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BOUNDARY VALUE PROBLEMS FOR ORDINARY 
DIFFERENTIAL EQUATIONS1 

LYNN ERBE 

1. Consider the nth order differential equation 

(1.1) yin)=f(t,y,y',-;y*-V) (n^2) 

where f(t, x0, xÌ9 • • % x„-i) and/i(£, x0, • • % acn-i) are continuous on 
I X Rn where J is an open sub interval of R and where 

df 
fi(t, X0, • • ' , Xn-i ) = -^-(UXo, ' ' % Xn- i ) , t = 0, 1, • ' ' , n - 1. 

After some preliminaries in §1, we devote §2 to establishing necessary 
and (or) sufficient conditions in order that there exist at most one 
solution of (1.1) satisfying the boundary conditions 

(1.2) «/«»(c) = at, tk)(d) = ß, 

or 

(1.3) y*Kc) = a, y«\d) = ft, 

when e, d E /, c < d, i = 0, 1, 2, • • -, n — 2, 0 ̂  fc ̂  n — 1 is fixed, 
and the ou and ßj are constants. We shall refer to (1.2) as an (n; k) 
BVP for equation (1.1) and (1.3) as a (fe; n) BVP. (We use n rather than 
n — 1 to avoid confusion when fc = n — 1.) Our technique, similar 
to that used in [ 1] for n — 2, involves studying the behaviour of solu­
tions of the variational equation 

(1.4) *<">= J? fi(t,y(t), ••;yi"-»(t))z(i) 

where y(t) is a solution of (1.1). For n = 2 and 3 it has been shown 
[2], [3] that if solutions to the n-point BVP, 

(1.5) y{U) = <Xi, U<U+i, l ^ i ^ n - 1 , 
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are unique, when they exist, then all (0; n), (n; 0), and n point BVP's 
do, in fact, have unique solutions, thus generalizing what is true in the 
linear case. The assumption is also made that solutions of IVP's for 
(1.1) extend throughout I. Moreover, for arbitrary n ^ 2 Hartman 
[4] has shown that if IVFs for (1.1) have unique solutions on I and 
if the n-point BVP (1.5) has a unique solution for all U Œ. I and all 
oti, then for any set of positive integers Xl5 • • -, kk with kx + • • • + X& 
= n and any U Œ. I, U< £i+1) 1 ^ i â k, and any constants ai, 
0=j = ki— 1, there is a unique solution of (1.1) satisfying 

yU)(ti) = cÀ, l ^ i ^ f c , o^j^Xi-h 

In general, however, there is no relation between uniqueness of 
solutions of (n; k) and (k; n) BVP's (see Remark 4.15 below). There­
fore, it seems desirable to relate the uniqueness of solutions of these 
types of BVP's to the behaviour of solutions of (1.4), since, in many 
cases, this can be more easily determined. When (1.1) is linear these 
BVP's arise in determining intervals of nonoscillation (see [20], [21] ). 
In analogy with (1.2) and (1.3), we will say that the interval I is an 
interval of (n; k) nonoscillation for equation (1.1) in case no non-
trivial solution satisfies the BVP (1.2) in which oo == «i = • • • = 0^-2 
= ß = 0, c, d S I. We say that I is an interval of strict (n; k) non­
oscillation in case no nontrivial solution of (1.1) satisfies the BVP 
(1.2) in which OQ = ot\ = • • = 0^-2 = ß = 0 and in which yik) has 
an odd order zero at d. Intervals of (k; n) nonoscillation and strict 
(k; n) nonoscillation are similarly defined. 

In addition to the continuity assumptions on / a n d fi, we shall assume 
that the following condition holds: 

(Hi) If y G_C<n>[c, d] is a solution of (1.1) with |t/(*)|= Mx on 
[c, d] and ^ V lî/(0(*o)| = M2 for some c g t0 ^ d and M b M2 > 0, 
then there exists N > 0 depending only on Mi, M2 and [c, d] such that 
ttWKM^Non [c,d\. 

In §4 of this paper we show that condition (Hx) holds for a certain 
class of equations. §3 is devoted to the case n = 2 where we obtain 
necessary and sufficient conditions for uniqueness of solution to 
certain two point BVP's, extending results of Ullrich [5]. In §4 we 
study the case n = 3 where we obtain some generalizations of results 
in [6] and [7]. In particular, Theorem 4.9 gives sufficient conditions 
for the existence of positive solutions to a third order nonlinear 
equation. The final section deals with the case n ^ 4. 

The author wishes to thank the referee for several helpful sugges­
tions concerning the statements of Lemmas 2.1 and 2.3 and for pointing 
out several flaws in an earlier version of this paper. 
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2. LEMMA 2.1. Let y E. C{n)[c, d] be a solution of (1.1) such that 
(1.4) is (n; k) nonoscillatory on [c, d]. Let yK denote the solution of 
(1.1) with 

y,(i\c) = y{i\c), 0 § i g n - 2 , 

t/x(n-D(c) = X. 

27ien f/iere is a 8 > 0 depending on y and [c, d] such that 
0 < \y<n-»(c) - X | < 8 implies yk G C<n>[c, d] and yK^k\t) - y^k\t) 
^ 0 on (c, d]. 

PROOF. If not, we may assume without loss of generality, that there 
is a sequence of real numbers Xm monotonically decreasing to y(n_1)(c) 
and a sequence of points tm^> t0 E. [c, d] with ym

{k\tm) = y{k)(tm), 
where ym= yXm. Define Zm by 

*»(') = (ym(0 - y(*))/(A» - y<»-lKc))9 c ^ t ^ d . 

Then zm<*>(c) = 0 = zjk\tm), O g i g n - 2 and ^ » - « ( c ) = 1. 
Moreover, 

i=0 

where pm
(i)—» 0 uniformly on [c, d ] , for 0 ^ i ê n — 1. It follows 

[8, Theorem 3.2, p. 14] that a subsequence of the sequence zm con­
verges uniformly on [c, d] to a solution z(t) of (1.4) satisfying 
2<*>(c) = zW(t0) = 0 , O g i ^ n - 2 , and z<n~l\c) = 1. Therefore, 
£o == c so fc < n — 1 and applying the Mean Value Theorem n — 1 — fc 
times gives a sequence sm—» c with £m

(n_1)(sm) = 0, a contradiction. 
This proves the lemma. 

