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COMPARISON THEOREMS FOR SECOND ORDER 
DELAY DIFFERENTIAL EQUATIONS1 

KLAUS SCHMITT 

1. Introduction. Consider the delay differential equations 

(1.1) x"(t) + M(t)x(t) + N(t)x(t - A(t)) = 0 , 

(1.2) *"(*) + m(t)x(t) + n(t)x(t - A(*)) = 0 , 

where M(t), N(t), m(t), n(t), and A ( f ) è O are defined and continuous 
on [0, B), B S + oo. In case n = 0 = N, the classical Sturm compari
son theorem says that whenever M(t) ^ m(t) every solution of (1.1) 
must have a zero between consecutive zeros of a nontrivial solution of 
(1.2). The equation 

(1.3) x"(t) + \x{t) - \x(t - ir) = 0 

shows that such a theorem is in general not possible for equations 
(1.1), and (1.2), for (1.3) has both oscillatory and nonoscillatory solu
tions, viz. x(t) = sin t and x(t) = 1. 

Initial value problems for delay equations of the above type are 
posed in the following way (see [6, Chapter I, §2] ). Given a function 
<p(t) continuous on the initial set 

1= {t- à(t) : t - A(t) ^ 0} U {0} 

and given a real number r, one seeks a solution x(i) such that 

(1.4) x(t - A(*)) ^ <p(t - A(t)), t - A(t) G Z, 

(1.5) x ' (0+) = r. 

In this paper we obtain results which allow us to estimate the first 
zero of a solution of (1.1) corresponding to initial functions which do 
not change sign on the initial set in terms of the first positive zero of 
nontrivial solutions of (1.2) corresponding to the identically zero 
initial function. As important applications of these results we obtain 
uniqueness theorems for solutions of boundary value problems 
(BVP's) for nonlinear delay differential equations. 

The following example serves to illustrate our results. 
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Consider the delay differential equation without previous history 

(1.6) x"(t) - x(t) + n(t)x(tl2) = 0, O^t^iT, 

where 

•">- (2(l4-"cL ,)).«• " < ° ) = 4 

One easily verifies that x(t) = sin t is a solution of (1.6). Applying 
our results (Corollary 3.5) we may conclude that for every continuous 
function N(t) with N(t) ^ n(t), every solution of 

(1.7) x"(t) - x(t) + N(t)x(tl2) = 0 

must have a zero on (0, TT] . 
On the other hand, it also follows from our results (Theorem 3.2), 

that if in (1.7) 0 â N(t) ^ 1, then every nontrivial solution x(t) of 
(1.7) with x(0) = 0 can have no other zeros. 

Much of the qualitative theory of linear delay differential equations 
has been collected by Norkin in [6] and in the survey papers [4], 
[5]. We refer the interested reader to these sources for the various 
aspects of this theory. 

2. Preliminary results. In this section we gather some terminology 
and results from [2] and [3] which we shall need to prove our com
parison theorems. 

Let T be a positive real number and let R denote the real line. Let 
j[t, x, y) be a real valued function defined and continuous on 
[0, T] X R2. Further let A ( * ) ^ 0 be continuous on [0, T] and let 
T = min0<t<T(£ — &(t))- We consider the nonlinear delay differential 

equation 

(2.1) *"(*) = f(t, x(t), x(t - A(*))), O^t^T, 

together with the boundary conditions 

(2.2) *(*) = *(*), T ^ t ^ O , 

(2.3) x(T) = A, 

where <p(t) is a continuous real valued function with domain [r, 0] 
and A is a real number. 

A function oit) É C [ T , T ] fi C2[0, T] is called a lower solution of 
(2.1)-(2.3)incase 

2.4 
a(T)^A, 



SECOND ORDER DELAY DIFFERENTIAL EQUATIONS 461 

and 

(2.5) ol'(t)^f(t, a(t), a(t - A (*))), O g ^ r . 

A function ß(t) E C[T, T] (1 C2[0, T] is called an upper solution 
of (2.1)-(2.3) provided that 

(2.6) ß(t)^<p(t), r g ^ O , ß(T)^A, 

and 

(2.7) ß"(t) £j[t,ß(t),ß(t - A(t))), OgfSr . 

The following result is a special case of Theorem 9 of [3] ; we refer 
to this paper for a proof. 

