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SPECTRAL REPRESENTATION OF SELFADJOINT
DILATIONS OF SYMMETRIC OPERATORS WITH
PIECEWISE C2 SPECTRAL FUNCTIONS

RICHARD C. GILBERT!

ABsTRACT. Let A be a simple closed symmetric operator with
deficiency index (1, 1) in a Hilbert space 9. Suppose A has a
selfadjoint extension Ag in § for which po(t) = (Eo(t)go, go) is
piecewise C2, where Eo(t) is the spectral function of Ao, and
go is an element in a deficiency subspace of A. Under this
assumption, a spectral representation is given for all the self-
adjoint extensions and minimal selfadjoint dilations of A. The
procedure used is a generalization of that used when A is a
Sturm-Liouville operator on [0, ®) in the limit point case at
o, The spectral representation clarifies the nature of the
spectrum and spectral multiplicity of A*.

1. Introduction. Let A be a simple closed symmetric operator
with deficiency index (1, 1) in the Hilbert space §. If A" is a self-
adjoint operator in a Hilbert space §* such that $C $H* and A C A*,
then A+ is called a selfadjoint extension of Awherever = $H+ and A+
is called a selfadjoint dilation whenever § is properly contained
in §+. A+ is called a minimal selfadjoint dilation if A* is not reduced
by any nontrivial subspace of $+ © . It is the purpose of this
article to present an expansion theorem (Theorem 1) and a spectral
representation theorem (Theorem 2) for the selfadjoint extensions
and dilations of A. These theorems are analogs of the eigenfunction
expansion and spectral representation theorems which can be
proved when A is a Sturm-Liouville differential operator on [0, %)
in the limit point case at ®. (See, for example, Straus [7].) In the
spectral representation theorem a spectral matrix corresponding
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to A* is provided. The spectral representation theorem clarifies the
nature of the spectrum and spectral multiplicity of A*. It includes
the representations given in [2], [3], [4].

Let A =¢& + m be a complex number with positive
imaginary part, and let gy be an element of norm 1 in the deficiency
subspace of A corresponding to Ao. We shall assume in this article
that A has a selfadjoint extension A, with spectral function Eo(t)
for which po(t) = (Eo(t)go, o) is twice continuously differentiable
everywhere except possibly at a countable set {t.} with no finite limit
points and with po[tx] 7# O for each k, where po[#] is the jump in
po at t. While this is a stringent condition on A, it should be kept in
mind that a spectral representation is being obtained for all the self-
adjoint extensions and minimal selfadjoint dilations of A. There exist
symmetric operators A which have this property and which do not
come from Sturm-Liouville operators in the manner indicated by
Straus [7]. The purpose of the condition is to enable one to provide an
analog of a basis for the solutions of Af= Af. Since A is assumed to
be simple, A is unitarily equivalent to the multiplication operator
in L%o(— 0, ),

If A* is a selfadjoint dilation of A, then the operator R(A) defined by
the equation R(\)f = PR*(\)f, f €, is called a generalized resolvent
of A (corresponding to A*). Here R*(A) is the resolvent of A*, and
P is the operator of orthogonal projection of $* onto $. If A* is a
selfadjoint extension, then R(A) = R*(A) is called a resolvent of A
(corresponding to A*). The operator E(t) defined by the equation
E(t)f = PE*(t)f, f €S, is called a spectral function of A (correspond-
ing to A*). The Stieltjes inversion formula states that E(t) and R(A) are
related by the equation

([ARHE*®) + E*B + 0)} — (I2{E*(a) + E*(a+ 0)}]f h)
= ([(L2){E@) + EB + 0)} — (112){E() + E(a + 0)}1f, h)

= (i)t tim " (RO B) ~ (RO W) d€

for all f, hE® and all o, B. Here A = £ + in. We obtain our ex-
pansion theorem by evaluating the limit on the right for f, h in a
certain linear manifold S which is dense in . In the case that
A is a Sturm-Liouville operator this can be done by expressing
(R(\)f, h) in terms of an analytic basis for the solutions of the
equation Af= Af and in terms of a fundamental solution constructed
by use of this basis. See Straus [7]. In our case, suppose that Ro(A)
is the resolvent of A, Let g(\)= go + (A — Ag) Ro(A)go, Q(A)
=i Im Ao+ (A — Xo) (g0, g()). It is known that R(A) = Ro(A)
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— [6(A) + Q)] (¢, g(X)g(\) where 6()) is analytic for Im X # 0
and has nonnegative imaginary part in the upper half-plane.
O(\) depends on A*, but Ro(A), Q(A) and g(A) depend only on A,.
There is a one-one correspondence between the operators A*
and the functions @(A). We define two linear functionals D,(f; A) and
Dy(f; ) on S by means of the equations

DifN) = (f.go) + (= Ko) [ Rel(t = X)~] Flt)dpo(t)
Dafi)= (A =Ko) [~ Im[(t = X)"'] F(e)dpo(t)Im (V).

Here F(t) is the transform of fin L2 (—, ). Then, D\(f; ) can be
defined continuously across the real axis except at the #, and Dy(f; )
can be defined continuously across the real axis on the set E, of all ¢ for
which po(t) > 0. D,(f; ) and Dy(f; A) depend only on Ap and not on
A*; they take the place of the analytic basis for the solutions of Af = Af
in the case of a Sturm-Liouville operator, and the bilinear functional
D;y(f; A) [ Da(h; X)] ~ i Im Q(A) takes the place of the fundamental solu-
tion. (Here [ ]' denotes complex conjugate.) (R(\)f, h) = (Ro(\)f, h)
= [6\) + Q)] -Uf, gl)(g , h) can be expressed in terms of

Dy(f; A), Dz(f A) and Do(f; )\)[Dg (h; X)] ~i Im Q(A), and the limit on the
right in the Stieltjes inversion formula can then be evaluated much
as is done by Straus [7]. One must proceed somewhat differently,
however, when the interval (a, B) contains points # at which po [ #] 75 0
and points ¢ at which po '(t) = 0. (The latter set of points is designated
by Ej.)

yThe expansion theorem involves two nondecreasing functions p,,(§)
and 7,,(¢), defined for all real £, and a nondecreasing matrix function
PH(E)= (phs(€))2,-1 defined for € in I = (&, tk+1) for each k.
These functions are determined by means of the formulas

pul®) = ph® = lim (1) [ @,,(\)do,
-0+ 0
@ = lim () [ Im¥,0)do,

7—-0+
p5a(€) = lim () [ Im@y3(0)do,
-0 @ ;
phaé) = phu®) = lm () [ Im@uue + in)do,

where A = o + im, a; is an arbitrary point in I, {n,} is a sequence
approaching zero, and

@, (A\)=— [6A) + Q)]
®5(\) =D2i(\) = i Py (A) Im Q(N)
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D2o(\)= — @1, (M) [Tm Q(N)]? + i Im Q(A)
Y1) = = {QuN)[6A) + QM) — 1} @1(n),
Qa(N)= [ino + (A = 2] Z po[ ]
+ (0= Ao)h = 20) Xt = M) polt]
Q)= Q) = Qulh) .