REMARK 2.2. There is an obvious analogue to Lemma 2.1 for the 
case when (1.4) is (k; n) nonoscillatory for some solution y of (1.1). In 
this and in most subsequent cases we will not state the analogous 
results explicitly. 

THEOREM 2.3. For some [c,d] C R let the BVP (1.2) have two 
solutions y\(t), 2/2W with y\{t) > y2(f) on (c,d). Then for some X, 
t/2 (n -1)(c) S X = j/i (n_1 )(c), the equation (1.4) with yx(t) in place of 
y(t) is (n; k) oscillatory on [c, d] where yk satisfies (2.1). 

PROOF. If the conclusion is false, then for t/2(n-1)(c) < X < y\{n~l\c) 
define tK by 

tK = min {inf {t>c: yk*\t) = yi <*>(*)}, inf {t > c : &<*>(*) = y2
{kKt)}}. 
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Condition (Hi) implies tx exists for all t/2
(n-1)(c) < * < î/i(n-1)(c)-

Define the set A by 

A = {X : y2<»-D(c) < X < ^ » " « ( c ) , fc<*>(0 = yiik)(k)} . 

By Lemma 2.1, A ^ 0 so let it = sup A. It follows that /x < t/i(n_1)(c) 
and jix G A. But for it < \ < J/i(n_1)(c) and k — JJL sufficiently small, 
Lemma 2.1 implies yk

ik)(t) > yß
{k)(t) on (c, t^], which contradicts the 

definition of /x. This proves the theorem. 
We now establish a partial converse to Theorem 2.3. 

THEOREM 2.4. Let y(t) be a solution of (1.1) on an interval (a, b) 
and assume for each a< c < d < b that if t/i(t) is any solution of 
(1.1) satisfying 

yi{i)(c) = y{i\c\ O S i g n - 2 , 

y^(d) = yto(d)9 

then t/i = y on (a, b). Then (a, b) is an interval of strict (n; k) non-
oscillation for equation (1.4). 

PROOF. If not, assume z(t) is a solution of (1.4) with z{i)(c) = 0 
= z^(d\ 0 ^ i ^ n - 2, and let z^n~l\c) = 1. Let Xm = 1/ra 
-h t/(n_1)(c) m (2.1) and let ym denote the corresponding solution. 
Putting zm(t) = m(ym(t) — y(t)) we have that for sufficiently large m, 
Zm(i)(c) = 0, O ^ i S n - 2 , Zm(n_1)(c) = 1 so that zm-+ z uniformly 
on compact subsets of (c, b). Since zik)(t) < 0 at some points of (c, b), 
we see that zm

{k\tm) = 0 for large m, where c < tm< b. Therefore, 
j m

E i / on [a, b] by hypothesis. This is a contradiction and 
proves the theorem. 

The two previous theorems imply the following. 

COROLLARY 2.5. Let D be an open simply-connected subset of 
(a, b) X R and assume no solution y of (1.1) satisfying 

(2.2) (t,y(t))£D, c^t^d, 

is such that (1.4) has a solution z(t) with a zero of multiplicity n — 1 
at c and a zero of zik)(t) of even order at d. Then the following are 
equivalent: 

(a) Equation (1.4) is (n; k) nonoscillatory for all solutions y(t) of 
(1.1) satisfying (2.2). 

(b) All (n; k) BVP's for equation (1.1) have at most one solution 
y(t) satisfying (2.2). 

We shall see in §4 that Corollary 2.5 is not true if one drops the 
assumption regarding the even order zero of z{k\t). 
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3. In this section we shall consider the second order differential 
equation 

(3.1) y"+j{t,y) = 0 

where f and fy are continuous on [0, + o o ) X fi and satisfy f(t, 0) 
= 0 = fy(t, 0), fit, y) > 0 and fy(t, y) > 0 for y > 0 and 0 ^ t < + oo 
and where fy(t, y) is increasing in y for y > 0. An integration from 
to to t shows that condition (Hx) holds for equation (3.1). 

We have the following lemma, due to Moore and Nehari [9]. 

LEMMA 3.1. Let u(t), v(t), and w(t) be three distinct solutions of 
(3.1) satisfying 0 g u(t) < w(t), 0 g v(t) < w(t) on [a,b], 0 < a < 
b < +00. Then u(t) and v(t) cannot intersect in [a,b] more than 
once. 

In addition to the conditions mentioned above, we shall make the 
following assumption: 

(H2) For any 0 < a < fo < +<» there is a solution y(t) of (3.1) 
with y(a) = y(b) = 0 and y(t) > 0 on (a, b). 

For example, (H2) holds for the equation 

(3.2) y" + p(t )y2n+1 = 0, p(t) > 0 , 0 S K + » , n e l , 

and certain of its generalizations, as considered in [ 10] (but clearly 
does not hold if (3.1) is linear). The first result of this section is a 
generalization of a result due to Ullrich [5, Theorem 5.1] for which 
we give a different proof. Our method also shows that certain of his 
assumptions are unnecessary. 

THEOREM 3.2. Let y(t) be a solution of (3.1) satisfying 

y(a) = A, y(b) = B, A, B^ 0, A + B > 0, 
(3.3) * * 

0< a< b< +oo? 

and y(t) > 0 on (a, b). Then y(t) is the unique positive solution of 
(3.1) satisfying (3.3) if and only if the equation 

(3.4) z"+fy(t,y(t))z=0 

has a solution with z(a) = z(b) = 0, z(t) > 0 on (a, b). 

PROOF. Assume first that equation (3.4) has a solution z(t) with 
z(a) = z(b) = 0 and z(t) > 0 on (a, b). Let y\{f) be a second solution 
of (3.1) satsifying y\{a) = y(a), y\{b) = y(b), and yi(t) > 0 on (a, b). 
If yx(t) < y(t) on an interval (t0, tx) with y^to) = y(t0)y t/i(^) = y(t{)9 

then by Theorem 2.3 for some yk(t), equation (3.4) with yx(t) in place 
of y(t) has a solution with two zeros on [ t0, tk], where yi(t) ^ yk(t) ^ y(t) 
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on [t0,tk]. By the Sturm comparison theorem and our assumption 
above, we must have t/x = y and t0 = a, tx = b. Hence, equation (3.4) 
with t/i(t) in place of y(t) is disconjugate on [a, b] so that by Lemma 
2.1, for X - yl '(a) > 0 and sufficiently small, yk(t) - yx(t) > 0 on (a, b] 
and yk(t) < y(t) on (a, t0) with yx(t0) = y(to), where a< t0< b. 
Therefore, arguing as above, we conclude that equation (3.4) has a 
solution with two zeros on [a, to], a contradiction. Therefore, we 
must have yx(t) > y(t) on (a, b). Setting u(t) = yi(t) — y(t) we have, 
as in [7], 

u" + p(t)u = 0, u(a) = u(b) = 0, 

where p(t) = {f(t,yi(t)) - f(t,y(t))}l(yi(t) - y(t)). But p(t) 
> fy(t, y(i)) on (a, b) so the Sturm theorem shows that equation (3.4) 
is disconjugate on [a, b], a contradiction. 

