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SPECTRAL REPRESENTATION OF SELFADJOINT 
DILATIONS OF SYMMETRIC OPERATORS WITH 

PIECEWISE C2 SPECTRAL FUNCTIONS 

RICHARD C . GILBERTl 

ABSTRACT. Let A be a simple closed symmetric operator with 
deficiency index (1, 1) in a Hilbert space # . Suppose A has a 
selfadjoint extension AQ in «0 for which p0(t) = (Eo(0go, go) is 
piecewise C2, where Eoto is the spectral function of Ao, and 
go is an element in a deficiency subspace of A. Under this 
assumption, a spectral representation is given for all the self-
adjoint extensions and minimal selfadjoint dilations of A. The 
procedure used is a generalization of that used when A is a 
Sturm-Liouville operator on [0, <» ) in the limit point case at 
oo. The spectral representation clarifies the nature of the 
spectrum and spectral multiplicity of A+. 

1. Introduction. Let A be a simple closed symmetric operator 
with deficiency index (1, 1) in the Hilbert space $. If A+ is a self
adjoint operator in a Hilbert space <£)+ such that $ C $ + and A C A+, 
then A+ is called a selfadjoint extension of A wherever $ = ^ + , and A+ 

is called a selfadjoint dilation whenever $ is properly contained 
in # + . A+ is called a minimal selfadjoint dilation if A+ is not reduced 
by any nontrivial subspace of $ + © *£>. It is the purpose of this 
article to present an expansion theorem (Theorem 1) and a spectral 
representation theorem (Theorem 2) for the selfadjoint extensions 
and dilations of A. These theorems are analogs of the eigenfunction 
expansion and spectral representation theorems which can be 
proved when A is a Sturm-Liouville differential operator on [0, oo ) 
in the limit point case at <*>. (See, for example, Straus [7].) In the 
spectral representation theorem a spectral matrix corresponding 
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to A+ is provided. The spectral representation theorem clarifies the 
nature of the spectrum and spectral multiplicity of A+. It includes 
the representations given in [2], [3], [4]. 

Let \o = £o + 7̂o be a complex number with positive 
imaginary part, and let g0 be an element of norm 1 in the deficiency 
subspace of A corresponding to X0- We shall assume in this article 
that A has a selfadjoint extension AQ with spectral function E0(t) 
for which po(t) = (E0(t)go, go) is twice continuously differentiate 
everywhere except possibly at a countable set {tk} with no finite limit 
points and with p0 [ tk] ^ 0 for each fc, where p0 [ h] is the jump in 
po at tk. While this is a stringent condition on A, it should be kept in 
mind that a spectral representation is being obtained for all the self-
adjoint extensions and minimal selfadjoint dilations of A. There exist 
symmetric operators A which have this property and which do not 
come from Sturm-Liouville operators in the manner indicated by 
Straus [7]. The purpose of the condition is to enable one to provide an 
analog of a basis for the solutions of Af = kf. Since A is assumed to 
be simple, Ao is unitarily equivalent to the multiplication operator 
i n L ? o ( - 0 0

?
0 0 ) . 

If A+ is a selfadjoint dilation of A, then the operator R(A) defined by 
the equation R(k)f = PR+(k)f, / £ $ , is called a generalized resolvent 
of A (corresponding to A+). Here R+(k) is the resolvent of A+, and 
F is the operator of orthogonal projection of $ + onto $ , If A+ is a 
selfadjoint extension, then R(k) = R+(A) is called a resolvent of A 
(corresponding to A+). The operator E(t) defined by the equation 
E(t)f= PE+(t)f,fŒ$9 is called a spectral function of A (correspond
ing to A+). The Stieltjes inversion formula states that E(t) andß(\ ) are 
related by the equation 

([(l/2){E+03) + E+(ß + 0)} - (l/2){E+(a) + E+(a+ 0)}]f,h) 

= ([(112){E(ß) + E(ß + 0)} - (l/2){E(a) + E(a + 0)}]f, h) 

= (%<)-' lim \" [(R(k)f,h)-(R(K)f,h)]dt 

for all / , h E $ and all a, ß. Here k = è + vr). We obtain our ex
pansion theorem by evaluating the limit on the right for / , ft in a 
certain linear manifold S which is dense in $ . In the case that 
A is a Sturm-Liouville operator this can be done by expressing 
(R(k)f, h) in terms of an analytic basis for the solutions of the 
equation Af = kf and in terms of a fundamental solution constructed 
by use of this basis. See Straus [7]. In our case, suppose that Ro(k) 
is the resolvent of Ao. Let g(\) = go + (k - k0) RoMgo, QM 
= i Im k0 -h (k - Ao) (go, g(X)). It is known that R(k) = Ro(k) 
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- [0(A) 4- Q(k)] ~l( -, g(X))g(X) where 0(X) is analytic for I m À ^ O 
and has nonnegative imaginary part in the upper half-plane. 
0(X) depends on A+, but flo(X), Ç(X) and g(X) depend only on AQ. 
There is a one-one correspondence between the operators A+ 

and the functions 0(X). We define two linear functionals D{(f; X) and 
D2(f; X) on S by means of the equations 

£>i(f;X) = {f, go) + (X - Xo) j ^ Re[(t - X)-1] F(t)dMt), 

D2(f;X)= (X~Xo) f lm[(t - \)^]F(t)dp0(t)llmQ(k). 
J — 00 

Here F(£) is the transform o f / i n L^(— oo ? oo ). Then, D ^ - X) can be 
defined continuously across the real axis except at the £&, and D2(f;k) 
can be defined continuously across the real axis on the set E2 of all t for 
which po f(t) > 0. Di(f; X) and D2(f; X) depend only on Ao and not on 
A+; they take the place of the analytic basis for the solutions of Af= kf 
in the case of a Sturm-Liouville operator, and the bilinear functional 
-^( / i k)[D2(h; X)] " i Im Q(k) takes the place of the fundamental solu
tion. (Here [ ] ~ denotes complex conjugate.) (R(k)f, h) = (flo(X)/, h) 
~~ [ #(X) + Ç(X)]_1(f, g(X))(g(X), h) can be expressed in terms of 
Dx{f, X), D2(f; X) and D2(f; X) [ D2(h; X)] " i Im Ç(X), and the limit on the 
right in the Stieltjes inversion formula can then be evaluated much 
as is done by Straus [7]. One must proceed somewhat differently, 
however, when the interval (a, ß) contains points tk at which p 0 [ h] ^ 0 
and points t at which p0 '(i) = 0. (The latter set of points is designated 
by E3.) 