Let , consist of all sequences {a(t)}x for which Y« |a(ti)[> 711 [#]
< . Let § = Yul3(Es N L), where L2, (E; N Ii) consists of all
vector functions [F;(£), Fy(§)] whose components are measurable
with respect to ok(€) = p11(€) + p5a(§) on E; N I and such that

[ 3 FOIR) dabue) < =

u=1

Let §; consist of all functions F(§) for which [, |F(€)[2dp;,(§) < .
Then the spectral representation theorem says that A*, if it is minimal,
is unitarily equivalent to the multiplication operatorin §; @ $. ® Hs.

2. Auxiliary propositions. In the following lemmas, A = & + in is
a number in the complex plane, Re stands for real part, Im stands for
imaginary part, and P stands for the Cauchy principal value of an
integral.

Lemma 1. Suppose that p(t) is a bounded nondecreasing function
defined on the whole real axis and that F(t) is a bounded continuously
differentiable function also defined on the whole real axis. Then the
Cauchy integral [=« (t — \)~'F(t)dp(t) is defined and analytic for A
in the upper and lower halves of the complex plane.

(I) If p(t) is twice continuously differentiable on the open interval
(a, b), the following statements are true:

|7 Rel(t = N1 Flt)do(t
(LA)

= |7 =l - &2+ w1 Fodp(t)

can be extended continuously across (a, b), and

%

(1) lim Re[(t — A)~'] F(t)dp(t) — Pj (t — &)~ F(t)dp(2)

n-0x J — %

for € in (a, b). The convergence is uniform on any bounded closed
subinterval [a,, b\] of (a, b); indeed,
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| |7, Rete—n-1F0dee
@ .
—p[ . =& F@det) |= O]

uniformly for a; = é=b, asn—>0 £.

[ mie =01t
(LB)

= ["_ale— £ + w1 Fo)dpt

can be extended continuously from the upper (lower) half-plane down
(up)to(a, b), and

o

lim {7 Tm{(e = N F()dp(t) = £aF @)’ €)
®) for €in (a, b).

The convergence is uniform on any bounded closed subinterval
[a1, b)] of (a, b); indeed,

[[7 e = n-1F0de0 - (2rFE@p @)
= O(fnllog |~")

uniformly fora; = § = byasn—> 0 *.

(4)

(LC) |7 =1 Fodat)

can be extended continuously from the upper (lower) half-plane down
(up) to (a, b), and

lim [ (¢ =2 Flt)dp(t
5 B w
® =P [ (1= & F(0)dplt) £inF(E)p" (€).

The convergence is uniform on any bounded closed subinterval of
(a, b), and the order of approach is the same as in (4).

(II) If p(t) is constant on (a, b) or if F(t)=0 on (a, b), then
IZ« (t = N)"'F(t)dp(t) is analytic across (a, b), and estimates (2)
and (4) are valid for any bounded closed subinterval [a,, b)) of
(a, b) with the order of approach now being O([n|) in both cases.
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Proor. Without loss of generality we can assume that F(t) is real;
for, if F(t) is not real, we separate F(t) into real and imaginary parts
and deal with the parts separately.

Proor oF (L.A). For &, t in (a, b), let g(t) = F(t)p'(¢), let fi€, t)
= [gt) — g@)1@t— &' if t#¢ and let fl€, t)=g'(t)if t=¢&.
Then, f(§, t) is a continuous function of (¢, ¢) for &, ¢ in (@, b), and
g(t) = 2@ + (t — EE O for &, tin (a, b)

Suppose that ag, by are two arbitrary but fixed numbers in (a, b)
and thata < a9 < € < by < b. Then,

P (= O Fde) = [ (t— O F(dplt)

+ ], = O Fodp(t)
&) log |(bo — €)(ap — )7
by
+ j flE, t)t
From this equation it is evident that P [ . (t — €)"'F(t)dp(t) is a

continuous function of £ for a< é < b. If A =&+ in, ay < € < by,
M| >0,

Jf Re[(t — \)~'] F(t)dp(t)
= [* - o1 -2+ Feda(t)

(@) + [ = L= €7 + w1 E()dplr)
+ (112)g(€) log {[(bo = &7 + 7] [(a0 ~ 6 + 7] '}

+j ﬂgtdt—nj £2 + m2] ~ €, Hdt.

From equations (6) and (7) we see that if a < § < b and if n # 0,

)

lim [*_ Re[(t—N)"1F(tda(t) =P [ (t = &) 1 F(t)dpl).
A6y -

From this equation and the continuity of P [ = (t — €)= 'F(t)dp(t) it
follows that [ . Re[(¢ — A)~!'] F(t)dp(t) can be extended continuously
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across (a, b) and that equation (1) is true. Suppose that [a,, b;] is a
bounded closed subinterval of (a, b) and that ay, by are chosen so

that a < a9 < a; < by < by < b. From equations (6) and (7) we see
that

[7. Relt=— &= m)~1F@do(e) = P [~ (= & F(odplt)
== [ 1= €7 + w1t = O Fdpl)
= [, L= &+ (e = 7 FOdelt)
+ (12)g(6) log {1+ wl(bo — £71 [1+ wllao — £71 '}

—w [ L= €2 + v fiE e,

If we assume that a; = £ = b, and estimate each of the terms on the
right in the above equation, we see that estimate (2) is correct.

Proor oF (I.B). fA=¢&+im, n>0,andifa<ay<é<by<b,
then

7, 1m 1 = 01 F)dat)
= [ (6= &2+ Fdp(t)

®) ta [0 1= 82+ ) FOdp(t)
+ g@){tan~"[n~(bo — €)] + tan~! [n'(€ — a0)]}

+1,J (=6 — €2+ 2] A& t)dt .

From this expression we see that if A=§+ #m, >0, and if
a< & < b, then

©

lim Im [(¢t — A)~'] F(t)dp(t) = wF(€o)p’ (o) -

Ay S
Since wF(€)p'(€) is continuous for a< &< b, we see that
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JZ« Im[(t — X\)"!] F(t)dp(t) can be extended continuously from the
upper half-plane down to the real axis, and equation (3) is valid with
the plus signs. Suppose now that a <ay<a; =€£=b; < by <b.
Then it can be seen from equation (8) that estimate (4) is valid with
the plus sign. Since

|7, i =D F@0dp(e) = = [~ Iml(t = N1 Fodos),

it follows immediately that (3) and (4) are also valid with the minus
sign.

