.1 (b) holds if lim,_, ;pw(x) = a > V(ty, xo) (cf. [9]) and,
in fact, a solution x(t; ty,, x9) exists in the future (is bounded) if
€ (t) = {x: Vi (t,x) > V(ty,x0)} satisfies {xo} | € |0D ({x0 }|| ¢||d D). Also
we may have lim . ap V(t, x) = V(to, xo) for all (y, x9) and still con-
clude that the solutions are uniformly bounded; this is the case if
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the function V(¢t, x) = (1/|x|) sin2 Jx| (D = R") belongs to the class
£L(1), since Vi (t, x) = V*(t,x) = V(¢t, x) and if €,(t) = {x: V(t, x) = 0}
and Cy(t) = {x: V(t,x) > 0} then D|| ¢;||oD, i = 1,2.

ExampLE 1. Consider the system

9) x| = xg, X = (t— 1]~ 12)x,
which is equivalent to the scalar equation
'+ (|72 = t)x=0.

Let V(t, xy, x3) = | |P2(4/3 — t|x;|V2) + x,2; then (d/dt)V(¢, x,(¢), x2(t))
= —(x1(t))2 = 0 whenever (x;, x3)(f) is a solution of (9). Also
Vi (1, 21, x3) = V(¢, x1, x5) > 0 whenever (x, x3) € £ (¢), where

€ (t) = {(x1, %) # (0,0): 0= |x;| < 16/(9t2)}.

Then R? — {0}| € |{0} and the solution (x, x5)(t) = (0,0) is unique in the
future, by Theorem 1.2 (a).

Notice that V(t, x;, x5) = —© ast— + o ifx; # 0.

ExampLE 2. Consider the scalar equation

"= a(t)|]x[V2sin (1/x) , ifx # 0,

10
(10 =0, ifx =0,

where a(t) is of constant sign (a(t) = 0, say). Define V(x) = cos (1/x)
if x # 0, V(0) arbitrary. Then
d 1

EiV(x(t)) = qa(t)|x(t)| =32 sin2 m =0

whenever x(t) # 0 is a solution of (10). Let 6,(r) = 6(r) =1, r= 0.
It can be seen that the functions €;, i =1, 2, as defined in Theorem
1.2 (c) satisfy R — {0} || ¢i[|{0} and hence the solution x(t) = 0 of (10) is
uniformly stable.

ExampLE 3. The system

’

(11) X] = X, x?t = - ¢(xla x2)x2 - h(x1>, ¢(x1, XQ) é 0,
where ¢ and h are continuous, is equivalent to the Liénard equation
2+ @d(x, x")x’ + h(x) = 0.

Theorem 1.1 (c) with
V(x1, x3) = 2H(x,) + %32 where H(x) = f: h,

implies that the solutions are uniformly bounded if



476 J. S. MULDOWNEY

lilrrll sup H(x) = + .

In particular it is known that if lim_,«H(x) = + % then the solutions
of (11) are uniformly bounded (cf. Utz [12]). The reader is also re-
ferred to the paper of Willett and Wong [13] where the role of the
function ¢(xy, x5) is investigated more thoroughly.

Theorem 1.2 (c), with V as above, implies that (x;, x5)(t) = (0, 0) is
a solution of (11) which is uniformly stable if there exists a sequence
{a,} such that

(-1 a, >0, H(a,) > 0, lim &, = 0.
In particular these conditions hold if xh(x) > 0, x # 0, in a neighbor-
hood of x = 0.

For a study of some equations it may be convenient to use more
than one (and possibly infinitely many) functions V. For example, if,
for each € > 0, there exists a 8(e), 0 < 8(e) < € and V(t, x) such that:

(i) V(t, x(t)) is nonincreasing when x(t) is a solution of (1) and
x(t) € B(0,€).

(i) Ct) = {x : Va(t,x) > sup V(0,y), ly| < 8(e)} satisfies
dB(0, €)| C.|B(0, 8(¢)).

Then x(t) = 0 is a solution of (1) which is stable. We illustrate this
by extending some known results for the systems

(12) x| = x5, Xy = —@(x1, Xo)x2 — h(xy) + e(t),
(13) xi = ?(lgx x3 = —q(t)fix)
which are equivalent to the scalar equations
"+ dlx, x")x’ + h(x) = e(t), (pt)x")" + q(t)fix) = 0,
respectively.

