
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 1, Number 3, Summer 1971 

A METRIC FOR WEAK CONVERGENCE 
OF DISTRIBUTION FUNCTIONS1 

DAVID A. SIBLEY 

Let A denote the set of distribution functions, that is, left-continuous 
nondecreasing functions from the real line into [0, 1]. The set of dis
tribution functions of random variables (functions in A with sup 1 and 
inf 0) will be denoted by Arv. The following facts are well known (see, 
e.g.,[2]). 

1. The space A is sequentially compact with respect to weak con
vergence. That is, any sequence of functions in A has a weakly conver
gent subsequence (Helly's First Theorem). However, Arv does not have 
this property. 

2. The set A is a metric space under the Levy metric L defined for 
any F, G in A by 

L(F, G) = inf{h; F(x-h)-h^ G(x) § F ( i + Ä ) + k for all x}. 

3. If (Fn) is a sequence in Arv and F is also in Arv then Fn converges 
weakly to F iff L(Fn, F) —* 0. Thus for sequences in Arv whose limit is 
also in Arv weak convergence and convergence in the L-metric are 
equivalent. The hypothesis that the limit belong to Arv is necessary, 
for there are sequences in Arv which converge weakly to a limit in A 
but do not converge in the Levy metric. (One such sequence is dis
cussed in this paper.) 

Statement 3 shows that the relationship between weak convergence 
(in the sense of Helly's First Theorem) and convergence in the metric 
L is unsatisfactory. This state of affairs is due to the fact that the Levy 
metric is sensitive to what happens at 4- °° and — <x>, while weak 
convergence is not. The purpose of this paper is to show that a modifi
cation of the Levy metric yields a metric for A for which convergence 
corresponds precisely to weak convergence. 

For any F, G in A and h > 0, define the properties 

(1) A(F,G;h)ittF(x-h)-h^G(x) for - Uh < x < Uh + h, 

(2) B{F, G; h) iff F(x+h)+h^ G(x) for - h - l/h<x< Uh, 
and let 
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(3) £(F, G) = inf{Ji; both A(F, G; h) and B(F, G; h) hold}. 

Before showing that £ is a metric with the desired properties, we make 
a few simple observations. 

LEMMA 1. A(F, G; h) iffB(G, F; h). 

PROOF. Substitute x for x — hin (1). 

LEMMA 2. A(F, G; h) is equivalent to 

F(-£)-iac('+f-)+i 

PROOF. Substitute x + h\1 for x in (1). 
Finally, notice that £(F,G)^l for any F, G in A and that if£(F, G) 

= Ä > 0, then both A(F, G; fe) and B{F, G; fc) hold. 

THEOREM 1. The function £ defined by (3) is a metric for A. 

PROOF, (a) POSITIVITY. It is immediate that £( F,G) = 0 for F, G in A. 
(b) IDENTITY. Clearly . /(F, F) = 0. Conversely, suppose £(F, G) 

= 0. For any real x, we may choose h so small that both A(F, G; /i) 
and B( F, G; h) hold on an interval containing x. Thus, we have 

F(x- h)- h^ G(x) ^ F(x + h) + h. 

Letting h-*0 yields F(x — )̂ S G(x) ^ F(x + ). Hence, if x is a point of 
continuity of F, then F(x) = G(x). It follows that F = G. 

(c) SYMMETRY. This is an immediate consequence of Lemmas 1 and 
2. 

(d) TRIANGLE INEQUALITY. Let £ (F, G) = h and £ (G, H) = k, where 
h,k>0. For fo + fc = 1, the inequality 

£ (F, H) ^ ^ (F, G) + _/ (G, H) 

is trivial. Hence, we may assume that h 4- fc < 1. For a > 0, let Ia 

denote the interval [ — a/2 — 1/a, a/2 + 1/a] and suppose 
x G Zh+fc. Using the fact that h(h + k) < 1, it is easy to show that 
x - fc/2 G Zh and x + fc/2 G Ik. Then from A(F, G; /i) and A(G, H; fc), 
it follows that 

S H ^ + Ü i ) + A ± J L 
V 2 / 2 
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whence A(F, H; h + k) holds. Similarly, B(F, G; h) and B(G, H; k) 
imply B(F, H; h + it). Thus, £(F9 H) g h + k = -4 F, G) + £(G, H), 
completing the proof of the theorem. 