THEOREM 2.1. Suppose fis such that 

(2.8) f(t,x,y)ììf(t,x,y), 

for all (t, x, y), (t, x, y) E [0, T] X R2 with y^y. 
Then the BVP (2.1)-(2.3) has a solution x(t) E C[r, T] (1 C2[0, T] 

if and only if there exists a lower solution a(t) and an upper solution 
ß(t) of (2.1)-(2.3) such that a(t)^ß(t), O S ^ g T . Furthermore if 
such lower and upper solutions exist, then a solution x(t) qf(2.1)-(2.3) 
exists such that a(t) g x(t) S ß(t), T g ^ T . 

3. Linear second order equations. Consider now the linear equa
tion 

(3.1) xT(t) + p(t)x(t) + q(t)x(t - A(t)) = 0, 

where p(t), q(t) and A(£)§£ 0 are continuous on the interval [0, B). 
Let ô = inf0Se<ß(^ — A(£)). Further assume that <p(t) is continuous on 
(8, 0] . Using standard methods (see [6, pp. 19-25] ) one may establish 
the following existence-uniqueness theorem. 

THEOREM 3.1. There exists a unique solution x(t) E C(8, B) 
H C2[0, B) of '(2.1) satisfying the initial conditions (1.4), (1.5) provided 
that 

sup \<p(t)\ < » . 
8<eso 

We shall now establish comparison theorems between solutions of 
certain initial value problems of (1.1) and (1.2). The following addi
tional assumptions are made: 

(3.2) M(t) è m(t), N(t) ^ n(t) ^ 0. 

In what follows we shall denote by X(t, <p, r) the solution of (1.1), 
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satisfying the initial conditions (1.4), (1.5) and by x(t, <p, r) the cor
responding solution of (1.2). 

THEOREM 3.2. Assume that (p(t) does not change sign on (8, 0] and 
that <p(0) ^ 0. Further let there exist r such that X(t, <p, r) has no 
zeros on [0, B). Then x(t, 0, s) has no zeros on (0, B) for any 
sŒR(s/0). 

PROOF. It follows from the linearity and homogeneity of equation 
(1.2) and from Theorem 3.1 that 

x(t9 0, s) = s x(t, 0,1). 

Assuming that the conclusion of the theorem does not hold we con
clude that there exists tx > 0 such that x(tÌ9 0, 1) = 0 and x(t9 0, 1) > 0 
for 0 < t < tY. Since (1.1) is also linear and homogeneous we may 
assume without loss of generality that <p(t) = 0, 8 < t ^ 0, and hence 
that X(t, ^ , r ) > 0 , 0 S K B , for some r. 

Let 

u = min X{t, <p, r) and v = max x(t, 0,1) 

and w = min {1, ulv}. The solution wx(t, 0, 1) = x(t, 0, w) of (1.2) 
has the property that 

x(t, 0, w) = w • v = (ulv) - v = u 

and hence we conclude that 

x(t, 0, w) ^ X(t, <p,r), 0 ^ t ^ h. 

Consider now equation (1.2) together with the boundary conditions 

(3.3) x(t) = 0, 8 < t g 0, x(*i) = X(tÌ9 (p, r). 

It follows from (3.2) that x(t, 0, w) is a lower solution and X(t, (p, r) is 
an upper solution of this BVP; by Theorem 2.1 we may therefore con
clude that (1.2) has a solution x(t) satisfying (3.3) and 

x{t, 0, w) ^ x(t) g X(t, (p, r). 

But x(t) must be of the form x(t, 0, s) for some s ^ w, contradicting that 
x(t,)= X(tl9<p,r). 

THEOREM 3.3. Assume that <p(t) does not change sign on (8, 0] and 
that <p(0) = 0. Further let there exist r ^ 0 (r > 0 if <p(t) ^ 0, 
r < 0 if <p(t) = 0) such that X(t, (p, r) has no zeros on (0, B). Then 
x(t, 0, s) has no zeros on (0, B)for any s G R, s ^ 0. 

PROOF. The proof is similar to the proof of the previous theorem. 
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COROLLARY 3.4. Assume that 

x(tu 0,1) = 0, x(t, 0,1) > 0, 0 < t < h < B. 