The expansion theorem involves two nondecreasing functions pu(è) 
and Tn(f), defined for all real £, and a nondecreasing matrix function 
,P*(f): = (p£t)(£))u,v = i defined for £ in Ik = (tk, tk+l) for each k. 
These functions are determined by means of the formulas 

P n ( £ ) = pti(*) = Hm (lAr) I ' * n W * , 

T „ ( £ ) = lim (1/TT) P Im^1 1(X)da, 

p§2(£) = lim (I/77) f Im ®22(\)da, 
T7-*0 •> «x 

/&(£) = P&i(£) = lim (lAr) f* Im<I>12(a+M,n)dCT, 

where X = a + irj, Ö* is an arbitrary point in J*, {rjn} is a sequence 
approaching zero, and 

* n ( x ) = - [«(x) + ç(x)]-', 
*i2(X) = *2i(A) = i*u(X) Im Ç ( \ ) , 
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<Ï>22(X) = - *n(X) [Im Q(k)]2 + i Im Q(k), 

* n ( A ) = -{QäM[0(k) + Qc(k)] - 1}*„(X) , 

<?d(X)= [M7o + (X - Xo)] S po[tk] 
k 

+ (k- Xo)(X - Xo)S(ifc - X)-1 po[fei , 

Ç c (X)=Ç(X)-Çd (X) . 
Let ^ i consist of all sequences {a(tk)}k for which ^ K^)|2T11[ffc] 

< oo. Let $ 2 = ^kLlk(E2 H Ifc), where L2
pk(E2 fì J*) consists of all 

vector functions [Fi(f), F2(£)] whose components are measurable 
with respect to <Tk(£) = P n ( £ ) + P22(f) o n F 2 fi Zfc and such that 

f X Fu(f)[F^)]-dpU^)<^. 

Let *g>3 consist of all functions F(f) for which JE3 |F(f) |2d^n(f)< oo. 
Then the spectral representation theorem says that A+, if it is minimal, 
is unitarily equivalent to the multiplication operator in $ ! © $ 2 © $3-

2. Auxiliary propositions. In the following lemmas, X = £ + irj is 
a number in the complex plane, Re stands for real part, Im stands for 
imaginary part, and P stands for the Cauchy principal value of an 
integral. 

LEMMA 1. Suppose that p(t) is a bounded nondecieasing function 
defined on the whole real axis and that F(t) is a bounded continuously 
dijferentiable function also defined on the whole real axis. Then the 
Cauchy integral J**» (t — k)~lF(t)dp(t) is defined and analytic for k 
in the upper and lower halves of the complex plane. 

(I) If p(t) is twice continuously differentiable on the open interval 
{a, b), the following statements are true: 

r Re[(t-k)-*]F(t)dp(t) 
J — oo 

(LA) 

= n . (t-t)l(t-Ç)2 + r,2]-lF( t)dp(t) 

can be extended continuously across (a, b), and 

(1) lim P Re[(t-k)-l]F(t)dp(t)-F T (t - €)- ' F(t)dp(t) 

for Ç in (a, b). The convergence is uniform on any bounded closed 
subinterval [aÌ7 b{] of(a,b); indeed, 
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| { " . Re[(t-X)-']F(t)4p(«) 

(2) r , 

uniformly for ai^-ij^ìbiasr)—>0±. 

j " Im[(t-X)-']F(t)«W0 
(LB) 

= \X_r)[(t-tr + 7f]-iF(t)dp(t) 

can be extended continuously from the upper (lower) half plane down 
(up) to (a, b), and 

lim n Im[(* - X)"1] F(t)dp(t) = ±7TF({)P'(€) 

(3) 
for f in (a, b). 

The convergence is uniform on any bounded closed subinterval 
[ai,bi]of(a}b);indeedy 

| J" Im[(t-k)-i]F(t)dp(t)-[±*F(Ç)p'm]\ 
(4) 

= 0(h?|log 
uniformly for ai ^ £ ^ fox asij—» 0 ± . 

(I.C) ^ ( f - X ) " ' ^ « ) ^ ) 

can &e extended continuously from the upper (lower) half plane down 
(up) to (a, b), and 

lim n (t-k)-lF(t)dp(t) 
T ? _ > 0 ± J - oo 

( 5 ) = P / " ^ (t - è)->F{t)dp{t) ±inF(Ç)p'{Ç). 

The convergence is uniform on any bounded closed subinterval of 
(a, b), and the order of approach is the same as in (4). 

(II) / / p(t) is constant on (a, b) or if F(t) = 0 on (a, b), then 
/.Tao (t — k)~lF(t)dp(t) is analytic across (a, b), and estimates (2) 
and (4) are valid for any bounded closed subinterval [aÌ9 b{\ of 
(a, b) with the order of approach now being 0( \q\) in both cases. 
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PROOF. Without loss of generality we can assume that F(t) is real; 
for, if F(t) is not real, we separate F(t) into real and imaginary parts 
and deal with the parts separately. 

PROOF OF (LA). For £ t in (a, b), let g{t) = F(t)p'(t), let fit t) 
= [g(*)-g(«] ( * " « - ' if tft and let fit t)=g'(t)if t = t 
Then, fit;, t) is a continuous function of (f, t) for t t in (a, b), and 
g(0 = gtf) + (t - W . 0 for 11 in (a, b). 

Suppose that OQ, b0 are two arbitrary but fixed numbers in (a, b) 
and that a < a0 < t; < b0 < b. Then, 

P f (t- S)-iF(t)dp(t) = r (t - ÇyiF(t)dp(t) 
J — oo J _ oo 

+ r (t-t)-iF(t)dp(t) 
Jb0 

( 6 ) + g ( ! ) l o g | ( f o o - ! ) ( a o - £ ) - 1 | 

From this equation it is evident that P S-°° (t — t;)~lF(t)dp(t) is a 
continuous function of £ for a < t; < b. If \ = £ + k), a0 < t; < b0y 

W>o, 

J_^Re[(*-A)->]F(0dp(*) 

= f^ (t - f)[(* - £)2 + i>2] -'F(i)*(t) 

(7) + f" (*-f)[( t-f)2+iJ2]- 'F(t)*(t) 

+ (l/2)g(^) log {[(foo - É)2 + T,*] [(oo - t? + V2] - ' } 

From equations (6) and (7) we see that if a < fo < & and if 77 ^ 0, 

lim I" Re[(^-X)-1]F(^)dp(^) = P f °° (t-(0)'
lF(t)dp(t) > 

From this equation and the continuity of P JT« (t — ^)~lF(t)dp(t) it 
follows that J*„ReKt — A.)-1] Fit)dpit) can be extended continuously 
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across (a, b) and that equation (1) is true. Suppose that [aÌ9 bv] is a 
bounded closed subinterval of (a, b) and that OQ, b0 are chosen so 
that a < ao < ai < bi < bo < b. From equations (6) and (7) we see 
that 

r Re[(t - i ± in)-1] F(t)dp(t) - P r (t- t)-lF(t)dp(t) 
J — 00 J — 00 

= - *>2 /"'_ [(* - t)2 + *>2] -'(* - €)-lF(t)dp(t) 

-v2\l [(t-^ + v2]^(t-^riF(t)dp(t) 

+ (l/2)g(£) log { [ 1 + r?l(b0 - m [1 + T,2/(«O - m - ' } 

-*>2 f" [(t- fP + n2]-!/&»)*• 

If we assume that Û^ ^ £ ê foi and estimate each of the terms on the 
right in the above equation, we see that estimate (2).is correct. 

PROOF OF (LB). If A = £ + vq, r) > 0, and if a < do < £ < bo < by 

then 

\lm Im [(t-K)-1] F(t)dp(t) 

= v f ^ [(t-ty- + vz]-iF(t)dp(t) 

(8) +T, f" [(t-W+rf]-iF(t)dp(t) 
J b0 

+ g(f){tan-' [r,-i(b0 - t)] + tan- ' [ i , - ' ( f - a0)] } 

From this expression we see that if À = £ H- nj, 17 > 0, and if 
a < £0 < b, then 

lim r Im[(*-X)-i]F(*)d^(*) = îrF(fo)p'(fo). 