(I.C) follows immediately from (L.A) and (I.B). Statement (II) is
not difficult to check. This completes the proof of Lemma 1.

The following lemma is a generalization of Lemma 5 of Straus [7].

LemMa 2. Suppose that W(\) =W¥(§ + m) 13 continuous for
a=¢=Db,0= |n| = no,and that [¥ (€ + in) — ¥(£)] = O(m]|log m|~1)
uniformly for a=€é=Db as |n|—0. Suppose also that ®(A) is
continuous in the upper half-plane and that [l |®(& + in)|dE
= O(logm~"') asm— 0 +. Suppose, ﬁnally, that for a fixed point ay the
family of functions p(¢, m) = (1/m) S e Im ®(@ + in)do 13 of uniformly
bounded variation in € for & in [a, b] and for 0 < n = n, and that
p(€) = lim, o p(£, ) exists for each € in [a, b]. Then,

lim (i) [ (O + W@ + in) = (O + )]~ ¥(E — im)]df

Remark 1. Suppose {n,} is a decreasing sequence tending to zero.
The lemma is still true if in the last supposition and the conclusion
we replace 1 by 1, and lim, o by lim,_, «.

ReMAgrk 2. The lemma is still true if we replace the last supposition
by the supposition that In®(\)= 0 in the upper half-plane and
lim o+ p(€, m) exists for each € in [a, b]. (In this case it follows that
p(£, m) is of uniformly bounded variation in € for £ in [a, b] and for
0<n=mno)

ReMark 3. The lemma is true if we replace all the assumptions
about ®(A) by the assumption that ®(\) is analytic in the upper half-
plane with nonnegative imaginary part. (For the original assumptions
then follow. See Straus [7, Lemmas 3 and 4].)

RemMark 4. The lemma is true if we assume that ®()) is analytic in the
upper half-plane with nonnegative imaginary part and () is analytic
in a neighborhood of [a, b] .
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Proor oF LEMMa 2. We can write
[* (@€ + (e + i) — (@ + im)]~W (€ ~ in))dt
= [ wodpem+ [ (¥E+ m) —VOL0E + mde

= [} 1w — i) - w@) 10 + i) -dt

Now,
|/ " (Y€ + i) — WEND(E + i)
Kn(logn! J |®(€ + in)|dé
= Kn(logn=!)2 asn—0+.
Hence, .
lim j [W(E + i) — W(E)] D (£ + i)dE = 0.
Similarly,
lim [* [W(E— in) = W(E) [ + )]~ dE = 0.
n—-0+ Ja
On the other hand,
lim [ ¥(€)dep(gm) = | V(E)dolé) ,
n-0+Ja a

by the Helly-Bray theorem. (See Widder [8, Chapter I, Theorem
16.4].) This completes the proof of Lemma 2.

In the following lemmas we shall assume that A is a simple closed
symmetric operator with deficiency index (1, 1) in the Hilbert space §.
Let Ao = §o + o be a complex number with positive imaginary part,
and let go be an element of norm 1 in the deficiency subspace of A
corlespondmg to Xo. Suppose that A, is a selfadjoint extension of A
in §. Since A is simple, gy is a generating element for A. Hence, Ag
is unitarily equivalent to the multiplication operator in L (— o, ),
where po(t) = (Eo(t)go, 20) and Eo(t) is the spectral function of A,.
E(¢) is assumed to be continuous on the left.

Throughout this paper we shall assume that po(t) is twice contin-
uously differentiable everywhere except possibly at a countable set
{ts} with no finite limit points. We also assume that at each t,
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poltx] # 0, where po[t] denotes the jump in po at t. We shall
assume that the {t} are indexed in order of growth. If there is a first
one, it is denoted by ¢, and in this case we take tp = —oo. If there is
a last &, say t,, then we take t,,, = +». If py € C2 everywhere, we
take tg = — o, t, = + . We shall denote the set of finite numbers
ti by E,, and we shall denote the interval (&, t+1) by Ix.

Let E, be the set of points for which po € C2 and po’ > 0. Then,
Ey = UpJm, where {J.} is a collection of disjoint open intervals.
Let E; be the set of zeros of py’. We note that E; U E; U Ej
= (—o, ™)

Let S be the set of elements f& $ whose transforms F(t) in
L2 (—, ) are such that F(t) = F.(t) + F4(t), where (i) F,(t) is a
continuously differentiable function which vanishes outside a compact
subset of Ey, and (ii) F4(t) is zero except possibly at a finite number of
the #,. We note that S is a linear manifold which is dense in §. We
note also that F,(t) is zero outside a finite number of the J,, say

Jm> ** *> Jm,» and that these intervals contain closed bounded intervals
[@m,> Dm,], * 5 [@m,, b,,,”] such that F,(t) is zero outside these
intervals.

Suppose that Rg(A) is the resolvent of Ay Let gA)= go
+ (A — Xo)Ro(A)go, and let Q) =i Im Ao + (A — Ao)(go, g()). As
is indicated in [2], for Im A # 0 the resolvent or generalized resolvent
R(N) of A corresponding to a selfadjoint extension or dilation A* of A
has the form

9) R(A) = Bo(\) — [6(0) + Q)] (-, gh)g() ,

where 6(\) is an analytic function for ImA # 0 which has non-
negative imaginary part in the upper half-plane, and A) = [6(\)] .
Q(r) is analytic for Im A # 0, has positive imaginary part in the upper
half-plane, and QA) = [Q(A)] —. We note that Im Q(\) = — Im Q(A).

For f € S and Im A # 0 we define C,(f; ) and Cy(f; A) by means of
the following equations:

(10)  Ci(fN = (Fgo) + A =TKo) [ Re [(t = N1 Flt)dpo(t),

©

1) G =0=%) [T Im [t =N T F(Odpa(t).

We note that under the above definitions we have that

(12) (f, gW) = Ci(fiN) + iCa(fin),
(13)  (g), k) = [Ci(B;N)]~ = i[Ca(h;X)] = forffhES.



SPECTRAL REPRESENTATION OF SELFADJOINT DILATIONS 441

The following lemmas are immediate consequences of Lemma 1.

Lemma 3. Iff,h €S,

(Ro)f, )= [~ (6 = N1 Ful) [H(8)] ~dpo(t)

(14)
+ Xt — N7 Fa(t) [Ha(te)] ~polte] -

k
The first term on the right is analytic across any open interval on
which Fy(t)[H.(t)] - =0 (in particular, in a neighborhood of each
tx), it can be extended continuously down (up) to the real axis every-
where, and

lim [~ (¢ = N1 F() [Ho()] ~dpo(?)