Conversely, assume y(t) is the unique positive solution satisfying 
(3.3) and, to be specific, let y(b) = B > 0. Then applying Theorems 
3.2 and 3.3 of [11] (with a(t) = 0 g y(t) = ß(t)) we conclude that 
equation (3.4) is disconjugate on (a, b). Hence, if the theorem is not 
true, then equation (3.4) is disconjugate on [a, b] so by Lemma 2.1 
there is a S > 0 such that 0 < X — y'(a) ^ 8 implies yK(t) > y(t) on 
(a, b]. 

We consider first the case y(a) = A = 0. By assumption (H2), for 
some n ^ y'(a) we have y^b) = 0. Therefore, either 0 < /LL < y'(a) 
or ix > 8 + y '(a). Since (3.4) is disconjugate on [a, b] and since 
fy(t, y) is increasing in y for y > 0, it follows by Theorem 2.3, the 
Sturm comparison theorem, and Lemma 3.1, that 0 < yk(t) < y(t) on 
(a, b] for all 0 < \ < y '(a). Hence, ix > 8 + y '(a). But since the set 
{yx(b) : 8 + y'(a) < X < fi} is connected, it follows by continuity with 
respect to initial conditions that yKo (b) — y(b) for some ko> 8 + y '(a), 
and this is a contradiction. 

Now if y (a) = A > 0, let u be the solution of (3.1) satisfying 
u(a) = u(b) = 0, u(t) > 0 on (a, b). For any k > y'(a), Lemma 
3.1 shows that yx(t) ^ u(t) on an interval (tx, TX) C (a, b) with 
" ( O - yx(k) = W(TX) - Î/A(TX) = 0. Letting Xn-> + oo and applying 
the Mean Value Theorem to u(t) — j / x (t) we obtain a sequence of 
points {i7n} with |t/x (T)„)| = rnaxagtgb |w'(*)|. Taking subsequences, if 
necessary, we may assume that i7n —> 7)0, yKn(r)n) —> fc0, and yXn(yn) —> fco ' 
It follows by continuity with respect to initial conditions that {ykn} 
converges uniformly on [a, b] to the solution Uo(t) of (3.1) satisfying 
ttofao) = fco, tto'fao) = fco'- But then u0'(t)^> + oo as t->a+, which 
contradicts (Hi). This proves the theorem. 

By applying Lemma 2.1, Theorem 2.3, and the Sturm comparison 
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theorem, one can easily show that if y is a solution of (3.1) with 
y(a) = y(b) = 0 and y > 0 on (a, b), then (3.4) has a solution z with 
z(a) = z(t0) = 0, z > 0 on (a, £0)> where a< t0< b. 

Our next theorem is the analogue of Theorem 3.2 for the second 
type of BVP for equation (3.1). We first prove a preliminary lemma. 

LEMMA 3.3. Assume that there exists a unique positive solution of 
(3.1) satisfying 

y(a)=A, y'(b)=B, y' > 0 on(a,b\ 

A , ß = 0 , A - f B > 0 . 

Then there is a 8> 0 such that for B — 8 < a< B there is a A = k(a) 
with yk(a) = y(a), 0 < y 1(a) = k < t/'(ö), y/(6) = a and 0 < t/x(£) 
< y(t) on (a, b). 

PROOF. Assume first that y(a) = A = 0. Let y'(b) = B = 8 > 0. 
Now since t/x —> 0 and y I —» 0 uniformly on [a, fe] as À—» 0 it follows 
by continuity with respect to initial conditions that for any 0 < a < 8 
there is X0

 = ko(ot) with 

(3.6) yH(a) = y(a) = 0, ^ (&) = <* and 0 < X0 = < ( a ) < y'(fl). 

We claim that t/Ao(£) < y(t) on (a, &]. For suppose yXo(t) < y(t) on 
(a, c) C (a, fe) with yKo(c) = t/(c) for some a< c^kb. It follows, by 
continuity with respect to initial conditions that for some 0 < k\ = Xo 
we have yKl (t) < y(t) on (a, b) and ykl (b) = t/(fo). Hence, y'ki (b) > y'(b). 
But then by a connectedness argument and continuity we must have 
y'yib) = y'(b) for some 0 < /A < k\, and this contradicts the unique­
ness hypothesis. 

We claim next that yko(t) > 0 on (a, b]. For if yko(c) = 0 for some 
a<c^b, then yXo(t) > y(t) at some points of (a, c). Otherwise 
0 < î/xo (0 ^ y(^) o n (a ' c) an<^ t n* s contradicts Lemma 3.1. (Note 
that one may allow u, v, w to agree at one of the endpoints in Lemma 
3.1 as is evident from the proof [9].) But we have just shown in the 
first part of the proof that yko (t) < y(t) on (a, b]. Hence, we must 
have 0 < yko(t) < y(t) on (a, b]. 

To handle the case y(a) = A > 0, y'(b) = B ^ 0, we let u(t) be 
the solution of (3.1) with u(a) = u(b) = A and 0 < u(t) < y(t) on 
(a, b]. (See Theorem 3.1 of [11].) In this case, u'(b) < 0 so we may 
set 8 = B — u'(b) > 0. Then an argument similar to the first part 
of the proof shows that for any u'(b) < a< B there is a k0 = ko(ot) 
such that (3.6) holds and, in addition, u(t) < yko(t) < y(t) on (a, b]. 
This proves the lemma. 
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THEOREM 3.4. Let y(i) be a solution of (3.1) satisfying (3.5). Then 
y(t) is the unique positive solution of (3.1) satisfying (3.5) if and only if 
(3.4) has a solution with 

(3.7) z(a) = z '(b) = 0, z '(t) > 0 on [a, b). 