Since 7rF(f)p'(f) is continuous for a < £ < b, we see that 
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Jüoo Im[(f — k)~l]F(t)dp(t) can be extended continuously from the 
upper half-plane down to the real axis, and equation (3) is valid with 
the plus signs. Suppose now that a < ao < aY ^ f ^ bx < b0 < b. 
Then it can be seen from equation (8) that estimate (4) is valid with 
the plus sign. Since 

J"_ Im[(t-\)->]F(t)dp(t) = - \la lm[(t-k)-i]F(t)dp(t), 

it follows immediately that (3) and (4) are also valid with the minus 
sign. 

(I.C) follows immediately from (LA) and (LB). Statement (II) is 
not difficult to check. This completes the proof of Lemma 1. 

The following lemma is a generalization of Lemma 5 of Straus [7]. 

LEMMA 2. Suppose that *P(X) = ^(£ + iq) is continuous for 
a ^ £ g b,0 ^ |T?| ^ n09 and that \9(i + in) - ¥ (£) | = 0(\q\ log M"1) 
uniformly for a^Ç^b as \n\ —>0. Suppose also that 4>(A) is 
continuous in the upper half-plane and that J% |4>(f + h))\di 
= 0(log r\~l ) as 7) —> 0 4-. Suppose, finally, that for a fixed point OQ the 

family of functions p(£, n) = (lAr) /a0 Im <J>(a + ÌT7)CAT is of uniformly 
bounded variation in £ for £ in [a, b] and for 0 < n ^ %, and £ha£ 
p(f ) = limr?_>0+ p(£ 17) exists for each £in [a, b]. TTien, 

lim (27TÌ)"1 f [ * ( f + n?)*(f+ n ? ) - [ * ( f + n ? ) ] - * ( f - i i ? ) ] d f 

= f *(*)*(£). 
J a 

REMARK 1. Suppose {r)n} is a decreasing sequence tending to zero. 
The lemma is still true if in the last supposition and the conclusion 
we replace 17 by J)n and lim^^o by limn_*oo. 

REMARK 2. The lemma is still true if we replace the last supposition 
by the supposition that Im 4>(A) = 0 in the upper half-plane and 
lim7?^o+ p(i, n) exists for each £ in [a, b]. (In this case it follows that 
p(£, 17) is of uniformly bounded variation in £ for £ in [a, b] and for 
0 < i) g no.) 

REMARK 3. The lemma is true if we replace all the assumptions 
about 0 ( A ) by the assumption that 4>(A) is analytic in the upper half-
plane with nonnegative imaginary part. (For the original assumptions 
then follow. See Straus [7, Lemmas 3 and 4].) 

REMARK 4. The lemma is true if we assume that4>(A.) is analytic in the 
upper half-plane with nonnegative imaginary part and ty(A) is analytic 
in a neighborhood of [ a, b]. 



SPECTRAL REPRESENTATION OF SELFADJOINT DILATIONS 4 3 9 

PROOF OF LEMMA 2. We can write 

J a 

= f v(Qdtp(Zn) + f W* + *n) - *(*)]*(* + *»)^ 
Ja Jo 

- r M * - *n) - *(£)] [*<* + in)] -ài . 
Ja 

Now, 

I W me +*n)- *(£)]*(£ + « | 

SK^log t , - ' ) f |*(£ + *, ) |# 
J a 

gKTj(logTj-')2 a s T ) - > 0 + . 

Hence, 

lim I* [¥tf + in)- ¥ ( £ ) ] * ( £ + *»»)# = 0. 

Similarly, 

lim \b [V(S- in) - V(Q] [*(f + ii|)]- df = 0 . 
7j-*0 + J a 

On the other hand, 

lim \b*(t)dtp(t,v) = P*(€)dp(Q , 
r)-*0+ Ja Ja 

by the Helly-Bray theorem. (See Widder [8, Chapter I, Theorem 
16.4].) This completes the proof of Lemma 2. 

In the following lemmas we shall assume that A is a simple closed 
symmetric operator with deficiency index (1, 1) in the Hilbert space $ . 
Let Xo = £o + w?o be a complex number with positive imaginary part, 
and let g0 be an element of norm 1 in the deficiency subspace of A 
corresponding to Xo- Suppose that Ao is a selfadjoint extension of A 
in $ . Since A is simple, g0 is a generating element for A. Hence, Ao 
is unitarily equivalent to the multiplication operator in L%(— °°, °° ), 
where p0(t) = (E0(t)g0, g0) and E0(t) is the spectral function of AQ. 
E0(t) is assumed to be continuous on the left. 

Throughout this paper we shall assume that po(t) is twice contin
uously differentiate everywhere except possibly at a countable set 
{tk} with no finite limit points. We also assume that at each t^, 
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po[tk] j£ 0, where po[tk] denotes the jump in po at tk. We shall 
assume that the {tk} are indexed in order of growth. If there is a first 
one, it is denoted by t\> and in this case we take to — — °°. If there is 
a last tky say tny then we take £n + 1 = + » . If p0 G C2 everywhere, we 
take t0 = — °°, £1 = + °°. We shall denote the set of finite numbers 
tk by £ i , and we shall denote the interval (tk,tk+l) by Ik. 

Let E2 be the set of points for which p 0 E: C2 and p0 ' > 0. Then, 
E2 = Unjm» where {/m} is a collection of disjoint open intervals. 
Let E3 be the set of zeros of po'. We note that Ei U E2 U E3 

= ( - 0 0 , 0 0 ) . 
Let S be the set of elements / £ $ whose transforms F(£) in 

L P O ( ~ ° ° ' °°) a r e s u c h t h a t F W == Fc(t) + Ed(f), where (i) Fc(f) is a 
continuously differentiable function which vanishes outside a compact 
subset of E2, and (ii) Fd{i) is zero except possibly at a finite number of 
the tk. We note that S is a linear manifold which is dense in $ . We 
note also that Fc(t) is zero outside a finite number of the /m , say 
Jmx, * * ', /m > a n d that these intervals contain closed bounded intervals 
[öm,> fcmj, ' # ', [flm , ^m ] such that Fc(t) is zero outside these 
intervals. 

Suppose that flo(A) is the resolvent of Ao. Let g(A) = g0 

+ (A - À0)fìoOOgo, and let Ç(A) = i I m X 0 + ( A - AoXgo, g(X)). As 
is indicated in [2], for Im A ^ 0 the resolvent or generalized resolvent 
R(k) of A corresponding to a selfadjoint extension or dilation A+ of A 
has the form 

(9) R(X) = Ro(X) - [ 0(A) + Ç(X)] - ' ( S g(Ä))g(X), 

where 0(k) is an analytic function for Im A. 7̂  0 which has non-
negative imaginary part in the upper half-plane, and 0(A) = [0(A)] ~. 
Q(k) is analytic for Im A ^ 0, has positive imaginary part in the upper 
half-plane, and Ç(Â) = [Q(k)] ~. We note that Im Q(k) = - Im Q(k). 

F o r / G S and I m X ^ O we define Ci(f; A) and C2(f; A) by means of 
the following equations: 

(10) Cl(f;k)=(f,go) + (k-ko) H Re[(t-\)->]F(t)dp0(t), 
J — 00 

(11) C2(/}X) = (X - Xo) } " _ Im [(i - X)-'] F(t)*o(t) • 

We note that under the above definitions we have that 

(12) (f,g(\))=Cl(f;k) + iC2(f;\), 

(13) (g(X), h) = [ CY(h; X)] - - i [ C2(/»; X)] - for/, h GS. 
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The following lemmas are immediate consequences of Lemma 1. 