-0+ J —

(15)
=P f:(t — &) Fo(t) [Ho()] ~dpo(t) = imFo(§)[Ho(£)] ~po”(£) ,

where we interpret Fo(t)[ Ho(tk)] ~po’(tk) to be zero. The order of
approach on any bounded interval is O(p|log m|~!) uniformly in &.
(Ro(\)f, h) can be extended continuously down (up) to the real axis
everywhere except at the t;, and

lim (Ro(\)f.h) = P j " (= & E(O[HA(0] ~dpo(?)

(16) + inF (&) [ Ho(€)] ~po’ (£)
+ Dt — €)' Fa(te) [Ha(te)] ~polti] -
k

The order of approach on any bounded closed interval not containing
a ty is O(m|log m|~") uniformly in §.

Lemma 4. If fE S,
Cilfin) = [(hgo) + A =Ro) |~ Re[(t = 2] Fult)dpo()]

(17)
+ (A = Xo) DX Re[(tx = A)~ '] Fa(te)po[t] -
%

The first term on the right can be extended continuously across the
real axis everywhere, and
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tim [ (£0) +0 =%o) [~ Rel(t= 2" Fult)dpot)]

n—-0+

(18) .
= (hgo) + € = %o [~ _(t— &' Fult)dpo(t).
The order of approach on any bounded interval is O(In|) uniformly in

& Cy(f; M) can be extended continuously across the real axis every-
where except at the t, and

lim C(fi\) =(f g0) + (€ = Ro)P|_ (t = &) Fult)dpalt)
19) " _
o +(€ = o) kE(tk — &) 'Falte)po[ti] -

The order of approach on any bounded closed interval not contain-
ing a t is O(In|) uniformly in €.

In the remainder of the paper we let

Ci(fi &)= (fgo) + (6 —Ro)P |
+ (£ — ) ;(tk — &)~ 'Fa(ti)po[t] -

" (t = O 'Ft)dpo(t)

©

Then, equation (19) becomes
(20) lim C\(f;A) = C\(f; §).
-0+

LEMMA 5. If fES,
Calfih) = (= Ko) |~ Im [(¢ = \)=1] Fu(t)dpo(t)

(21) _
+ (A= Xo) X Im [(t — N)~'] Fa(ti)po[t] -
k
The first term on the right can be extended continuously down (up)
to the real axis everywhere, and

lim (x = Xo) [~ Im[(t = A)~'] F.(t)dpof)
-0+ -

(22) X
= (& — No)rFe(€)po’ (),

where F(t)po' (k) is interpreted to be zero. The order of approach on
any bounded interval is O(|log ;|~") uniformly in &. Cy(f; A) can
be extended continuously down (up) to the real axis everywhere except
at the t;, and
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(23) lim Co(fiA) = = (€ — Xo)mF(€)po’(§) -

-0

The order of approach on any bounded closed interval not containing
a tx is O(n| log m|~!) uniformly in €.

LemMa 6. If fE S,
(£ 8X)) = Ci(fi A) + iCa(fiA) -

(24) = [Fe0+a=%a) [ ¢ = 0 "Futt)dpo) |
+ (A= Xo) Xt — A)"'Falti)po[t] -
k

The first term on the right is analytic across any open interval on
which F,(t) = 0 (in particular, in a neighborhood of each 1), it can be
extended continuously down (up) to the real axis everywhere, and

lim [(g0) + & =Ro) [~ (¢ = N Fultdou) |

n-0+

(25) = (fgo) + E—XP [ _( F.(t)dpo(t)

* i(§ = Moy Fo(§)po ' (£) »

where F (ty)p'(tx) is interpreted to be zero. The order of approach on
any bounded interval is O(fn|log m|=') uniformly in & (f, gi\)) is
continuous across any interval not containing a tx and in which
F.(t)= 0, and

(26) Tim (£ g) = Ci(f: ).

The order of approach on any bounded closed interval not containing
a tx and in which F(t) = 0 is O(fn| log fp|~!) uniformly in €.
LemMma 7. If h €S,

(g), h) = [Ci(h; \)]~ — i[ Ca(h; N)] -
(@) = [(eo )+ 0 =20) [ 6 = 0" [H() ~dpo(t) ]
+ (A = Xo) %‘,(tk = A7 [Ha(t)] ~polt] -
The first term on the right is analytic across any open interval on

which H,(t) = 0 (in particular, in a neighborhood of each t), it can be
extended continuously down (up) to the real axis everywhere, and
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lim [ (go.h) + (= ro) | (6= 0 [HLO) ~dpo®) |

n-0=x

(28) = (g0, 1) + (€ = P [ (¢ = &)~ [H(0)] ~dpo(t)

* (& — No)w [Ho(£)] ~po ' (€),

where [ Ho(tk)] ~po ' (tk) is interpreted to be zero. The order of approach
on any bounded interval is O(m|log m|~') uniformly in . (g(\), h) is
continuous across any interval not containing a t and in which
H.(t)= 0, and

(29) lim (g(A), h) = [Cy(h; §)] ~.
n—-0%

The order of approach on any bounded closed interval not containing
a t and in which H(t) = 0is O(|log m|~') uniformly in &.

LemMma 8. Let po(t) = poc(t) + poa(t) be the standard decomposition
of po(t) into continuous and discrete parts. Then, Q(\) can be written
in the form

(30) QM) = Q) + Qa(r),

where

Q) = [0+ (= Ao)) [ 1 dpudt)
(31)
+ =2 =Ko) [ (6= N dpocl),
Qa(N) = [imo + (XA — Xo)] Dpolt]
(32) N
+ ()\ — Ao)()\ - )\0) ;(tk - )\)_Ipo[tk] .

Qc(\) and Qq(A) are analytic in the upper and lower half-planes, both
have positive imaginary part in the upper half-plane (unless one is
identically zero), and satisfy the equations Q.\)= [Q.\)] ",
Qa(x) = [Qa(A)]~. Im Q.(A) and Im Q(A) can be extended continuous-
ly down (up) to the real axis except at the t;, and

(33) lim Im Q\) = lim Q.\) = %[ — Ao*mpo ' (§) .
-0+ -0+

The order of approach on any closed bounded interval not containing

a ty is O(fn| log ;|=") uniformly in §.
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- Lemma 9. IffE€ S, Co(f; A)YIm Q(A) can be extended continuously
across the real axis on E,, and

(34) 5i_1:)1+C2(ﬂ M/Im Q(A) = F(€)(§ — ro)7".