Then X(t, <p, r) must vanish on (0, ti] provided that <p(t) does not 
change sign on (6, 0] and 

(i) <p(0) ^ 0, r arbitrary, or 
(ii) <p(0) = 0andr>0if<p(t) g 0, or r < 0if<p(t) ^ 0. 

The following examples illustrate that if the condition that cp does 
not change sign in Theorem 3.2 or the condition that <p and r have the 
same sign in Theorem 3.3 are dropped these results no longer remain 
valid. 

Consider the equation 

(3.4) x"(*) + x(t) + x(t - (t + 1)) = 0. 

Let <p(t) be a function continuous on [ — 1, 0] with <p( — 1) = — 1, 
^>(0) = 1. The general solution corresponding to this initial function 
(p is given by 

x(t) = Ci sin t + 1. 

Choosing Ci such that \Ci\ < 1, x(t) never vanishes on [0, oo ). The 
general solution of (3.4) with respect to any continuous nonpositive 
function (p(t) on [ — 1, 0] with <p(— 1) = — 1, <p(0) = 0, is given by 

x(t) = Ci sin t — cos t H- 1. 

For any d ^ 0, x(t) > 0, 0 < t ^ n. On the other hand, every 
solution of 

x"(t) + x(t) = 0 

has at least one zero on [0, n]. 
Consider next the equation 

(3.5) x"(t) + x(t) + tx(t- (t + 1)) = 0. 

Let <p(t) be a nonnegative continuous initial function defined on 
[ - 1 , 0] with 

The solution x(t) corresponding to the initial function <p(t) with 
x'(Q) = r is given by 

x(t) = (1 + r) sin t + cos t — t. 

This function has a zero on [0, IT] for any r, it, however, never 
vanishes on [TT, 2TT] , for r = 0, for example. We may therefore con-
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elude that the comparison theorems obtained are best possible for 
general delays A(t) (compare (3.5) with x" + x = 0). 

For delay differential equations without previous history (i.e., 
t — A(t) = 0 for £ ^ 0 ) the initial set I reduces to the singleton set 
{0}. Corollary 3.4 in this case yields a comparison between the first 
zeros of all solutions of (1.2) and (1.7). We have: 

COROLLARY 3.5. Assume that t — A(t) ^ Ofor t^O and that 

x(*i,0, l) = 0, x(t,0, l ) > 0 , 0<t<ti<B. 

Then X(t, <p, r) must have a zero on (0, h] for any choice of the con
stants (p and r. 

Again one may construct examples to show that even in this case 
it is not possible, in general, to conclude that X(t, <p, r) (<p ^ 0 or 
r ^ 0) must have a zero between the second and third zero of 
x(t, 0,1). 

One property that distinguishes homogeneous linear second order 
ordinary differential equations from homogeneous linear second order 
delay differential equations is the fact that solutions of the latter may 
have multiple zeros. It is the case (see [6, Chapter II, §2] ) that if 
Xi(t) and x2(t) are linearly independent solutions on [0, t{\ of (3.1) 
such that 

x(t-*(t)) = x(0Mt-Ht)), t- A(t)^0, 
(3.6) 

<p(0) = 1, 

then there exists a homogeneous linear second order ordinary dif
ferential equation defined for 0 ^ t ^ 11 whose splution space has 
X\(t) and x2(£) as a basis if and only if solutions of (3.1) satisfying (3.6) 
have no multiple zeros on [0, ti]. 

It is therefore of interest to obtain criteria for the absence of multiple 
zeros. 

As a corollary to our comparison theorems we obtain the following 
result. 

COROLLARY 3.6. Consider equation (3.1) with qf(*)= 0. Let <p(t) be 
a nonnegative initial function with <p(0) = 1. Let x(t) be a nontrivial 
solution of (3.1) satisfying (3.6). Then the first zero of x(t) on (0, B) 
cannot be a multiple zero. 

PROOF. It follows from Theorem 3.1 that if x(t) is a nontrivial solu
tion of (3.1), (3.6) having a zero on (0, B) then it must have a smallest 
zero on (0, B). Assume that x(t), a nontrivial solution of (3.1), (3.6), is 
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such that it has a multiple zero as its first zero, say at t0 > 0. And 
assume for defìniteness that x(t) > 0, t G (0, t0). Consider the BVP 

y" + p(t)y = 0, 
(3.7) * ^ * 

y(e) = x(€), y(t0) = 0, 0 < e < t0. 