PROOF. Assume first that y(t) is the unique positive solution of 
(3.1) satisfying (3.5) and let z(t) be the solution of (3.4) with z(a) = 0, 
z'(a) = 1. We first show that z' > 0 on [a, b). By Lemma 3.3 for all 
n ^ 1 sufficiently large we may choose 0 < X„ < y ' (a) such that the 
solution yn of (3.1) with yn(a) = ?/(#), !/n'(tf) = !/'(a) ~" K satisfies 
yn'(b) = y'{b) - 1/n and 0 < yn(t) < y(t) on (a, b] . If we define 
zn(t) = (y(t) - yn(t))lkn, a S t S t , it follows that zn(a) = 0, 
zn'(a) = 1 and zn'(b) > 0. Since {t/n } converges to a solution satisfying 
(3.5), it follows that yn-* y uniformly on [a, b] so that Zn—» z uni­
formly on [a, b]. Also, zn"(f) < 0 on (a, b) so that z n ' is decreasing 
on [a, b] and therefore zn' > 0 on [a, b] for all n. Hence, 2 ' > 0 on 
[a,b). 

Now suppose 2;'(b) > 0. By Lemma 2.1 for X — y' (a) > 0 and suf­
ficiently small, we have yk '(t) > y'(t) on [a, b] . By the uniqueness 
assumption and continuity it follows that yK'{b) > y'(b)^ 0 for all 
X > y'(a). Now if u(t) denotes the solution of (3.1) with u(a) = 11(b) = 0, 
u(t) > 0 on (a, b), then by Lemma 3.1 we have that u(t) > yx(t) at 
some points of (a, b) for all X = y '(a). Now arguing as in the last half 
of Theorem 3.2, we obtain a contradiction. Therefore, we conclude 
z'(b) = 0. 

Conversely, let (3.4) have a solution with z(a) = z'(b) = 0, z' > 0 
on [a, b). Suppose that yi(t) is a second solution of (3.1) satisfying 
(3.5). We show first that y(t) — yi(i) / 0 on (a, b). Suppose that 
y(t) > yi(t) on (a, T) and y(t) < y\(t) on (T,TJ), a< T <t)= b. Then 
by Theorem 2.3 and the Sturm comparison theorem, z(to) = 0 for 
some a < t0 = r, a contradiction. If y(t) < yi(t) on (a, r) and 
y(t) > yi(t) on (7,17), a < r < 17 ^ b, then Theorem 2.3 again shows 
that there is a solution Zo(t) of (3.4) with z0(r) = ZQ '(ti) = 0, ZQ ' > 0 on 
[r, £1), where T < t± ^ b. This is a contradiction by the Sturm 
theorem (see [12]). Hence, y(t) - yx(t) / 0 o n (a, b). If yx(t) > y(t) 
on (a, b), then setting u = yi — y we see that w(a) = uf(b) = 0, 
u(£) > 0 on [a, b), and w" + p(t)u = 0, where 

(3.8) p(t) = (flt, y i) - f{t, y))l(yi(t) - y(t)) > fy(t, y(t)). 

Also, u'(t) > 0 on [a, b) for if u'(r) = 0 for some a < T < b, then 
by the Mean Value Theorem we have u" (i)) = 0 for some r < 17 < b. 
Therefore, p(tj) = 0 which is a contradiction since ft, y) is strictly 
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increasing in y for y > 0. But then if u '(t) > 0 on [a, b) it follows 
that z'(t) > 0on [a, b], a contradiction. 

Finally, if yi(t) < y(t) on (a, fc), then (3.4) with yY(t) in place of 
y(t) has a solution Zi(t) with z^a) = 0 and Zi'(t)>0 on [a, 6 ] . 
Hence, for A > t/i '(a) and X — i/i '(a) sufficiently small, yk '(t) — t/i '(t) 
> 0 on [a, b] and t/x(£) < yk(t) < y(t) on (a, b), where yx is the 
solution of (3.1) with yx(a) = y (a), yK '(a) = À. But then j / x '(b) - y'(b) 
> 0 > yK'(a) — y'(a) so that for some a < to < b we have 
y(o) - yk(a) = 0 = y'(to) - yx'(to)andy'(t)-yk'(t) > 0on[a,fe).But 
now by Theorem 2.3 and the Sturm comparison theorem, we see that 
z(d) = z'(ti) = 0, where a < ti ^ t0. This contradiction proves the 
theorem. 

REMARK 3.5. Whereas it was obvious that one could not allow 
A = B = 0 in Theorem 3.2, it is not obvious that Theorem 3.4 is false 
if A = B = 0. In fact, the second half of the proof of Theorem 3.4 
yields: 

COROLLARY 3.6. Let y(t) be a solution of (3.1) with 

(3.9) y(a) = A, y '(b) = B, y(t) > 0 on (a, b). 

Assume equation (3.4) has a solution with z(a) = z'(b) = 0, z'(t) > 0 
on [a, b). Then y(t) is the unique positive solution satisfying (3.9). 

Whether or not the converse of Corollary 3.6 is valid is undecided. 
For a certain class of equations, Coffman [13] has given sufficient 
conditions which guarantee the uniqueness of the positive solutions 
satisfying y (a) = y(b) = 0 and y(a) = y'(b) = 0. Obviously, if 
B < 0 in (3.9) we must have A > 0. 

4. In this section we shall consider the third order nonlinear 
equation 

(4.1) f'=f(t,y,y',f). 

We begin with a definition which, when (4.1) is linear, is due to 
Hanan [6]. 

DEFINITION 4.1. Equation (4.1) is said to be of class I in case every 
(0; 3) BVP for (4.1) has at most one solution. Similarly (4.1) is said to 
be of class II in case every (3; 0) BVP for (4.1) has at most one solution. 

Our first result is a slight generalization of a sufficient condition, 
due to Hanan [6], in order that the equation 

(4.2) y'" + py" + qy ' + ry = 0, p,q,rG C(0, + oo )? 

belong to class I or II. (Hanan considered (4.2) when p = 0.) 
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THEOREM 4.2. Let p G C2, q G C , and r G C on (0, + oo ). T/ien 
equation (4.2) is of cia5S I (II) in case p ^ 0 and 2r — o; ' + p" > 0 
(p ^ 0 and 2r — q ' + p" < 0) except at isolated points. 

PROOF. Let y(t) be a solution of (4.2) with y (a) = t/(fo) = y'(b) = 0, 
a < b. Multiply (4.2) by y(i) and integrate by parts to get 

[pyy'-i(y')2]ha- \" p(y')2dt 
-1 Ja 

(4.3) 
+ [ (q - p')yy'dt+ \ ry2dt=0. 