On any closed bounded subinterval of E,, the order of approach is
O(I|log |~') uniformly in €.

Proor. Use Lemmas 5 and 8.
In the remainder of the paper we shall use the notation D,(f; A)

= Ci(f: A), Di(f; €) = C\(f; €), Do(f; \) = Co(f; N)/Im Q(A), Da(f; €)
= F¢(€)(€ — No)~!, where f € S. Then equations (19) and (34) become

(35) nl_igLDl(ﬁ’ A) = D\(f;§),

except at the ¢,
(36) l_ig] Dy(f; ) = Do(f; €) onE,.
N *

We note that D,(f; €) and Ds(f; €) are linear functionals over S.

Lemma 10. Let 6(A) be a function which is analytic in the upper
half-plane with nonnegative imaginary part. Suppose that the matrix
®(\) = (®s(A)) and the function ¥, ,(A) are defined in the upper half-
plane as follows:

(37) @A) = — [60) + Q)]

(38) ®15(A) = @21 (A) = i®1,(A) Im Q(A);

(39) <1>22<x) = —®;,(0)[Im Q)] 2 + i Im Q(A);
(40) T = = {QaN)[60) + Q(N)] — 1)@1,(A) .

Then the followmg statements (in which we take A = o + i) are
true:

(I) ®11(A) is analytic and has posztwe imaginary part in the upper
half-plane. p,,(§) = lim, o, (1/7) j'o Im®,,(\)do exists for all &
For any interval [a, b], jb [®1i(A\)|dr = O(log n=') asp—0+.

(IT) ¥, ,(A) is analytic and has posztwe imaginary part in the upper
half-plane. 7,,(€) = lim, o (1/m) fo ImW¥ ) (\)do exists for all €.
For any interval [a, b], J2 [, (\)|dr = O(logn™!) asn—>0+.

(III) @q5(A) is continuous and Im ®ge(A) = 0 in the upper half-plane.
If [a, b] C Ik for some k, [° [®g(A)|dr = O(logn~!) as n—0+.
If we put pk (& )= (Ur) [5 Im®y(o + in)do, where ay is an
arbitrary point in I, then pf(§) = lim,o.p5(€, M) exists for all &
in Ik.
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(IV) ®,5(A) is continuous and Im ®(A) = 0 in the upper half-plane.
If [a, b] C Ik for some k, J2 @10\ = O(logm=!) as n—>0+.
If we put pfh(€ )= (Un) fak Im® 50 + in)do, where a; is an
arbztrary poznt in Iy and if [a, b] C I, then there exists an ny such
that p5(€, m) lS of uniformly bounded variation in € for £ in [a, b]
and for 0 < m = mo. There exists a decreasing sequence {n,} approach-
ing zero such that pty (&) = pfi(€) = lim,.«pl(€, m,) exists for
each € in I,.

(V) The matrix pk(§) with elements plkl (&) = p11($), pgkl(tf)
= pho(€), and pha(€) is a nondecreasing function of & for & in
Ix. Its elements are of bounded variation in each closed bounded
subinterval of Ix.

Proor. The analyticity of ®;, and ¥,; in the upper half-plane as
stated in (I) and (II) follows from the fact that Im Q > 0 in the upper
half-plane. The positivity of Im®,;; and ImV¥,, follows from the
equations

Im®,, = [Im 6 + Im Q] [0 + Q|2,
ImW¥y = [(|6+Qcf + 1)Im Q4 +(|Quaf + 1)Im(6 + Q)] [0 + Q2

The remaining statements of (I) and (II) then follow from Straus (7,
Lemmas 3 and 4] .

Let us now prove (III). The continuity of ®y, in the upper half-
plane is obvious. If [a, b] C I for some k, Im Q(A) is continuous
down to the real axis on [a, b], by Lemma 8, and therefore

b b
[ utld =k [ @u0id + K

= O(logn™') asm—0+, by(I). -
To prove that phy(€) = lim,o+p52(§, ) exists for all € in I, we
note that

phal€,m) = (1) [ {=1m®:,(0)[1m Q)P + Im QW) }dr

= (- 1/2mf @, (00 [Im Q]2 — [@,(\)] [Im Q)] 2

+ (i) | ; Im Q(\)do

From (I) and Lemma 8§ it follows that we can use Lemma 2 to show
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that the limit of the first integral on the right in the above equation
exists as n— 0 +. The limit of the second integral exists by the
continuity of Im Q(A\) down to the real axis. Thus, we obtain that
p52(6) = lim, 04+ p5a(§, m) exists for all € in I, and, in fact,
phal€) =I5, [Im Qo)2dpy1(0) + (Ufr) J§, Im Qio)do
Let us now prove (IV). The contmulty of ®5(A ) in the upper half-
plane is clear. To prove that Im® = 0, we denote the components of
Im® by by, and observe that b;; = Im®,,, by = by; = (Im Q)
‘(Re®y), byy = — (Im®y;)(Im Q)% + Im Q. Then by completing the
square, we obtain that

2
2 b.wx,ﬁtv = (ImCI)”)lxl + (Im Q)(Red)“)[lm@u]"xglz

u,v=1
+ (Im Q)(Im 6)[Im ®,,] |6 + Q] 2|x: 2= 0

for all complex numbers x;, x. Hence, Imn® = 0.
If [a, b] C I for some k, we have by (1) and Lemma 8 that

K [®12(\)|do = K J’: [®,;(\)|do = O(logm=!) asn—0+.

To prove the remainder of (IV), we consider the matrix pk(§, n)
= (lm) [§ Im®A)dor with elements denoted by pk (¢, =)
Since Im®(\)= 0, the symmetric matrix p*X& =) is a non-
decreasing function of € for fixedn. Hence, for §; < &,

lofa(£2,m) — pta(€1,m)]
= (2){[pf1(82m) — pti(€1,m)] + [pBa(€2,m) — pha(é1,m)] }-

Since we already know by (I) and (III) that the limit as n— 0 + of
the right side of this inequality exists, it follows that for an arbitrary
closed bounded subinterval [a, b] of Iy and for some mo, pka(€, M)
is of uniformly bounded variation in ¢ for £ in [a, b] and for
0 < 1n = no. Further

fola, )| = (12){lpf1(a,m) — phi(ax,m)| + |pSa(a,m) — plala. )|},

so that 79 can be chosen such that |pf.(a, n)| is bounded by a constant
for 0 <m=mo. By Helly’s selection theorem, then, there exists a
nondecreasing sequence {n,} approaching zero such that pks()
= lim,_,» p*(§, Mn) exists for & in [a, b]. (See, for example,
Widder [3, Chapter I, Theorem 16.3].) By means of a diagonal
process, we can now show that there exists a decreasing sequence
{n.} approaching zero such that plz(f)— lim, ,«p*(§ m,) exists
for all £in I,. This proves (IV).
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Statement (V) follows from the fact that
pr(&2) — pF(61) = "IEE [p*(€é2,mn) — Pk(fl,‘fln)]

and the fact that p(, 7,) is a nondecreasing function of ¢ for
each fixed %,. The elements of pk(£) are of bounded variation in
each closed bounded subinterval of I because p¥(€) is non-
decreasing.