The function JL will be called the modified Levy metric. 
DEFINITION. A sequence (Fn) of functions in A converges weakly 

to a function F in A if (Fn(x)) converges to F(x) at each point x of 
continuity of F. In this case, we write Fn^> F. 

It is well known that Fn^> F if and only if (Fn) converges to F 
pointwise on some dense subset of the real line [ 1]. Furthermore, 
since each Fn is in A, the limit F must be nondecreasing and may 
without loss of generality be assumed to be in A. 

THEOREM 2. Let (Fn) be a sequence of functions in A and let F 
be in A. Then X(Fny F) —> 0 as n—> <*> if and only ifFn-^> F. 

PROOF. First suppose X(Fn, F)—> 0. Let x be a point of continuity 
of F and let e > 0 be given. Then for some 8 > 0, |F(x) — F(y) | < e 
whenever |x — y\ < 8. Let h = min (e, 8, H\x\) if x ^ 0, and 
h — min (e, S) if x = 0. Also let n be so large that £(Fn, F) < h. 
Since |x| < llh, we have from (1) and (2) that 

Fn(x) ^ F(x - h) - h^ F(x) - 2e 

and 

Fn(x) g F(x + h) + h g F(x) + 2E, 

whence Fn(x) —» F(x) as n —> oo . It follows that Fn -^ F. 
Conversely, suppose that F n A F. Then (Fn) converges to F point-

wise on some set D which is dense in the real line. Let e > 0 be 
given, and choose a in D such that a > e + 1/e. Let öo < —a, a0 in 
D, and partition the interval [oo, a] by choosing points a0 < ax < 
- - - < am= a, where a{ in D, i = 0, 1, • • -, ra, such that \a{ — a^i\ 
< e for i = i, 2, • • -, m. Choose N so large that for any n=N we 
have |Fn(öj) — F(OJ)| S e/2 for i = 0, 1, • • -, m. Now, if either 
- l / e = x = 6 + 1/e or —€ — 1/e ^ x ^ 1/e, then x is in [a0, a]. 
In both cases, there is k such that a^-\ = x = a*. Consequently, 

Fn(x) g Fn(afc) ^ F(afc) + 6/2 g F(x + e) + e/2, 

and 

Fn(x) §; Fn(afc_x) ^ F(alk_1) - e/2 §= F(x - e) - e/2. 

Thus, both A(Fn, F; €) and B{Fny F; e) hold, whence £(Fny F) < e 
and ^ (F n , F) -» 0 as n-> oo . 

An immediate consequence of Theorem 2 and Helly's First Theorem 
is 
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THEOREM 3. The space ( A, X) is compact. 

An obvious homotopy argument shows that any 6-neighborhood 
in ( A, X) is pathwise connected, so that, in particular, (A, X) is 
both connected and locally connected. It follows from this and 
Theorem 3 that ( A, X) is a Peano space, i.e., the continuous image of 
an arc. 

The following example illustrates the difference between the 
metrics L and X. Let 6 denote the function which is identically 
zero and, for n = 1, 2, • • -, define the step functions Sn by 

Sn(x) = 0 if x^ n, 
(5) 

= 1 if x > n. 

Then Sn^ 6 and X(Sn, 6) = 1/n. On the other hand, L(Sn, 6) = 1, 
for any n. In fact, L(Sn? Sm) = Snm, so that (Sn) is not a Cauchy 
sequence in (A, L) and has no cluster point. Thus, in contrast to 
Theorem 3, ( A, L) is not compact. But more can be said; for a 
similar construction shows that any L-open subset of A contains a 
sequence which converges weakly, but has no cluster point under 
the metric L. Thus, no compact subset in (A, L) can contain an 
L-open subset. Hence (A, L) is not even locally compact. Indeed, 
any compact subset of ( A, L) is nowhere dense. 

Finally, we note that if F(x - h) - / i S G(x) g F(x + h) + h, 
for all real x, then both A(F, G; h) and B(F, G; h) hold. Thus, 
X(F, G) ^ L(F, G), for any F, G in A. It follows that the jC-metric 
topology is weaker than the L-metric topology. The above example 
shows that in A we may replace "weaker" by "strictly weaker". 
However, in Arv it can be shown that any L-open subset contains 
an ^-open set, so that L and X induce the same topology on Arv. 

The author is indebted to Professor Berthold Schweizer for his many 
valuable suggestions concerning this work. 
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