Ja Ja 

Since Sa{q - p'iyy'dt = " K V - p")y2dt, (4.3) gives 

(4.4) ±(y'(o))* - f P(y')2dt + Ub (2r-q> + p")yMt=0 
- Ja Ja 

which is a contradiction. Similarly, one shows (4.2) is of class II if 
the inequalities are reversed. 

THEOREM 4.3. Let p G C , q, r G C on (0, + oo ). Then (4.2) is o/ 
cZass I (II) in case r ^ 0 ( r ^ 0) and fhc second order dijferential 
equation 

(4.5) V" + (q-p'l2)y = 0 

is disconjugate on (0, + oo ). 

PROOF. Suppose r = 0 and let t/(£) be a solution of (4.2) satisfying 

y'(a) = y(b) = y'(b) = 0, t / > 0, y'<0 on(a,b). 

Then multiplying (4.2) by y r(i) and integrating gives 

(4.6) 

Now if w is a solution of (4.5) with u(a) = 0, u '(a) > 0 then w > 0 on 
(a, +oo), so that expanding f%(y" — y'u'lu)2dt> 0 shows that 
J£ (y")2dt> Jt {q-p'l2)(y')2dt. (See [14, p. 431].) Substituting 
this into (4.6) we get 

(4.7) \b ryy'dt>0, 
J a 
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which is a contradiction. Likewise one shows (4.2) is of class II if 
r g O . 

We shall now apply these results to the equation 

(4.8) y"' + pf + qy'+jit,y) = o 

where fit, y) and fy(t, y) are continuous on [0, + oo ) x R. We first 
show that (4.8) satisfies condition (Hi). In fact, we have 

LEMMA 4.4. Condition (Hx) holds for the equation 

(4.9) y<»> + Ply*-v + • • • + pn_i t/' +f(t,y) = 0 

where p{ G C(0, + oo ) and fit, y) G C(0, oo ) x R. 

PROOF. Let Mi, M 2, and [c, d] be given as in condition (Hi) and let 
K=max{[ / ( t , y)\:c^t^d, \y\^ Mx}. Then for t 0 ^ t ^ d we 
have 

(4.10) |;/<«-i>(*)|=i*o+fci S ' P lî/(i)(*)l^ 
i = l J fo 

where fc0 and fcx are positive constants depending on M2, K, [c ? d] , 
and max {|p<(t)| : c^t^-d, l g i § n - l } . Since |t/(i)(*)| 1 M 2 

+ J \ |t/(i + 1)(>)|ds, l § i g n - 2 , w e have 

"S ly(,W|S*ö' + fci' SÌ C \y{iKs)\ds, 
i = l i = l Jto 

where k0 ' and ki ' are positive constants. Hence, Gronwall's inequality 
yields the result. A similar argument holds on [ c? t0]. 

THEOREM 4.5. Equation (4.8) is of class I (II) in case p = 0, 
p" - q ' ^ 0, and /„(*, y) > 0, t/ 7̂  0. (p ^ 0, p" - q ' ^ 0, and 
fy(t,y)<0yyf0.) 

PROOF. TO be specific, assume fy(t, y) > 0, y ^ 0, p ^ 0, and 
p" — g ' ^ 0. If the conclusion is not true, then let t/i and y2 be two 
solutions of the same (0; 3) BVP for (4.8). By Theorem 2.3 there is an 
interval [t^ d] and a solution y^ of (4.8) with y^ between yx and t/2 

such that 

(4.11) z"' + P2r + qz'+fy(t,yß(t))z = 0 

is (0; 3) oscillatory on [t^ d]. Therefore, by Theorem 4.2 we must 
have fy(t, yß(t)) = 0 and hence yJJ) = 0 on [t^ d]. Thus, we may 
assume yî(c) = y\(d) = t/i '(d) = 0 and t/i > 0 on (c, d) and that 
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j/2 = 0. By Lemma 2.1 (since the equation z"' = 0 is (0; 3) non-
oscillatory), it follows that for X > 0 and sufficiently small, we have 
0 < tf\(t) < y\(t) on (tk, d) and yk(tk) = yi(tk) where c < tk < d and 
where yk(t) is the solution of (4.8) satisfying yk(d) = j / x '(d) = 0, 
yx"(d) = X. But now Theorem 2.3 implies that (4.11) is (0; 3) oscil­
latory on [tp, d] for some X = /ot = y\"(d) and this contradicts Theorem 
4.2 since in this case yß(t) ^ 0. 

THEOREM 4.6. Equation (4.8) is of class I (II) in case fy(t, y)=0 
(fy(t, y) ^ 0) for all t, y and (4.5) is disconjugate on (0, + a> ). In 
fact, all (1; 3) ((3;1)) BVFsfor (4.8) haue af most one solution. 

PROOF. Apply Theorem 4.3 and Theorem 2.3. 
E X A M P L E 4.7. This example shows that the assumption in Corollary 

2.5 regarding adjacent double zeros of solutions of (1.4) (when n = 3) 
cannot be dropped in general. Consider the differential equation 

(4.12) y"' + 4y' + r(t)yy=0, 

where y > 1 is the quotient of odd integers and r(t) > 0 on (0, + o° ). 
Theorem 4.5 implies (4.12) is of class I so that all (0; 3) BVP's for (4.12) 
have at most one solution. However, the variational equation with 
respect to the zero solution is 

(4.13) y-" + 4y' = 0 

whose solutions are linear combinations of sin2£, cos2£, and sin t cos t. 
That is, (4.13) has solutions with adjacent double zeros on any interval 
of length greater than IT. 

The hypotheses of Theorem 4.5 or 4.6 imply the existence of non-
oscillatory solutions for the important case when f(t, 0) = 0. The 
proof is somewhat more detailed than that for the linear case (see 
[15] , for example). W e first prove a lemma. 

L E M M A 4.8. Consider equation (4.8) where ft, 0) = 0, solutions of 
IVP'sfor (4.8) extend to all of (0, + <» ) and either 

(a) p ^ 0, f - q ' ^ 0, andfy(t, y)>0,y ^ 0 , or 
(b) fy(t, y) = Ofor all t, y and (4.5) is disconjugate on (0, + » ). 