This completes the proof of Lemma 10.

3. Spectral representation.

TueoreM 1 (ExpansioNn THeorem). Let A be a closed symmetric
operator with deficiency index (1, 1) in the Hilbert space . Suppose
that po(t) = (Eo(t)go, o) is twice continuously differentiable every-
where except possibly at a countable set {t;} with no finite limit
points and with po[ t] 75 0 for each k, where Ey(t) is the spectral
function of a selfadjoint extension of A in &, and gy is an element of
norm 1 in the deficiency subspace of A corresponding to the complex
number Ny with ImAo > 0. Let E*(t) be the spectral function of a
selfadjoint extension or dilation A* of A. Then, for an arbitrary
interval [a, B) and for arbitrary f,h € S,

([E*(B) — E*(a)lf. h)

= 2 Fa(te)(te — Mo) ™[ Ha(ti)(tx — ho)™'] ~711 [ %]
(41) t Ela,B)

S [ S DU EID ) dele)

where pk\(€) = p11(€) for each k, and the remaining pk,(€) are
defined as in Lemma 10. The integral

f{a,ﬁ)mk 2 D (f f D,(h; f dp,’jv(f)

uv=1

is to be interpreted as the Lebesgue-Stieltjes integral

J’[a,B)mk { i D,(f; &) [ Dy(h; £)]-8%,(¢) }d,.k(g)

where  a%(§) = p(€)+ p52(§), and 8,(é) = dpk.(£)ldo*(§).

(REMARK. Lebesgue-Stieltjes integrals of the above type are dis-
cussed in Dunford and Schwartz [1, XIIL.5.9] and in Kac [5].)
Proor. If @, B are two arbitrary real numbers, a <, and if f, h
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are two arbitrary elements in §), the Stieltjes inversion formula states
that

([(UR{E*(B) + E*(8 + 0)} — (I2){E*(a) + E*(a+ O)}If, )
(42) A
= (i) lim |7 ((ROF h) — (RS, b)) e,

where A = € + in.

For fixed f, h € S, we shall first of all evaluate the limit on the right
of equation (42) for the following types of intervals [e, 8] :

Type 1. po € C? and py’ > 0 in a neighborhood of [a, B8], (ie.,
(@8] C Ey).

Type 2. po € C? in a neighborhood of [a, B], and F(§) = H.(§) = 0
forall £ in [e,8].

Type 3. [a, B] contains one and only one , which is in the interior
of [a,B], and F(§) = H,(€) = 0 in a neighborhood of [a, B].

The rationale behind the choice of these types is this: If f € S, then,
as has already been noted, F.(§) is zero outside a finite number of
closed bounded intervals contained in E, (the set on which py € C2
and po' > 0). Hence, if [a, B] is any interval not having a # for an
endpoint, it can be partitioned into a finite number of intervals of
types 1,2, 3.

Suppose now that [a, B] is of type 1. Using equations (9), (12),
(13), (37), (38), (39), we can write

(RN)f, h) = (Ro(MV)f, h') — Dy(f; A) [ Da(h; A)] i Im Q(A)

2
+ > Du(f; N[ Duo(h; M)] “®uo(A) ,

u,v=1

and similarly for (R(\)f, h). Hence,

[* 1Rs By = (ROOS B g

= |7 {BalNf: ) = (RolROf, ) = Dalf NID(hs X))~ i Tm Q)
— Dy(f; N) [ Do(h; \)] ~ i Im Q(\) }d€

2, (8 -
+ 3 [ DUENID ) @uih)
- u(ﬁ X) [ Do(h; )\)] B [q)uv()\)] - }CE .
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By Lemmas 3 and 9, we see that the integrand in the first integral
on the right in the above equation is continuous down to the real
axis on E,, and

771_igl+ {(Ro(\)f, h) = (Ro(N)f, h) — D (f; \)[ Da(h; X)] ~ i Im Q(A)

— Dy N)[Do(h:A)] ~ iIm Q) } = 0.

Hence, the limit of this integral is zero.

From Lemmas 4, 9 and 10 it follows that we can use Lemma 2
(and the remarks following Lemma 2) in order to evaluate the limits
of the remaining integrals. We obtain, then, from the Stieltjes inver-
sion formula that if [a, 8] is of type 1,

([2H{E*B) + E*(B + 0)} — (II2){E* (o) + E*(a + 0)}]f, h)
2

= 2 jf Du(f; g)[Dv(h, f)] —dpfv(f), where [a, Bl C I.

u,v=1

(43)

We note that in the above derivation the bilinear functional
Ds(f; A)[Ds(h; X)] ~i Im Q(A) takes the place of the fundamental solu-
tion in the derlvatlon of an expansion theorem for a Sturm-Liouville
operator by Straus [7], and the linear functional D(f; A) and Dy(f; A)
take the place of the basis for the solutions of the equation Af = Af.

Suppose next that [a, B] is of type 2. Using equation (9), we write

[* 1R ) = (ROOS )
= [" (B ) — (BoRf ) dE

+ 716 2R, IR0 (f gM)e®), B [@1 ()] - )dé .
By Lemma 3, the limit as n— 0+ of the first integral on the right in
the above equation is zero. From Lemmas 6, 7, and 10 it follows that

we can use Lemma 2 to evaluate the limit of the second integral. We
obtain that

lim (2ri)- j{(fg N), BN — (F g0)(g(h), h) (@11 (V)] - }dé

= f ﬂ Di(f; )[Dy(h; £)] ~dpni(£) -
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Since Fy(§) = Hy(€) = 0 and therefore Dy(f; §) = Dy(h; €) = 0 for €
in [a, B], we can write the right side of this equation in the form of
the right side of equation (43). Thus, we conclude that it [a, B] is of
type 2, equation (43) is again true.
Suppose ﬁnally, that [a, B] is of type 3. In this case we write
f h) + Ag(k)‘l’u(ﬂ) where

A1) = {(Ro\)f, W) [Qa>(N) + 1]
— (£, gM))g(), )QaM) QAN + 1] 1,
Ax(\) = (f, gM))(g\), W[Q2N) + 1771