LEMMA 3. Iff, h E. S, 

(flo(A)/, h) = J"^ (t - À)"1 Fc(t)[Hc(t)] -dpo(t) 

(14) 1 , 
+ S(fe - x ) - 1 Fd(fc)[Hd(fc)]"Po[fc] -

fc 

TTie / rs£ tónn on the right is analytic across any open interval on 
which Fc(t)[Hc(t)] ~ = 0 (in particular, in a neighborhood of each 
tk), it can be extended continuously down (up) to the real axis every
where, and 

lim I" (t-k)-iFc(t)[Hc(t)]-dpo(t) 

(15) 

= P jl (t - £ )" ' Fe(t)[Hc(t)] -dp0(t) ± mFc(t)[Hc(€)] -po'(€), 

where we interpret Fc(tk)[Hc(tk)]~p0
f(tk) to be zero. The order of 

approach on any bounded interval is 0(\q\ log fi?!-1) uniformly in £. 
(Ro(k)f h) can be extended continuously down (up) to the real axis 
everywhere except at the tk, and 

lim (Ro(X)/,/i) = P I" (t- f)- i Fc(t)[Hc(t)] -dpo(t) 

(16) ±*rF c(f)[H c(f)]-po'(f) 

+ E C * - £ ) - 1 Fd(fc)[Hd(fc)] -po[fc] • 

The order of approach on any bounded closed interval not containing 
a tk is 0(\q\ log \q\~l) uniformly in f. 

LEMMA 4. / / /GS, 

Citë*) = [(/>&>) + (A - Âo) / " .ReU* - ^)_ 1] Fc(0*o(*)] 

(17) 
+ (X - Xo) S R e [ ( ^ - X)-1]Fd(^)po[^] . 

77iß / rs£ term on the right can be extended continuously across the 
real axis everywhere, and 
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Hm+ [ if, go) + (X - Xo) \"_ Re [ (t - X)~ '] Fc(t)dp0(t)] 

(18) " " ° ± 

= (f, go) + (f - Xo)P J ' j t - f)-1 Fc(t)dpo(t). 

The order of approach on any bounded interval is 0(\r)\) uniformly in 
£. Ci(f; X.) can be extended continuously across the real axis every
where except at the t^, and 

lim Ctf; X) = {f, go) + (€- Xo)P [ " ( * - « - ' Fc(t)dpo(t) 

(19) - ^ 
+ ( f - X o ) K f e - ^ - ' F ^ f c ^ ï f e ] . 

k 

The order of approach on any bounded closed interval not contain
ing a tk is 0(\q\) uniformly in £. 

In the remainder of the paper we let 

Ctf; Ç) = (f, go) + (£ - Xo)P f_(t- Q-iF^dpoit) 

fc 

Then, equation (19) becomes 

(20) lim C1(f;\)=Cl(f;Ç). 
T)-»0± 

LEMMA 5. ( f / £ S, 

C2(/;-X) = (X - Xo) J " Im [(t - X)-'] Fc(t)dpo(t) 

(21) - " „ 
+ (X - Xo) 2 I m [(** - *)_1] Fd(ftfc)po[tfc] • 

k 

The first term on the right can be extended continuously down (up) 
to the real axis everywhere, and 

lim (X - Xo) f " Im[(f - X)-'] Fc(t)dp0(t) 
(22) " ^ J - " 

= ±(Ç-\o}*Fc(i)p0'(Ç), 

where Fc(tk)po'(tk) is interpreted to be zero. The order of approach on 
any bounded interval is 0(\q\\og \q\~x) uniformly in £. C2(f; A) can 
be extended continuously down (up) to the real axis everywhere except 
at the tk, and 
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(23) lim C2(f; X) = ± (f - X0)7rFc(£)p0 '({) • 

The order of approach on any bounded closed interval not containing 
atkisO(\q\ log \n\~[) uniformly in £. 

LEMMA 6. IffE.S, 

(/:g(X)) = c1(/;-x) + ic2(f;A) • 

(24) = [(f,go) + (X - Xo) / " j t - k)-'Fc(t)dpo(t) ] 

+ (X - Xo) 2 ( ' * - Xj-^d^fcjpolfe] . 

TTie ^ìrs£ fórm on £/ie right is analytic across any open interval on 
which Fc(t) = 0 (in particular, in a neighborhood of each tk), it can be 
extended continuously down (up) to the real axis everywhere, and 

Hm \(f, go) + (X - Xo) f °° (t- k)-lFc(t)dp0(t) 1 

(25) = if, go) + (f - Xo)P J"_ (t - i)'lFc(t)dp0(t) 

where Fc(tk)p'(tk) is interpreted to be zero. The order of approach on 
any bounded interval is 0(\q\ log \*)\~l) uniformly in f. (f, g(X)) is 
continuous across any interval not containing a tk and in which 
Fc(t) = 0, and 

(26) l im( / ;g (X) )=C 1 ( / ; ^ ) . 

The order of approach on any bounded closed interval not containing 
a tk and in which Fc(t) = 0 is 0(\q\ log fri-1) uniformly in £. 

LEMMA 7. If h G. S, 

(g(X),fc)= [Cl(h;k)]~-i[C2(h;k)]-

(27) = [(go,/i) + (X - Xo)"J"J*" X j - ^ f l c W l - ^ o W ] 

+ (X - Xo) 2 ( f e ~ k)-l[Hd(tk)] ~po[tk] . 
k 

The first term on the right is analytic across any open interval on 
which Hc(t) = 0 (in particular, in a neighborhood of each tk), it can be 
extended continuously down (up) to the real axis everywhere, and 
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lim I" (go, h) + (k- Ko) r (t- k)-l[Hc(t)] -dpo(t) 1 
i7-»0± L J — °° J 

(28) = (go, h) + ($- Xo)P | " j t - €)-l[Hc(t)] -dpo(t) 

±*(f-AoV[H c(f)]-po'(0, 

where [ Hc(tk)] ~po '(fe) is interpreted to be zero. The order of approach 
on any bounded interval is 0(\q\ log fai-1) uniformly in £. (g(X), h) is 
continuous across any interval not containing a tk and in which 
Hc(t) = 0, and 

(29) lim (g(X),h) = [ C ^ f ) ] - . 
T?->0± 

The order of approach on any bounded closed interval not containing 
a tk and in which Hc(t) = 0 is 0(\q\ log \q\~l) uniformly in Ç. 

LEMMA 8. Let po(t) = poc(0 + pod(t) be the standard decomposition 
ofpo(t) into continuous and discrete parts. Then, Q(X) can be written 
in the form 

(30) Ç(X) = ÇC(X) + Çd(X), 

where 

(31) 

(32) 

Çc(X) = H o + (X - Xo)] j " j - dpocW 

+ (X - Xo)(X - Xo) J " J t - X)-'dp0c(t), 

Çd(X)= [njo + ( X - X O ) ] S P O [ ^ ] 

+ (X - Xo)(X - Xo) £(** - X)-V>o[fe] • 

QC(X) and Çd(X) are analytic in the upper and lower half-planes, both 
have positive imaginary part in the upper half-plane (unless one is 
identically zero), and satisfy the equations QC(X) = [QC(X)]~, 
Çd(X) = [QdM] ~. Im Çc(X) and Im Ç>(X) can be extended continuous
ly down (up) to the real axis except at the t^, and 

(33) lim Im Ç>(X) = lim ÇC(X) = ± |f - X 0 |Vo '(€) • 

The order of approach on any closed bounded interval not containing 
a tk is 0(\q\ log \r}\~l) uniformly in£. 
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LEMMA 9. Iff G S, C2Ìf; A)/Im Q(k) can be extended continuously 
across the real axis on E2, and 

(34) lim C2(f; A)/Im Ç>(A) = Fc(f )(f - k0)~
l . 