Then for any 0 < a< b < +<» and any k > 0 there is a solution 
y(t) of (4.8) satisfying the BVP 

(4.14) (y(a)r + ( y ' ( a ) ) 2 + ( * / > ) ) 2 = *, y(b) = y'(h) = 0. 

PROOF. Ei ther (a) or (b) implies that yk(t) > 0 on (a, b) where yk 

is the solution of (4.8) with yk(b) = yk'(b) = 0, yk
u(b) = X > 0. By 

continuity with respect to initial conditions it is clear that (4.14) can be 
satisfied for k sufficiently small. Let fc(X) = (yk(a))2 + (t /x '( a))2 
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+ (j/x"(a))2. If (a) holds, an integration of (4.8) gives for A > 0 

(4.15) J ° J a 

f q(t)yk'(t)dt=y,"(a). 
J a 

Since Jt p(t)yk"(t)dt = -yk'(a)p(a) - p'(a)yx(a) + tfp"(t)yx(t)dt and 
tfq(t)y,'(t)dt= -q(a)yk(a)- SïyK(t)q'(t)dt, (4.15) implies 

\ g feft"(o)| + \yK'(a)p(a)\ + lq(a)yx(a)\ + f fo'(0 " p"(t))y,(t)dt 
J a 

SO 

(4.16) A g |y"(fl)| + |«,x '(a)p(a)| + |9(a)t/x(a)|. 

Since the right-hand side of (4.16) cannot remain bounded for all X, 
we see that k(\) —>+<»asX--»+oo which proves (4.14). 

If (b) holds, then by Theorem (4.6) we have t/x '(t) < 0 on (a, b) so 
that by condition (Hx), there is an N > 0, depending only on [a, b] 
and fc(X), such that \yK'(t)\ + |yx"(*) |^ N on [a, b]. This shows that 
fe(X) -» + oo as X~> + oo . 

THEOREM 4.9. Let the hypotheses of Theorem 4.5 or 4.6 hoM, assume 
f(t, 0) = 0, and /or each 0 < £0 < + °° assume that solutions of IVFs 
for (4.8) extend to all of (0, + » ). Then for any 0 < T < + oo ^ r ^ is 
a solution of (4.8) with y(t) > 0 on (r, + oo ). 

PROOF. It is clear that we need only consider the case when either 
(a) or (b) of Lemma 4.8 holds since otherwise (4.8) is of class II and 
the result is obvious. Therefore, let tn —> + oo and let yn be the 
solution of (4.8) satisfying 

yn(tn) = yn '(tn) = 0 < t/n"(*n), 

(yn(T))2 + (yn'(T)r+(yn"(T))2=l. 

Since yn(t) > 0 on (T, tn), it follows, by (4.17) and a standard argument, 
that a subsequence of t/n converges to a solution t/0 of (4.8) with 
y0(t) > 0 on (r, + oo ). 

Since the oscillatory or nonoscillatory character of (4.2) is deter­
mined in many cases by the signs of the coefficients alone ([6] , 
[16], [20], [21]), it is therefore possible to obtain criteria in order 
that (4.1) be of class I or II on the basis of the signs of the partial 
derivatives of (4.1). As an example, we prove a result due to L. Jackson 
(unpublished), which is a generalization of a result due to Kim [16]. 
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THEOREM 4.10. If q â 0 and r è 0 on (0, + oo ) then no nontrivial 
solution of (4.2) satisfies y (a) = y(b) = y'(b) = 0, 0 < a< b < +°° . 

PROOF. Let y(t) be a solution of (4.2) with y(b) = t/'(fo) = 0 and 
y"(b) > 0. If y '(t) = 0 at some points t < b, let t = r be the nearest 
such point to fo. Then y'(r) = */'(&) = 0, y(t) = 0 on [r, fo], and 
; / ' (*)< 0on( r , fo). Hence, 

y" ' + py" + qy' = -ry^O on [T, b]. 

Since g = 0, the second order equation 

z" + pz ' + </* = 0 

is disconjugate on [r, b] [8, p. 362]. But with a(t) = — y'(t) and 
ß(t) = M = max.sesb |j/'(*)|> Theorem 3.1 of [11] yields a solution 
ü(t)oftheBVP, 

v" + pt; ' + qv = 0, Ü(T) = ü(b) = 0, 

witha(^) ^ v(t) ^ ß(t)on [T, b]. This contradiction proves the theorem. 

COROLLARY 4.11. Equation (4.1) is of class I in casef0(t, x0, x1} oc2) = 0 
andfi(t, x0, xÌ9 x2) = Ofor all t, x0, Xi, x2. 

As an example, using a comparison theorem for the third order 
linear equation, we have 

THEOREM 4.12. Assume equation (4.2) is of class I and that 
fy(t, y) ^ r(t)for allt, y. Then equation (4.8) is of class I. 

PROOF. Apply [6, Theorem 3.10] and Theorem 2.3. 
We conclude this section with a generalization of a result due to 

Heidel [7] which also serves to illustrate the fact that uniqueness of 
solutions of (0; 3), (3; 0) and the three point BVP for (4.1) are inde­
pendent. We also obtain a qualitative description of the types of 
zeros that (4.8) may possess under certain conditions. Parts of the 
proof are adapted from those in [7] and [17]. As in [7], we 
shall have occasion to use the following lemma, essentially due to 
Kiguradze [ 18]. 

LEMMA 4.13. Let f(t) be a continuous nonnegative function defined 
for t ^ to with fn\t) ^ 0, n ^ 2, and f%t) ^ 0, t ^ t0, i = 0, 
1, • • *, n — 1. Then there is a constant k > 0 such that for all large t 

(4.18) f(t)lf*\t) ^ kt\ i = 1,2, • • -, n - 1. 

THEOREM 4.14. Consider equation (4.8) in which we assume 

(4.19) p(t)^0, q(t)^0, q(i)-p'(t)^0, q'(t) - p"(t) ^ 0, 
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and y ft, y) > 0, y ^ 0. Let there exist a nonnegative function ß(t) 
and a number M > 0 such that 

(4.20) f[t,y)ly^ß(t)\y\y, \y\^ M, 

where y > 0. Furthermore, assume for any k > 0 there exists 7 \ > 0 

(4.21) |*p(t)| ^ <jr(t) + * 1 + W , * §= Tk. 

Finally, assume 

(4.22) J°° |p(t)|dt < + » , /°° (*1"y9(*) +' *2+y ßW)dt = + oo. 

r/ien anj/ (continuable) solution of (4.8) which has a zero is oscillatory. 