Using Lemmas 3, 6, 7, and 8, it can be checked that A;(A) and Ay(A)
are both analytic in a neighborhood of [a, B]. From Lemmas 2 and
10 and the Stieltjes inversion formula it therefore follows that if

[ B] is of type 3, then
(LURNEB) + E*(@ + 00} — (URHE*(@) + E(a+ )1 )

= [1 a@dru@®= |1 A@)d®

+ J. d"r“(g) + A2(tk)711[tk]

Since
ou® = [0 [Q0) + 1] -1dr(0)

for all £ where [Qs%(o + 1)] ~! is defined by continuity at the points
tr, and since Ag(€) = Di(f; €)[Di(h; €)] "[Qa%(€) + 1] 7! for all ¢
where the right side is defined by continuity at the #,

[7 i@ = [ Df OID: 61 dous(s

This last integral is equal to

t=
S [ Dup DR 6] -dpls ' ®).
uv=1
because F(§) = c(f) = 0 in a neighborhood of [a, B]. Similar equa-
tions are valid for [? t+ Ag(§)dr1(§). Tt can be checked that Ag(#)
= Fa(tx)(tx — No)™ ' [Ha(te)(tx — o)~ ']~. Hence, if [a B] is of type
3, then
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([ARHE*(®) + E*@ + 0)} — (12){E*(a) + E* (e + 0)}]f, h)

= 21 [ Dutg LD 61 dti

(44)
+ S DGO D) dt)

u,v=1
+ Fa(ti)(te — No) ™' [Ha(ti)(tx — Xo)™'] ~711 [ %] -

Now let [a, B] be an arbitrary interval not having a # for an end-
point. By partitioning [a, B8] into intervals of types 1, 2, and 3 and
using equations (43) and (44), we see that

([ARXE*B) + E*(B + 0)} = (12){E*(a) + E*(a+ 0)}]f, h)

= ?_“ | F 4(ti)(tk — No)™ ' [Ha(ti)(tk — No)™'] ~ 711 [tk]
tg € [a,8

+2{2J

u,v=1

(45)
Du(f; €)[Dulh; £)] ~dpku(6) }
where the integrals are to be interpreted as Stieltjes integrals. As is

indicated by Kac [5], pk,(§) is absolutely continuous with respect to

ak(€) = pk (€) + pha(€). Let 85,(€) = dpko(§)ldo*(€). Then, if o, B are
continuity points of % ().

S [ DU EDA O] dph®

upo=1 [a,ﬁ]ﬂlk

J[aﬁ Iny { 2

u,v=1

[a,8] Ny

Du(f; €)[ Dalh; €)]-85(6) }da*(8),

where this last integral is a Lebesgue-Stieltjes integral. It is also
denoted by

2
. BN — Ak
me,k u,;:l Du(f; €)[ Do(h:€)] ~dpiu(£) -
Thus, if «, B are continuity points of o*(§), (45) can be written in
the form

([ARH{E*B) + E*(B+ 0)} — (L2{E*(e) + E*(a+ 0)}1f h)
= > Falti)tx — o)~ [Ha(ti)(tx — Xo) ™1 ~ 711 [t]

t; € lo,B]
(46) s
> Du(f: €)[ Do(h; £)] ~dpks(£).

uv=1

+k2J

[e,8) N1y,
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Now let o, B be finite real numbers with a < 8. We can choose in-
creasing sequences {a,} and {8,} with the following properties:
{a} and {B,} approach a and B respectively; there is no # in [, @)
nor in [By, B); if @ € I, then o, is a continuity point of o* for each n,
and if B € I, then B, is a continuity point of o* for each n. Then by
equation (46)

([E*(B) — E*(a)]f, h)
= 11_{!30([(1/2){1“3 *(Ba) + E*(Ba + 0)}

— (I2{E*(an) + E*(an + 0)}1f, h)
= lim { z Fd(tk)(tk - )\0)_1 [Hd(tk)(tk - )\0)*1] _Tll[tk]

n—>e t € [a,,8,]

:
+3 S Dulf )0 (h: ) ~doku(6) }

k [a"B"]nlk u,v=1

> Fa(te)(te — No)™' [Ha(ti)(t — Xo)™]~ 711 [#]

t) € [a,8)
+ 3] S Dulf OIDE)] dohi ).

where  Jio 5 Sao<1 Dulfs €[ Dolh; £)] ~ dpk(€) is to be inter-
preted as the Lebesgue-Stieltjes integral

[ag)N Ik

J[a,ﬁ)nlk { ED“(f &) [Dolh; )]~ 86o(€) }dUk

u,v=1

This completes the proof of Theorem 1.
In what follows A will always denote a bounded interval of the
form [a, B), and A€ will denote [, B]. E( A) will denote E(8) — E(a).
We note that in view of the fact that Dy(f; §) = F(€)(é — Ao)"! =0
outside Ej, equation (41) can be written in the form

(A, h)= Y Falte)(tc — ho) ™' [Ha(tu)(tx — o)™ ~711[t]

hea

(47) +3 Dulf; €)[Dalh; €] ~dpli(€)

Aﬂl;\ﬂL, u,v= .l

+ IAOI«;;; Di(f; €) [ Di(h; €)] ~dp1i(§) .

Let , = 27, 2 (E,), ie., let 9, con31st of all sequences {a(tx)}x for
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which  Yila(te)Pri[t] < ®©. Let o= DiL2(E; N L), where
L2(Es M Ix) consists of all vector functions [F,(§), Fa(§)] whose
components are measurable with respect to o*(£) on E; N I and
such that

[ S ROIRE) 8OO < =

u,v=1

(Integrals of this last type will also be written in the form

[ S OO i),

u,v=1

See Dunford and Schwartz [1] or Kac [5].) Let$; =I2, (E3).

Then, $1, $2 s are Hilbert spaces under the usual definitions of
addition, scalar multiplication and inner product.

TueoreM 2 (SpecTraL ReEPRESENTATION). Under the hypotheses of
Theorem 1, if A* is a selfadjoint extension of A or a minimal self-
adjoint dilation of A, then A* is unitarily equivalent to the multi-
plication operator in §, ® Hs O Hs.

Proor. Iff € S, let
e1(f; ) = Fa(ti)(te — Ao)~ ! fortx € Ej;
eaf; £ = [D\(f; £), Dy (f; )] foré € Ey;
e3(f;€) = Di(f;€) foré EE;.

By taking f= h in equation (47) and letting B— + ®, a— — ®
(recalling that A = [a,B)), we see that {¢,(f; &) }k € D1, ¢2(f;€) € Ho,
‘Pa(f; ) € $s.