On any closed bounded subinterval of E2, the order of approach is 
0(J17| log \n\~l) uniformly in f. 

PROOF. Use Lemmas 5 and 8. 
In the remainder of the paper we shall use the notation Di(f; A) 

= C t f X), Dtf; €) = Ctf; {), D2(f; X) = C2(f; X)/Im Ç(X), D2(f; f) 
= Fc(f)(£

 — Xo)~', w h e r e / G S. Then equations (19) and (34) become 

(35) lim Dl(f;k)=Dì(f;€), 
•o-+0± 

except at the t^, 

(36) lim D2(f; A) = D2(f; {)• on E2 . 

We note that DY(f; £) and D2(/; f ) are linear functionals over S. 

LEMMA 10. Let 0(A) fee a function which is analytic in the upper 
half-plane with nonnegative imaginary part. Suppose that the matrix 
4>(A) = (<£rs(A)) and the function ^ii(A) are defined in the upper half-
plane as follows: 

(37) * n ( X ) = - [ « ( X ) + Ç ( X ) ] - ' ; 

(38) *12(X) = *ai(X) = «»U(X) Im Ç(X); 

(39) <&22(X) = -<D11(X)[Im Ç>(X)]2 + J im <?(X); 

(40) * U (A) = - {(?d(X)[ö(X) + ÇC(X)] - 1J4»U(X). 

77ien the following statements (in which we take A = a + nj) are 
frae: 

(I) *n(X) is analytic and has positive imaginary part in the upper 
half-plane. pu(€) = lim„_^o+(l/7r) Jo lmQ>n(k)cb existe /or aH f. 
For any interval [a, b], J^ r*ii(A)|dr = 0(log n - 1 ) asT?—»0+. 

(II) ^n(A) is analytic and has positive imaginary part in the upper 
half-plane. rn(£) = limr)_0+ (Ihr) JQ Imtyn(A)dbr exists for all Ç. 
For any interval [a, b], J"% l ^ i^A))^ = 0(log t]~l) asr)-^0+. 

(III) 4>22(A) is continuous and Im<I>22(A) ^ 0 in the upper half-plane. 
If [a, b] C Ik for some k, ft (*22(A)jdt7 = Oflogir1) as T/-H>0+. 

If we put p22(£, 17) = (HIT) Sîk Im<I>22(o' + h))dar, where afc is an 
arbitrary point in /*, then p22(£) = l i m ^ o + p l à ^ v) exists for all £ 
in Ik. 
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(IV) 4>i2(A) is continuous and Im4>(X) ^ 0 in the upper half-plane. 
If [a, b] C Ik for some k, J* |012(X)|db- = C^log^"1) as T ^ 0 + . 
If we put pi2(£> v) = (I/77") faklTn&i2(p+ iy])du, where ak is an 
arbitrary point in Ik and if [a, b] C Ik, then there exists an r)0 such 
that p 12(£, 7)) is of uniformly bounded variation in £ for £ in [a, b] 
and for 0 < TJ ̂  %. There exists a decreasing sequence {r)n} approach
ing zero such that p 12(f) = P2i(f) = limn-*«pi2(£ Vn) exists for 
each f in Ik. 

(V) The matrix pk(£) with elements Pn(f) = pn(f), P2i(f) 
= Pi2(f)J fl^d pÌ2(f) *5 # nondecreasing function of Ç for f in 
Ik. Its elements are of bounded variation in each closed bounded 
subinterval ofIk. 

PROOF. The analyticity of <ï>n and ^ n in the upper half-plane as 
stated in (I) and (II) follows from the fact that Im Q > 0 in the upper 
half-plane. The positivity of Im<ï>n and I m ^ u follows from the 
equations 

Im<Du = [Im 6 + Im Q] \0 + Q\~2 , 

I m ^ n = [(|0 + ÇC|2 + 1) Im Qd + (|Çd|* + l ) lm(0 + Qc)] \0 + Ç|~2 . 

The remaining statements of (I) and (II) then follow from Straus [7, 
Lemmas 3 and 4]. 

Let us now prove (III). The continuity of 4>22 in the upper half-
plane is obvious. If [a, b] C Ik for some fc, Im Q(k) is continuous 
down to the real axis on [a, b], by Lemma 8, and therefore 

f ifP22(k)\cb^KAb pn(k)\dr+K2 
Ja Ja 

= 0(\ogr]-1) as7/-»0+, by (I). 

To prove that p^(^) = lùn^^o+p^f, v) exists for all f in Ik, we 
note that 

pUlv) = (Un) P {- Im* u (X)[ ImÇ(X)] 2 + lmÇ(X)}d(T 
J ak 

= (-1/27TÎ) f {*n(X)[ImÇ(X)]2 - [<t>n(k)]-[lmQ$)]*}(b 
Jak 

+ (1/TT) P Im Q(k)dr . 
Jak 

From (I) and Lemma 8 it follows that we can use Lemma 2 to show 
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that the limit of the first integral on the right in the above equation 
exists as t) —» 0 + . The limit of the second integral exists by the 
continuity of Im Q(\) down to the real axis. Thus, we obtain that 
phté) = lim 7,-tf +P§2(£ v) exists for all £ in Zfc, and, in fact, 
pUt) = / 4 [Im Q(*)]2dpn(a) + (Ihr) Hk Im Q(v)dj. 

Let us now prove (IV). The continuity of <ï>12(\) in the upper half-
plane is clear. To prove that Im O ^ 0, we denote the components of 
Im<I> by buv, and observe that bn = Im4>u , bi2 = b2i = (Im Ç) 
•(Re*ii) , b22 = - ( ImOnXlm Q)2 + Im Q. Then by completing the 
square, we obtain that 

S buvxu*v = (InKDn)!*! + (Im Ç)(Re^n)[lm^n]^x2\
2 

u,v = i 

+ (ImÇ))(Imé»)[Im*11]-1 |6»+ Ç>|-2|x2 |
2 ^ 0 

for all complex numbers xlt x2. Hence, Im<ï> = 0. 
If [a, b] C Ik for some k, we have by (I) and Lemma 8 that 

f | * I 2 ( X ) | d 7 ^ K f tpu(\)\cb= 0(log7,-i) a s r , ^ 0 + . 
Ja Ja 

To prove the remainder of (IV), we consider the matrix pk(î, rj) 
= (Un) iik Im 4>(X)dr with elements denoted by p£u(£ T?). 

Since Im 4>(X) = 0, the symmetric matrix p^(f, 17) is a non-
decreasing function off for fixed 17. Hence, for f 1 < £2, 

|pÎ2(&,î?) -pl2(£l,T?)| 

^ ( l / 2 ) { [ A t i ( & , i | ) - A t i ( f i ^ ) ] + [ P Ì 2 ( ^ T ? ) - P Ì 2 ( ^ T ? ) ] } . 