PROOF. Let t/(£) be a continuable solution of (4.8) with y(to) = 0 
and y(t) je Q for £ > £0- We may suppose, without loss of generality, 
that y(t) > 0 for t > t0. Multiplying (4.8) by y(t) and integrating 
yields: 

y"(t)y(t) -My'(t))2+ Hy'(t0))
z+ P P(s)y(s)y"(s)ds 

(4.23) 

+ f <?(%(%'(*)<fc + P- y(*)/(*,y(*))ds=0. 

Since 

f p(s)y(S)y"(s)ds= y(t)y'(i)p{t)- f p{s)(y'(s))Hs 

- f p'(s)y(s)y'(s)ds 
J t0 

and 

f (q(s)-p'(s))y(s)y'(s)ds 

= i(q(t)-p'(s))(y(t))*-l £ (9'(S)-p"(S))(//(S))^ 

we see that (4.23) gives 

(4.24) ;/"(%(*) - £(y'(*))* + y{t)y'(t)p(t) + H(t) ^ 0, 

where H(t) > 0. Therefore, if t / ' (^) = 0 for some tx > t0, then 
J/"(*i) < 0 and hence y'(f) can vanish at most once on (t0, +°° ) . If 
y'(ti) = 0 and y '(t) <0fort>tl and if y"(t) g 0 for all large t, we 
obtain an immediate contradiction to the assumption that y(t) is 
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nonoscillatory. If y"(t)^0 for all large t, then (4.24) shows that 
y'(t)-~» — a< 0, a contradiction. If t/'(t) oscillates, then since 
limsupf_>oot/'(£) = 0, we may choose £n—» + oo such that limn_> «,;/'(£„) 
= 0 and y"(tn) = 0. But then (4.24) implies ( t / ' (*n))2^ k > 0 for all 
n, where k is some positive constant. This is a contradiction. There­
fore, y(t) > 0 and y '(t) > 0 for all t > t0. 

We claim next that y"(t)>0 for all large t. If (/"(*) < 0 for 
t^T> t0, then (4.8) shows y '"(*) = -p(t)y"(t) - ?(%'(*) - flt,y{t)) 
â 0, £ ^ T, so that t/" (*) is decreasing. But then 

y'(*) = y'(T) + fT y"(s)ds^y'(T) + y"(T)(t - T) 

so that !/'(£)—» — °°, a contradiction. This also shows that y"(t)^ 0, 
t ^ T, cannot hold either. Now if t/"(£) has arbitrarily large zeros, 
choose tx < t2 so that y"(h) = y"(t2) = 0 and y"(t) f 0 on (tu t2). 
Then 

(4.25) «/"'(*) = -qMy'fr) - f[U, y(U)) < 0, i = 1, 2, 

which is a contradiction. This shows */"(£) > 0 for all large t. 
We now show that y'"(t) = 0 for all large t. 
Multiplying (4.8) by Hy" (t) and integrating, we get for any t> T, 

(4.26) y"(t) =i y"(T) exp ( - | J p(s)ds ) < + oo. 

Hence, since */ > 0, y ' > 0, and y" > 0 for all large t, we may choose 
T > 0 and k > 0 such that y(t) ^ fa ^ M for t^ T. Then applying 
(4.20) and (4.26) to (4.8) we have 

(4.27) -y'"{t)^ k0p(t) + kiq(t) + k2t^yß(t\ t^ T, 

where k0 = y"(T) exp ( - fïp(s)ds), kx = y'(T) > 0 and fc2 = kl+y. 
By (4.21) the right-hand side of (4.27) is eventually nonnegative and 
this shows that y" '(*) = ° for l a r g e *• 

Now multiplying (4.8) by tl(y'(t))l+y, integrating, and applying 
(4.20) yields 

n sy"'(s)ds ft sp(s)y"(s)ds 

JT (y'(s))y+i JT (y'(s))y+l 

(4.28) 

JT (u'(s))y JT ^ w \u (s) I 

Expanding the first integral on the left, we have 
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ft sy"'(s)ds = ty"(t) p sy"(s)ds 

(4.29) 

- / 
y"(s)ds 

T (y'(s))y+i 

where Ci and Ci are positive constants. But since y'(t) is increasing 
for t ^ T, 

l "(5^ = y "" 1 [ ( î / ' ( r ) ) " T - ( î / ' W ) " y ] < + 0 0 -
This shows that the first integral in (4.28) converges. We next show 
that the second integral in (4.28) converges. To see this, choose 
k > 0 by Lemma 4.13 so that (y '(t)ly"(t)) ^ kt for large t, say t^ T. 
Since y '(*) § y ; ( T ) , w e have for all t ^ T, 

(430) fr ^ f i ? S (1/fc(î/ '(r))y) / r p(s)dS > " °° 
Now since y"{t) is decreasing on [T, +<») we see that y'(t) = t/'(T) 
+ f r y " ( # g y ' ( T ) + ( f - r ) t / " ( r ) so that y'(t)^at for some 
a > 0 and all large t. Therefore, applying Lemma 4.13 to the fourth 
integral in (4.28) and using the above estimate for y'(t) in the third 
integral we have that 

J sl~yq(s)ds + I s2+yß(s)ds < + oo ? 

which is a contradiction. 
REMARK 4.15. We see, therefore, that if the hypotheses of Theorem 

4.14 hold and iffy(t, y) is continuous and positive for y ^ 0, then (4.8) 
is of class I by Theorem 4.5. Hence, any nontrivial solution of (4.8) 
which has a zero is oscillatory and has at most one (necessarily the 
first) double zero on (0, + » ). 

5. In this final section we shall show how some of the results which 
have been obtained for the linear differential equation of order n, 
n== 4, yield uniqueness results for equation (1.1). In [19] Leighton 
and Nehari have made an extensive study of the selfadjoint fourth 
order linear differential equation of the form 

(5.1) ( r (%")" + p(t)y = 0, r(t)>0, p(t)>0, 

or 
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(5.2) (r(t)y")" - p(t)y = 0, r(t)>0, p(t) > 0, 

where r G C(2)(0, + oo ) and p G C(0, + oo ). As is shown, the oscil­
latory behavior of (5.1) and (5.2) is quite dissimilar — all solutions 
of (5.1) are either oscillatory or nonoscillatory whereas (5.2) will 
always have some nonoscillatory solutions. To be specific, we have the 
easily established 

LEMMA 5.1 [19, LEMMAS 2.1, 2.2]. 