If f€ S, we define the transformation V on elements E*( A)f by
the equation

(48) VE*(A)f = [{Xs(t)ei(fs ) b X aE)e2(f; €), X a(E)es(f; )]

where X,(€) is the characteristic function of A. Then, VE*(A)f
E H D H: D Hs, and from equation (47) it follows that |[VE*(A)f|
= JE-CAY.

Let Z, consist of all elements of the form E*(A)f, where A is an
arbitrary interval, and f is an arbitrary element in S. Since A* is
assumed to be minimal, the Hilbert space §* in which A* acts is the
closed linear hull of Z,. (See Naimark [6].) If fis in the closed linear
hull of Z,, f can be written in the form f=>,~E*(A,)f,", where
f-' €8, and the A, are disjoint intervals of the form [a,8). We define
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Vf by means of equation (48) and the equation Vf= > ,VE*(A,)f,".
Using equation (47), it can be shown that V is defined uniquely
on the linear hull of Z, into H1 © H2 D s, that V is linear, and that
V is norm-preserving, i.e., that |Vf] = |[f|]. By continuity, then, V
can be extended to all of §*. V will be a linear, norm-preserving
transformation on §* into §, & H2 D Hs.

V is, in fact, on $* onto §, ® Ho2 ® H;. To prove this, suppose
that q(¢) = [{q:(t)} qa(é), q3(f)] € H1 D H2 D H5. We shall
prove that if g is perpendicular to the range of V, then ¢ = 0 in the
norm of &, B H: ® H3; indeed, we shall show that if q is perpen-
dicular to VZ,, then q = 0.

Suppose, then, that q is perpendicular to VZ,, i.e.,

0= Fa(te)(tx — o) [q1(t)] ~T11 [ %]

hea

(49) 2 J’ u(f f)[q2u ] dpuv( )

kNEyNa uv 1
+ f s DUE D951 ~dprs(€)
for all f € S and for all A. We shall prove that
0= 2"71(tk)|2711[tk]

2
(50) 3] 2 qalO)lgal) dau®

u,v=1

+ [ . 1956)Pdons(®

Let us note that since Ay is unbounded and therefore either E, or
E, is unbounded, we can choose a sequence {f.}, f. € S, such that
Fn(t> =0for—n=t= nr(fm gO) = f:anc(t)dPO(t) + Eand(tk)pO[tk]
=1. Then for any interval [aB], D)(f; §)—1 as n— o,
uniformly for € € [a, B], and Dy(fn; £€) =0 for £ € [, B8] and n
sufficiently large.

We shall work first of all with the second integral in (49) by taking
A C E,, and we shall show that the second integral in (50) is zero.
Now, E; = UmnJm, where the Jm are open intervals. Let us consider
an arbitrary but fixed J,, and suppose that J,, C L. From (49) we
obtain that

(s1) 0= [ 3 D Hge®) dobil®

u,v=1

I NEg

for an arbitrary f € S and for an arbitrary interval A, where A°¢ C J,,.
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Taking f = f, in (51), we obtain
(52 0= | Dilfus {1 80(6) + [gaa N Ba(8)}drH(€)

for arbitrary A, A°¢C J,. Since [X,(§), 0] € LZ&(Jm) and since
[921(8), g22(8)] € ka (Jm), we see by takmg the inner product of these
two elements in Lk(_]m) that gy, 8f + a2 8f2 is integrable with
respect tookover A. Letting n— o in (52) we then obtain that

(53) 0= | {[gu)] -8 + [g2a()] “85:6))doH(E)
for arbitrary A, A¢ C J,.. From this equation it follows that
(34) 0= j F(€){[g21(6)] ~81(€) + [g22(£)] ~8%a(£) }do*(€)

for an arbitrary continuous function F on J, and for arbitrary A,
A, C Jn

Now for an arbitrary interval A = [a, B), A°C Jn, let FEC’
and such that F(t) =1 on [a, B], F(t) = 0 outside [ay, B,], where
[a, B1] CJm and oy < a<B <B;. Let H(t) = F(t)(t — ho). If h
is the element in §) whose transform in L, (—®, ©)is H, then h € S,
and D, (h; £) is continuous for all €, and Dy(h; €) = F(£) for all €. From
(51) and (54) we obtain

(55 0= [ ([g2u(®) 856 + [22(6)) ~85:()ko*(&)

for arbitrary A, A¢ C J,.

From (53) and (55) it follows that [g21(€), g22(§)] is orthogonal in
L2k(Jm) to all functions [X a, (£),X 4,(£)], where A C ], and since the
set of all linear combinations of such functions is dense in L2x(Jm),
we have that [g21(£), g22(6)] = 0in L%(Jm), i.e.,

2
0= Jj u,uzl q2u(§) [qZU(g)] - 50(5) .

Summing up over all J,, we obtain

m

2

) 0= S| Y gu@gal@) -dekulé).

k kNEy
Equation (49) now becomes

0= Y Falt)(tx — Xo) ' [q1(t)] ~711[t]

tkeas

57
o + L‘ na Dif:9)14(€)] ~dpn)

o3
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forallf € Sandall A.
Let I, be arbitrary but fixed. Taking f= f, and A C I;, we obtain
from (57) that

58 0= [ . DilfuOgs(®) dpun(®) forall AC L.

Since [, |g3(€)]2dp11(€) < © and since A is assumed to be bounded,
it follows that [fina [g3(€)|dp11(§) < ©. Hence, we can let
n— o in (58) and obtain

0= [, . [4s(®)dpu(®) forall A C L.

This means that g; is perpendicular in the space I2,,(Ix N Ej) to
functions X ,, where A C I;. Since the set of linear combinations of
such functions is dense in I2,(Ix N E;), it follows that
0= Jfi;ni, |93(€)]Pdp11(£). Summing over k, we obtain

(59) 0= JE lgs(€) Rdpy1(£) .
3
Equation (49) can now be written
(60) 0= Fa(te)(t — Ao)~'[q1(t)] ~ Tua[t]
hEeEA

for all fE€ S and all A. Let t be arbitrary but fixed. Let F(&) = 1,

E(t) = 0 elsewhere. Let f be the element in § whose transform in
L(—, ®) is f Let A be an interval containing #. By (60),
0= (4 — )\0) ‘[ql(tk)]—'r“[tk]. Hence, 0= |q,(t)*r1:[t]. Sum-
ming up over the #, we obtain

(61) 0= kzlql(tk)llel[tk] :

Equation (50) now follows from equations (56), (59), and (61). This
completes the proof that Vis on §* onto §; & H, D Hs.

It is not difficult, finally, to verify that V takes the spectral function
E*(A) of A* into the spectral function of the multiplication operator
in § S H2 D Hs.

This completes the proof of Theorem 2.
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