Since we already know by (I) and (III) that the limit as TJ —» 0 + of 
the right side of this inequality exists, it follows that for an arbitrary 
closed bounded subinterval [a, b] of Ik and for some rjo, Pi2(£ v) 
is of uniformly bounded variation in f for £ in [a, b] and for 
0 < y) ^ 170- Further 

\p\2{a,7))\ g (l/2){|ph(a>??) - PÎi(a*,ï?)| + |p22(tf,i?) - pÎ2(ok?i?)|}, 
so that 170 can be chosen such that \pk

2(a, 7))\ is bounded by a constant 
for 0 < i) ̂  T7(). By Helly's selection theorem, then, there exists a 
nondecreasing sequence {rjn} approaching zero such that p\2(è) 
= lim^oop^f, Tin) exists for f in [a, b]. (See, for example, 
Widder [3, Chapter I, Theorem 16.3].) By means of a diagonal 
process, we can now show that there exists a decreasing sequence 
{r)n} approaching zero such that p\2(Ç) = limn_>ocp*(£i7n) exists 
for all f in lk. This proves (IV). 
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Statement (V) follows from the fact that 

* * ( & ) - ^ ( É l ) = Hm [ffi(€2,Vn) - pK(uVn)] 
n->°° 

and the fact that p^f, r}n) is a nondecreasing function of £ for 
each fixed t]n. The elements of p^(f ) are of bounded variation in 
each closed bounded subinterval of Ik because p*(£) is non-
decreasing. 

This completes the proof of Lemma 10. 

3. Spectral representation. 

THEOREM 1 (EXPANSION THEOREM). Let A be a closed symmetric 
operator with deficiency index (1, 1) in the Hilbert space $ . Suppose 
that po(t) = (Eo(t)g0ygo) is twice continuously differentiate every
where except possibly at a countable set {tk} with no finite limit 
points and with po[tk] ^ 0 for each k, where E0(t) is the spectral 
function of a selfadjoint extension of A in $, and go is an element of 
norm 1 in the deficiency subspace of A corresponding to the complex 
number X0 with I m \ 0 > 0. Let E+(t) be the spectral function of a 
selfadjoint extension or dilation A+ of A. Then, for an arbitrary 
interval [a,ß) and for arbitrary fi ftGS, 

( [ E + ( j 8 ) - E+(a)]fih) 

= S Mtk)(tk-ko)-l[Hd(tk)(tk-ko)-]]-Tn[tk] 
(41) tke[a,ß) 

+ S f i Du(f;€)[Dv(h;€)]-dpL(€), 

where pîi(£) = Pn(£) for each k, and the remaining puv(€) a?e 

defined as in Lemma 10. The integral 

j[a,ßinik ì Du<f; €) [ Dv(h; è)]-dpUt) 

is to be interpreted as the Lebesgue-Stieltjes integral 

f { i Du(f;t){Dv(h;i)]-8Ut)W{t), 

where <7*(£) = PUt)+ p$2(£), and «*,(£) = dpUt)ldrk(Ç). 

(REMARK. Lebesgue-Stieltjes integrals of the above type are dis
cussed in Dunford and Schwartz [1, XIII.5.9] and in Kac [5].) 

PROOF. If oty ß are two arbitrary real numbers, a<ß, and if/? h 
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are two arbitrary elements in $ , the Stieltjes inversion formula states 
that 

([(l/2){E+03) + E+08 + 0)} - (l/2){E+(a) + E+(a + 0)}]f, h) 

(42) 
= (ari)"1 lim f [{R{k)f, h) - (R(k)f, h)] dì, 

where À = £ + vr\. 
For fixed/, / i £ S , we shall first of all evaluate the limit on the right 

of equation (42) for the following types of intervals [ a, ß] : 
Type 1. p o G C 2 and p 0 ' > 0 in a neighborhood of [a, ß ] , (i.e., 

[a9ß]CE2). 
Type 2. p0 G C2 in a neighborhood of [a, ß], and Fc(f ) = ffc(f ) = 0 

for all f in [a,ß]. 
Type 3. [a,ß] contains one and only one tk, which is in the interior 

of [a,ß], and Fc(f) = Hc(Jt) = 0 in a neighborhood of [a,/3]. 
The rationale behind the choice of these types is this: Iff G S, then, 

as has already been noted, Fc(f ) is zero outside a finite number of 
closed bounded intervals contained in E2 (the set on which p0 G C2 

and po' > 0). Hence, if [a, ß] is any interval not having a 4 for an 
endpoint, it can be partitioned into a finite number of intervals of 
types 1, 2, 3. 

Suppose now that [a, ß] is of type 1. Using equations (9), (12), 
(13), (37), (38), (39), we can write 

(R(\)fh) = (flo(A)/,fc) - D2(f;\)[D2(h;\)]-ilmÇ(\) 

and similarly for (R(k)f h). Hence, 

f [(R(k)f,h)-(R(k)f,h)]dt 
J a 

= \" {(RO(A)/, h) - (Ro(k)f, h) - D2(f; k) [ D2(h; X)] - i Im Q(k) 

- D2(f; X) t D2(h; A)] - i Im Q(k) }<% 

+ 2 I* {Du^XJID^X)]-*^) 

- DU(£ X) [ D„(fc; x)] - [<MA)] - } # • 
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By Lemmas 3 and 9, we see that the integrand in the first integral 
on the right in the above equation is continuous down to the real 
axis on E2, and 

lim {(flo(X)/,fc) - (flo(X)/,fc) - D2(f;\)[D2(h;k)]-ilmQ(\) 

- D2(f; k)[D2(h; X)] - i Im Q(k)} = 0 . 

Hence, the limit of this integral is zero. 
From Lemmas 4, 9 and 10 it follows that we can use Lemma 2 

(and the remarks following Lemma 2) in order to evaluate the limits 
of the remaining integrals. We obtain, then, from the Stieltjes inver
sion formula that if [a, ß] is of type 1, 

([(l/2){E+08) + E+(ß + 0)} - (l/2){E+(a) + E+(a+0)}]f,h) 

(43) 2 

= Ê [ Du{f;è)[Dv(h;è)}-dpUèl where [a,ß] C Ik . 
u,v = l Ja 

We note that in the above derivation the bilinear functional 
£*2'(/} A.)[D2(/i; A)] ~i Im Q(A) takes the place of the fundamental solu
tion in the derivation of an expansion theorem for a Sturm-Liouville 
operator by Straus [7], and the linear functional DY(f; k) and D2(f; X) 
take the place of the basis for the solutions of the equation Af=Xf. 

Suppose next that [a, ß] is of type 2. Using equation (9), we write 

f [(R(k)f,h)-(R(\)f,h)]di 
J a 

= r [(RoMf,h)-(Ro$)f,h)]d€ 
J a 

+ f {(f>gW)(gW)ft)*11(x)-(/,g(x))(g(X),/i)[$11(x)]-}^. 
J a 

By Lemma 3, the limit as 17—» OH- of the first integral on the right in 
the above equation is zero. From Lemmas 6, 7, and 10 it follows that 
we can use Lemma 2 to evaluate the limit of the second integral. We 
obtain that 

lim (ari)"1 f''{(f,g(X))(g(X),Ä)*ii(X)-(f,g(X))(g(X),/.)[*11(X)]-}df 

J a 
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Since Fe(f) = HJf) = 0 and therefore D2(f; €) = D2(h; £) = 0 for £ 
in [a, ß], we can write the right side of this equation in the form of 
the right side of equation (43). Thus, we conclude that if [a, ß] is of 
type 2, equation (43) is again true. 