THEOREM 2. Suppose
(i) ¢ and h are continuous on R> and R, respectively, and ¢ = 0.
(ii) There exist a, € (n, ®), a_, E(—%, —n), n=1, 2, -,

such that

lim {H(a.,) + HB,)} = + =,

n—©

where H(x) = [, hand H(B,) = inf {H(x) : x € [a_,, a] }.

If e is measurable and [ |e| exists and is finite for each t € [0, ®)
then the solutions of (12) exist in the future.
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If, in addition, [y |e|] < + o then the solutions of (12) are uniform-
ly bounded.

Remagrks. If H(x) = Hy > — ® for all x then the condition (ii) is
simply -

lim sup H(x) = + .
|-

This result has been proved by Antosiewicz [1] for the case H(x) = 0,
limpy« H(x) = + .

For the case e(t) = 0 see Example 3 above; in this case there is no

restriction on H(B,).
Proor. Let V.(t, =, %)= (2H(x;) — 2H(B,)+ 22— [ |e|,

tE[0, ), x; E(an an), 2 ER, n=1, 2, ---. If (23, x3)(¢)
is a solution of (12) then
14) LVt u@ ) S0, ifxn() € (e

Suppose there is a solution (x,, x3)(t) which does not exist in the future,
i.e., (x1, x2)(t) exists on a right-maximal interval [ty, T), T < + .
Hence x;(t) and/or x5(t) must be unbounded on [t,, T). Condition
(ii) implies that there exists a positive integer n such that x(t)
€ (a_p, o) and

T 2
(15)  Hlown) + H(@B) > 2H(x(t0) + (ualto)? + ([, lel ).
But (14) implies that if x;(s) € (a-n, o) for s € [#o, {] then
Va(t, x1(2), x2(2)) = Vaa(to, x1(t0), x2(t0))
from which it follows that

2H(x(8)) + 2H(Bn) + (xo(2))?

< 4H(u() + 2 @) +2 ([, kel ).

Therefore, from (15), x,(t) € (a—,, @) and x5(¢) is bounded,
t € [to, T), so that [, T) is not a maximal interval if T < + o,

The statement about boundedness follows analogously if we let
T = + ® above.

LemMma. Suppose:

(i) fis continuous on R.

(ii) p and q are measurable and 1lp, q are locally integrable on
[0, ).
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(iii) There exists a function ¢ on [0, ©) such that ¢/p and ¢q are
nonincreasing.

Let F(x) = [5 f. If F(x) = Fo > —  forall x € (a, b) then
V= 26g(FG) = Fo) + 2

is nonincreasing if (x;, x3)(t) is a solution of (13) and x,(t) € (a, b).

Proor. We prove this lemma by means of an integration by parts
technique used by Klokov [8]. (13) implies

bqfix)x; + r;ixzxz' = 0.

Therefore

0=2 [" ¢qd(Fx) - Fy)+ [ fd(xf)

— zjfz (F(x1) — Fo)d(¢q) — Ll xz’d<%>
Since d(¢/p) = 0 and d(¢q) = 0 it follows that

t
= [%Q(F(xl) — Fo) + i9522] = V(ty) — V(ty)
p ty
ift, < tyand x(s) € (a, b), t; = s= 1y
Remarks. If pg > 0 and log pq is locally of bounded variation on
[0, %) then

V = 2exp (— N)(F(x;) — Fo) + pql(()) exp (= P)xy?

satisties the hypotheses of the lemma where P(t) and N(t) denote the
positive and negative variation respectively of log pg on [0, t]. In this
case ¢(t) = (1/g(t)) exp (—N(t)). This result has been proved by
Gollwitzer [6], using Stieltjes integral inequalities in the case that p
and g are positive, locally of bounded variation and continuous. Here,
however, it is not assumed that pq is continuous. If pq is locally
absolutely continuous and positive then this is a special case of a
result of Petty and Leitmann ([10, Lemma 1]) for a more general
equation than (13).
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Our main purpose in the following theorem is to extend known
stability results for (13) to the case where F may change sign infinitely
often in a neighborhood of an equilibrium and to extend boundedness
theorems to include the possibility liminf, . F(x)= —o. We
achieve this by the use of one-parameter families of Liapunov func-
tions.