(a) Ify(t) is a solution of (5.2) and the values ofy, y', y", and (ry")' 
are nonnegative {but not all zero) for t = a, then the functions 
y(t), y '(t), y"(t), and (r(t)y"(t)) ' are positive for t> a. 

(b) IjFjf(fl)§0, y " ( f l ) è O , y ' ( f l ) g O and (ry") '(a) g 0, then y(t) 
and y"(t) are positive and y'(t) and (r(t)y"(t))f are negative for 
0<t<a. 

Consider now the equation 

(5.3) (r(t)y")"+f(t,y) = 0, r(t) > 0. 

We obtain, from Lemma 5.1 and Theorem 2.3 

THEOREM 5.2. All (4;j) and (J; 4) BVP's, O^j^ 3, for equation 

(5.3) have at most one solution provided fy(ty y) < 0, y ^ 0. 

For the classical fourth order equation 

(5.4) y"+py"' + qy" + ry' + sy = 0, 

where p G C ', q, ry s G C on (0, + oo ), we have 
THEOREM 5.3. All (4; 2) BVFs for (5.4) have unique solutions if 

r(t) ^§ 0, r(t) + ts(t) ^ 0, t > 0, and the second order equation 

(5.5) *" + (q - p 7 2 ) x = 0 

is disconjugate on(0,+ oo ). 

PROOF. If not, we may assume y(t) is a solution of (5.4) with 
y(a) = y'(a) = y"(a) = 0= y" (b), y > 0, y ' > 0, and y" > 0 on (a, b). 
Multiplying (5.4) by y" and integrating by parts we obtain, after re­
arranging, 

(5.6) f (y"')Ht= f (q-p'i2)(y")*dt+ J* (ry'+ sy)y"dt. 
Ja Ja Ja 

Since (5.5) is nonoscillatory, it follows, as in Theorem 4.3, that 

(5.7) f (ry'+ sy)y"dt>0. 
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However, we have y(i) â y'(t)(t — a) so that y(t)ly'(t) ^ t on (a, b). 
Hence, the integrand in (5.7) is nonpositive on (a, b), a contradiction. 

Under slightly different assumptions we have 

THEOREM 5.4. All (2; 4) BVFs for (5.4) have unique solutions pro-
vided (5.5) is disconjugate and s(t) ê 0, r(t) ~ 0. 

PROOF. If not, let y(f) be a solution of (5.4) with y"(a) = y(b) = y'(b) 
= y"(b) = 0, y" > 0, t/' < 0, y > 0 o n (a, b). Then proceeding as 
in Theorem 5.3 we obtain (5.7). Since r(t) = 0 and s(t) = 0, we have 
an immediate contradiction. 

The two previous theorems imply uniqueness results for nonlinear 
fourth order equations. As an example, consider 

(5.8) yiv+pf' + qy" + ry'+f(t,y) = 0. 

If (5.5) is nonoscillatory and if r â 0, r + ify^0, then Theorem 5.3 
implies that all (4; 2) BVFs for (5.8) have at most one solution. In 
particular, the equation 

(5.9) t/iv + ry ' + p(t) sin y = 0 

satisfies these hypotheses if r(i) + tp(t) ^ 0, p(t) > 0. 
Finally, we wish to cite some results of Levin [20], [21] for the 

nth order linear differential equation 

(5.10) Ly = t/(n> + p i ( % ( n - 1 } + • • • + pn(t)y = 0, 

where pi G C[a, b]. The interval [a, b] is said to be an interval of 
(k, n — k) oscillation for (5.10) in case b ^ Vi(a) a n d there exists a 
solution of (5.10) which is positive on (a, 171(0)) and has a zero of order 
i^fc at a and a zero of order ^ n — k at 171(a). (Here 171(a) is the first 
conjugate point of a and is defined as the infimum of those c > a for 
which some solution of (5.10) has at least n zeros on [a, c].) The 
interval [a, b] is said to be an interval of odd (even) oscillation type 
in case n — k is odd (even). We have the following theorem (Levin 
[20]). 

THEOREM 5.5. Consider the operator defined by 

(5.11) Liy =Ly+ r(t)y, 

where r(t) i s 0 and L is the operator defined in (5.10). Then: 
(a) every interval of odd oscillation for (5.10) is an interval of odd 

oscillation for (5.11), 
(b) every interval of even oscillation for (5.11) is an interval of even 

oscillation for (5.10). 
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In particular, using Ly = j / ( n ) = 0, one obtains the result [20] : 

COROLLARY 5.6. If c(t) = 0, the intervals of oscillation for the equa­
tion t/(n) + c(t)y = 0 are all of odd type, and if ' c(t) ^ 0 they are all of 
even type. 

By Tit [21] we denote the class of all operators L for which 
Ly = 0 has no nontrivial solution with a zero of order è i at t\ and a 
zero of order è k at £2> a= h < h= b. We are particularly interested 
in the classes Tiin-i and rn_i} 1 , for which one can be more specific 
than in Theorem 5.5. Levin [21] has shown that if L G Tn_ìyì and if 
q(t) ^ 0, then Ly — qy G Tn_ l5l. We also have 

THEOREM 5.7 [21]. Let the numbers iiy i2 — i\, • * •, in_i — in-2 &e 
either one or zero. If q0(t), qi(t), • • -, qn-2(t) = 0, then Lo G ^n-i,i 
where L0 is defined by 

n - l 

Uy=y{n)- S (<M(,fc))*-'fc - q0y. 
k=i 

For example, y{n) + cn_ij/ ( n _ 1 ) — cn_2t/(n_2) — • • • — c0t/ G ^n-i,i> 
provided a(t) § 0 , 0 ^ i ^ n - 2 . 

Using these preceding results and Theorem 2.3, we have 

THEOREM 5.8. Let L 6 T n _ u , let fify be continuous, and let 
fy(t, y) ^ 0, for all t, y. Then all (n; 0) BVFs for the equation 
Ly + fit, y) = 0 haue a£ raos£ one solution. 

THEOREM 5.9. Consider equation (1.1): 

(1.1) y(n)=f(t,y,y',--;y^), 

where fi(t, x0, xÌ7 • • -, xn-i) § 0, O ë i ^ n - 2 . Then aM (n; 0) 

BVFs for (1.1) hat)e a£ raos£ one solution. 

PROOF. Apply Theorem 2.3 and Theorem 5.7. 
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