Suppose, finally, that [a, ß] is of type 3. In this case we write 
(R(k)f, h) = Ai(k) + A2(X)*n(A), where 

Al(k)= {(flo(A)/,/l)[Çd2(A)+l] 

- if, g(X))(g(X), h)Qd(k)} [ QAV + 1] - ' , 

A2(X) = if, g(X))(g(X), h) [ QAk) + 1] - ' . 

Using Lemmas 3, 6, 7, and 8, it can be checked that Ai(A) and A2(A) 
are both analytic in a neighborhood of [a, ß]. From Lemmas 2 and 
10 and the Stieltjes inversion formula it therefore follows that if 
[ a, ß] is of type 3, then , 

([(l/2){E+fl8) + E+(ß + 0)} - (l/2){E+(a) + E+{a+ 0)}]f,h) 

= f M()dTn(f)= (k M€)M€) 
Ja Ja 

+ \" M€)drn(€) + A2(tkyrll[tk] . 

Since 

P i i ( ^ ) = f0 [Qd2(<T)+l]-ldTU(<r) 

for all £ where [Qd2(& + 1)] ~1 is defined by continuity at the points 
tk, and since A2(f) = Dx(f; QlD^h; €)] -[Qd2(® + 1] ~l for all . £ 
where the right side is defined by continuity at the tk, 

Ja Ja 

This last integral is equal to 

because Fc(f) = Hc(f ) = 0 in a neighborhood of [a, ß]. Similar equa
tions are valid for Jf+ A2(f)dni(£). It can be checked that A2(tk) 
= Fd(tk)(tk - \o)-l[Hd(tk)(tk - Xo)"1] - . Hence, if [a, ß] is of type 
3, then 
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([(l/2){E+(j3) + E+(ß + 0)} - (l/2){E+(a) + £+(<* + 0)}]f,h) 

(44) 

+ Fd(tk)(tk - Xo)-l[Hd(tk)(tk - r*)-l]-Tn[tk] . 

Now let [a, ß] be an arbitrary interval not having a tk for an end-
point. By partitioning [a, ß] into intervals of types 1, 2, and 3 and 
using equations (43) and (44), we see that 

([(l/2){E+(j8) + E+(ß + 0)} - (l/2){E+(a) + E+(a+ 0)}]f,h) 

= E Fd(tk)(tk - ko)-l[Hd(tk)(tk - Xo)"1] -rn[tk] 
tkGia,ß\ 

(45) 2 

where the integrals are to be interpreted as Stieltjes integrals. As is 
indicated by Kac [5], pL(£) is absolutely continuous with respect to 
(T*(è) = phté) + pS2(f ). Let 8*„(f ) = dpUÏ)làjk{è). Then, if a, /3 are 
continuity points of afc(£). 

If DB(/^)[D0(M)]-£kWE) 
u,t> = l 

= fr , { i D«(f;f)[D0(fc;f)]-«0(«)dtrfc(©, 
J[a,ß]nih lu£il J 

where this last integral is a Lebesgue-Stieltjes integral. It is also 
denoted by 

J[a,ßinik U ) C = 1 

Thus, if a, ß are continuity points of o-k(Ç), (45) can be written in 
the form 

([(l/2){E+08) + E+(/3 + 0)} - (l/2){E+(a) + E+(a + 0)}]//») 

= S ^ ( i f c X t f c - M - ' l H d ^ k X t f c - ^ - M ' T i i l t f c ] 

(46) , a 

+ S L fll n( I D#f)[Dv(h; €)] -dpUt). 
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Now let a, ß be finite real numbers with a < ß. We can choose in
creasing sequences {o^} and {ßn} with the following properties: 
{otn} and {ßn} approach a and ß respectively; there is no tk in [a\, a) 
nor in [ßi9 ß); if a G h, then a„ is a continuity point of crk for each n, 
and if ß G J*, then ßn is a continuity point of ak for each n. Then by 
equation (46), 

([E+(ß)-E+(a)]f,h) 

= lim ([ (1/2) {£+(&) +E+û3„ + 0)} 
n_>oo 

- ( l /2){E+(«„) +E+(an + 0)}]f,h) 

= lim { X Fa(k)(*fc - Xo)-' [Hd(tk)(tk - X0)-'] -Tn[tk] 

+ S f È *>«(/} f ) [ D. (fc; f )] -df&>(t) } 

= S Frf(*fc)(*ik-Ao)-,[H«i(«fc)(tfc-AoH"Tii[«(t] 

+ 2 J.,, n / 2 D„(f; i)[D„(h;i)]-dpUt), 

where ![a,ß) n/^u,i>=i Du(f; Q[Dv(h; €)] ~ dp£v(£) is to be inter
preted as the Lebesgue-Stieltjes integral 

I flln { S D»(f-> flirto ©1 -*&*) W ( 3 • 

This completes the proof of Theorem 1. 
In what follows A will always denote a bounded interval of the 

form [a,ß), and A6 will denote [a,ß]. E( A) will denote E(ß) - E(a). 
We note that in view of the fact that D2(f; €) = Fc(f)(f - AO)"1 = 0 

outside E2> equation (41) can be written in the form 

(E+( A)/, h) = £ F^tfcXfc - Xo)"1 [Hd(«fc)(*fc - Xo)"1] -T„[«fc] 
a-e A 

(47) + 2 f _ S D„P)[D„(I.^)]-^) 

+ f D^-^fD^Dj-dpnd). 
J AD/v} 

Let $ ! = £T
2
n (Ex), i.e., let $ i consist of all sequences {a(tk)}k for 



454 R. C. GILBERT 

which SfcKtOl^ntfe] < ° ° . Let £ 2 = ^kL%(E2 H Ifc), where 
Ljk(E2nik) consists of all vector functions [FL(£), F2(f)] whose 
components are measurable with respect to <Jh(£) on E2 D Ik and 
such that 

(Integrals of this last type will also be written in the form 

frn S Futf)[Fp(f)]-dWSo(f). 
j £ 2 n , f c u,t> = l 

See Dunford and Schwartz [1] or Kac [5].) Let $ , 3 =L2
Pll (E3). 

Then, $ 1 ? $2> $ 3 a r e Hilbert spaces under the usual definitions of 
addition, scalar multiplication and inner product. 

THEOREM 2 (SPECTRAL REPRESENTATION). Under the hypotheses of 
Theorem 1, if A+ is a self adjoint extension of A or a minimal self-
adjoint dilation of A, then A+ is unitarily equivalent to the multi
plication operator in «£)i © $ 2 © $3 . 

PROOF. I f / G S , l e t 

Vtf; tk) = Fd(tk)(tk - Xo)-l for tkGEi; 

<p2(f; €) = [Dtf; €), D2(f; £)] fori G E2; 

<p3(f;t)=Dl(f;Ç) for { G £ 3 . 

By t a k i n g / = h in equation (47) and letting ß—»+<*>, a—»— 0° 
(recalling that A = [a,/3)), weseethat {^(/i *fe)}fc G $i,<P2(f;£) £ #2, 
^3^' f ) G #3. 