In Theorem 3, whenever lim;_,» A(t) exists for some function A we
denote this limit by A( ).

Tueorem 3. Let conditions (i), (ii), and (iii) of the lemma hold.

(a) Suppose:

(i) d(t)lp > 0, dq(t) > 0, foreacht € [0, »).

(ii) There exist a, €E(n, ®), a_, E(—», —n), n=1, 2, -,
such that

lim Fla.a) + [%‘;i(%l— I]F(,B,.) = +w

foreach t € [0, ), where
F(B,) = inf {F(x) : x € [a_n, a] }.

Then the solutions of (13) exist in the future.

Furthermore if (a) (i) and (a) (ii) hold at t = + « then the solutions
of (13) are uniformly bounded.

(b) Suppose:

(i) d(t)lp > 0,¢q(t) > O, for each t € [0, »).

(ii) For eache > 0 there exist a. € (0,€), a_. € (—¢, 0) such that

$q(0) _
Fla..) + [ o 1]F(ﬂ€)>0

foreacht € [0, ), where
F@) = inf {F(x):x € [a— a] }.

Then (x, x3)(t) = (0, 0) is a solution of (13) which is unique in the
future.

If (b) (i) and (b) (ii) hold at t = + % then (x,, x2)(t) = (0, 0) is also
uniformly stable.

Remarks. If F(x) = Fy > — o for all x, then condition (a) (ii) is
lim sup,» F(x) = + % and is independent of ¢q.

If F(x)>0, x740, in a neighborhood of x =0 then condition
(b)(ii) holds independently of ¢q, since F(8,) = 0.

Also if pq is nondecreasing and positive we may choose ¢ = 1/q
and then (a) (ii) and (b) (ii) are lim supy-» F(x) = + % and F(a..) > 0,
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respectively, without any restriction on F(8,) or F(B,) since, in this
case, ¢q(0)ipg(t) — 1 = 0.

Proor oF Tueorem 3(b). By the lemma, the function V,=
20q{F(x;) — F(BJ)} + ¢éx2%p, for each € > 0, is nonincreasing when-
ever (xy, xg)(t) is a solution of (13) satisfying x,(t) € (a_, ). Hence

() { Feao) + [S08 =1 R0 } + L0t

= 26q(to) F(x1(t0)) + %(to)(xz(to))z

(16)

for each t = ¢y such that x(s) € (a_,, a.), r = s = t.

We first prove that (x), x2)(t) = (0, 0) is a solution which exists and
is unique in the future. Suppose x,(0) = x,(0) = 0 and |x,(T)| =€ > 0
for some T > 0; then x,(t,) = a.. for some t;, 0 < t; < T. We assume
that ¢, is the least such number and hence, from (16)

() {Flag + [$L0 = 1]R)} + F @itz =0

which is obviously false if (b)(i) and (b)(ii) hold for each ¢t € [0, «).
Thus x,(t) = 0 and, for every € > 0,

%(t)(xz(t))z = 2[q(t) — $q(to)] F(B.).

But F(8.) = 0o(1) as € = 0 so that x,(t) = 0.
The statement about uniform stability follows from the fact that
(16) implies

- 26q() { Fl(0) + [ﬁ% G2 }+ el

= ¢q(0)F(x,(t0)) + p (0)(x2(t0))2
if x(s) € (a., a), for to = s = t. Now suppose (b) (i) and (b) (ii) hold
at t = + . Since F is continuous at 0 and F(0) = 0 there exists a

8(e) > 0 such that if |(x;, x2)(to)| < 8(¢) then the right-hand side of
(17) is strictly less than

o) {Flaw) + [0 -1 ]re0 }

Thus x,(t) € (a_., a) C (—¢, €) for all t= t,. Then F(x\(t)) = F(B.)
for t € [to, ©) and therefore
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(2)(x2(1))* = bg(® ){Flaze) — F(B)} = o(1)

< e

ase — 0.
Part (a) may be proved similarly by considering the functions

%
P

x22, n= 1, 2, .

Vo = 20q{F(x) — F(Bn)} +
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