One easily verifies that x(i) is an upper solution and that y = 0 is a 
lower solution of (3.7). Hence by Theorem 2.1 there exists a solution 
y(t) of (3.7) such that 0 â y(t) ^ x(£), €^t^t0. This, however, 
implies that y(t0) = 0 = j / '(£0)> contradicting the fact that y(e) > 0. 

In a similar manner one may verify the following result. 

COROLLARY 3.7. Let x(t) be a solution of (3.1) with q(t) ^ 0, cor
responding to a nonnegative (nonpositive) initial function <p(t) with 
<p(0) = 0, such that x'(0+) > 0 ( < 0). Then the first zero of x(t) on 
(0, B) cannot be a multiple zero. 

Again one may construct examples to illustrate that the second zero 
of such a solution may be a multiple zero, and in case (p(t) changes 
sign on the initial set, the first zero may be of multiplicity greater than 
one. 

4. Uniqueness of solution of BVP's. In this section we shall employ 
the results developed in §3 to obtain uniqueness of solutions of the 
BVP (2.1)-(2.3). The results obtained may be considered to be exten
sions of some of the uniqueness theorems obtained by Willett [7] 
and Bailey, Shampine and Waltman [1] for ordinary differential 
equations. 

We shall make the following assumption concerning initial value 
problems of the nonlinear second order equation (2.1) 

For every real number r there exists a unique solu-
(4.1) tion of (2.1), (2.2) such that x ' (0+) = r, defined on 

some right hand neighborhood of 0. 

We furthermore assume that there exist continuous functions p(t) 
and q(t) defined on [0, T] with q(t) g 0 and that 

(4.2) fit, x, y) - fit, % y) ^ -p(t)(x - x) - q(t)(y - y) 

for any x, x, y, y G R with x § x, y i? y. 

THEOREM 4.1. Assume that (4.1) and (4.2) hold. Further let the 
solution x(t, 0, r), r ^ 0, of 

(4.3) x" + p(t)x(t) + q(t)x(t - A(t)) = 0, 

(4.4) x = 0 , f ^ 0 , 
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(4.5) x'(0+) = r, 

be such that x(t, 0, r) ^ 0, /or 0 < t^ T. Then the BVP (2.1)-(2.3) 
has at most one solution. 

PROOF. Assume (2.1)-(2.3) has two solutions, say x(t) and y(t). 
By (3.1) there exists tu 0 < tx ^ T, such that 

*(*i) = y(h\ x(t) > y(t), 0<t<ti. 

Let v(t) = x(t) — y(t); this function then has the following properties: 
(i) v(t) = 0, t ^ 0. 
(ii) t?(*i) = 0, v(t) > 0, 0 < t < ti. 
(iii) v"(t) + p(t)t>(t) + <jr(t)ü(t - A(t)) ^ 0 , 0 g ^ ^ . 
Let r > 0 be chosen large enough such that the solution x(t, 0, r) 

of (4.3)-(4.5) satisfies 

x(t, 0, r) ^ v(t), O^t^h. 

By hypothesis x(£1? 0, r) > 0 and therefore x(£, 0, r) is an upper solu
tion of the BVP 

x"{t) + p(t)x(t) + q(t)x(t - A(f)) = 0, 
(4.6) 

x(*) = 0, £ S 0, xfa) = 0. 

By (iii) v(t) is a lower solution of (4.6). Therefore by Theorem 2.1 
there exists a solution z(t) of (4.6) such that 

v(t) S z(t) g x(t, 0, r). 

Since u(£) is positive on (0, t{) it follows that z(t) is a nontrivial 
solution of (4.3)-(4.5) having a zero at t = £i. This contradiction 
establishes the theorem. 

This theorem is particularly useful for estimating intervals of 
uniqueness for BVP's for differential difference equations (or delay 
equations with A(i) = 8> 0) for in these cases the initial value 
problem (4.3)-(4.5) may be solved by the methods of steps (see [6, 
Chapter I, §5] ). 

REMARK. If we assume that A(£) > 0, 0 g t g T, then the previous 
theorem remains valid without assuming hypothesis (4.1). 
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