I f / G S, we define the transformation V on elements E + ( A ) / b y 
the equation 

(48) VE+( A ) / = [ {XMvtf; tk)}k,X A(i)<p2(f; €),Xa(ftp3(f; Q] , 

where XA(£) is the characteristic function of A. Then, V £ + ( A ) / 
G #1 © $ 2 © #3 , and from equation (47) it follows that ||VE+( A)/|| 
= | |E+(Ay| | . 

Let Zy consist of all elements of the form E+( A)/, where A is an 
arbitrary interval, and f is an arbitrary element in S. Since A+ is 
assumed to be minimal, the Hilbert space $+ in which A+ acts is the 
closed linear hull of Zy. (See Naimark [6].) I f / i s in the closed linear 
hull of Z1? / can be written in the form f = ^T=iE+( A r)/ r ' , where 
/ / G S , and the Ar are disjoint intervals of the form [a,/3). We define 
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V/by means of equation (48) and the equation Vf= E r = i V E + ( A r ) / / . 
Using equation (47), it can be shown that V is defined uniquely 
on the linear hull of Zx into $i © $ 2 © $3> that V is linear, and that 
V is norm-preserving, i.e., that \\Vf\\ = |[/]|. By continuity, then, V 
can be extended to all of $ + . V will be a linear, norm-preserving 
transformation on $ + into $ 1 © $ 2 © $3-

V is, in fact, on $ + onto §1 © $ 2 © $3- To prove this, suppose 
that <?(£)= [{qi(tk)}k, 92(f), 93(f)] e ^ ! © ^ 2 © ^ 3 . We shall 
prove that if 9 is perpendicular to the range of V, then q = 0 in the 
norm of $1 © $ 2 © $ 3 ; indeed, we shall show that if q is perpen
dicular to VZi, then 9 = 0. 

Suppose, then, that 9 is perpendicular to VZl5 i.e., 

(49) 

J £311 A E3 

for a l l / G S and for all A. We shall prove that 

0= EM**) Fruì'*] 
k 

2 

(50) + S f r n r 2 9*(*) [W«] -dpL(^) 
k J>k<iE2 u c = 1 

•* En 

Let us note that since AQ is unbounded and therefore either JEj or 
E2 is unbounded, we can choose a sequence { f n } , / n Ê S , such that 
Fn(t) = Ofor- n S * S n,(fn,g0) = $l„Fnc(t)dpo{t) + S*f«i(fc)po[fc] 
= 1. Then for any interval [a^/8], Di (£ ; £ ) - • 1 as n-»<» ? 

uniformly for f E [a, /3], and D2(fn; £) = 0 for £ G [a, 0] and n 
sufficiently large. 

We shall work first of all with the second integral in (49) by taking 
A C E2, and we shall show that the second integral in (50) is zero. 
Now, E2 = Utn/m, where the Jm are open intervals. Let us consider 
an arbitrary but fixed Jm, and suppose that Jm C Ik. From (49) we 
obtain that 

(51) 0 = f Ê Du(f; Q[qU€)] -dpìM 

for an a rb i t r a ry /G S and for an arbitrary interval A, where Ae C / , 
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T a k i n g / = fn in (51), we obtain 

(52) 0 = f Dl(fn;t){[q2i(€)r*îi(€)+ [922(É)r8Î2(f )}<*>*(£) 
J A 

for arbitrary A, Ac C Jm. Since [XA(f), 0] E L^(/m) and since 
[921(f)» 922(f)] £ 1-i>k(Jm), we see by taking the inner product of these 
two elements in Upk(Jm) that q2i 811 + 922 8Î2 is integrable with 
respect toor^over A. Letting n—» 00 in (52) we then obtain that 

(53) 0 = f {[ 9 a i(f)]-f i t 1(f)+ [922(f)]-8t2(l)}dT*(f) 
J A 

for arbitrary A, Ac C /m . From this equation it follows that 

(54) 0 = f F(f ){[ 9 2 I ( f ) ] -8t 1 ( f )+ [922(f)] -ÔÎ2(É)}dfc*(0 
J A 

for an arbitrary continuous function F on Jm and for arbitrary A, 
A c C / m . 

Now for an arbitrary interval A = [a, ß), Ac C / m ? let F G C 
and such that F(t) = 1 on [a, /3], F(£) = 0 outside [a1? ß i ] , where 
[«!, )8i] C / m and «! < a < 0 < fr. Let H(t) = F(£)(£ - Xo). If h 
is the element in $ whose transform in LPo( — °° ? °° ) is H, then h £ S , 
and Di(/i; f ) is continuous for all f, and D2(fo; f ) = F(f ) for all f. From 
(51) and (54) we obtain 

(55) 0 = f ( [<Mf) ] -8 2 1 ( f )+ [922(f)] -8&2(*))**(É) 
J A 

for arbitrary A, Ac C /m . 
From (53) and (55) it follows that [921(f), 922(f)] is orthogonal in 

Lpk(Jm) to all functions [X Al (f),X Az(f )], where A*c C Jm, and since the 
set of all linear combinations of such functions is dense in L2fc(/m), 
we have tiiat [921(f), 922(f)] = 0 in L2

fc(/m), i.e., 

0 = f S 92«(f) [92,(f)]-dpL(f). 

Summing up over all Jm, we obtain 

(56) 0 = 2 [ ni. S W£)[<Mf)] -4p6c(f) • 
K - u,u = l 

Equation (49) now becomes 

0 = S Fd(tk)(tk- ko)-l[qi(tk)]-Tn[tk] 

^i(/;-f)[9(f)]-*ii(f) -
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f o r a l l / E S a n d a l l A. 
Let Ik be arbitrary but fixed. Taking f=fn and A C h, we obtain 

from (57) that 

(58) 0 = f Dtf^Qlqdiyi-dpniQ forali A C / f c . 

Since SE3 \q3(€)\2dpn(i;) < °° and since A is assumed to be bounded, 
it follows that j£3fu 193(f)|4pn(f) < °°- Hence, we can let 
n —• » in (58) and obtain 

0 = f [93(f)] - * n ( £ ) for all A C / * . 

This means that q3 is perpendicular in the space l3ßn(lk Pi E3) to 
functions XA, where A C I*. Since the set of linear combinations of 
such functions is dense in L%Ut(Ik fi E3), it follows that 
0 = J^nifc 193(f)|2dpn(f)- Summing over Zc, we obtain 

(59) 0= f l93(f)l2rfpn(f). 
j £ 3 

Equation (49) can now be written 

(60) 0 = 2 F d ( ^ ) ( ^ - X o ) - 1 [ 9 i ( ^ ) ] " T n [ y 
tkGA 

for a l l / G S and all A. Let tk be arbitrary but fixed. Let F(tk) = 1, 
F(t) = 0 elsewhere. Let / be the element in $ whose transform in 
Z^0.(—oo, oo ) is / . Let A be an interval containing tk. By (60), 
0 = (tk-ko)-l[qi(tk)]-Tn[tk]. Hence, 0 = |</i(*fc)|

2Tii [**]. Sum
ming up over the tk, we obtain 

(61) o = StoiCOFnitk]. 

Equation (50) now follows from equations (56), (59), and (61). This 
completes the proof that V is on $+ onto $x © $ 2 © $ 3 . 

It is not difficult, finally, to verify that V takes the spectral function 
E+( A) of A+ into the spectral function of the multiplication operator 
in «fr © # 2 © $3 . 

This completes the proof of Theorem 2. 
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