UNIFORM CONVERGENCE OF FOURIER SERIES ON GROUPS. II

C. W. ONNEWEER

1. Introduction. In [3] A. M. Garsia and S. Sawyer proved the following. Let f be a real-valued continuous function of period 2π and normalized so that the range of f is precisely $[0,1]$. For each $y \in[0,1]$ set $E_{y}=\{x \in[0,2 \pi] ; f(x)>y\}$ and let $N\left(E_{y}\right)$ be the number of disjoint open intervals in the open set E_{y}. Then $\int_{0}^{1} \log N\left(E_{y}\right) d y<\infty$ implies that the Fourier series of f converges uniformly. In [6] N. Ja. Vilenkin considered certain 0-dimensional, compact, metrizable, abelian groups G and their charactergroups X, which are discrete, countable, abelian torsion groups [4, $(24,15)$ and $(24,26)]$. He defined an enumeration for the elements of X and developed part of the Fourier theory for functions on G. In this paper we will show that a modified version of Garsia and Sawyer's result holds for functions on a large class of the groups as described by Vilenkin.
2. The groups G and X. Let G and X be as in the introduction. Vilenkin [6] proved that there exists an increasing sequence of finite subgroups $\left\{X_{n}\right\}$ in X such that
(i) $X_{0}=\left\{\chi_{0}\right\}$, where $\chi_{0}(x)=1$ for all x in G,
(ii) each X_{n} / X_{n-1} is of prime order p_{n}, and
(iii) $\bigcup_{n=0}^{\infty} X_{n}=X$.

Furthermore, the subgroups X_{n} can be chosen in such a way that there exists a sequence $\left\{\varphi_{n}\right\}$ of characters on G satisfying $\varphi_{n} \in X_{n+1} \backslash X_{n}$ and $\varphi_{n}{ }^{p_{n+1}} \in X_{n}$. Also, we can enumerate the elements of X as follows. Let $m_{0}=1$ and $m_{n}=p_{n} m_{n-1}$. If k is a natural number and $k=\sum_{i=0}^{s} a_{i} m_{i}$ with $0 \leqq a_{i}<p_{i+1}$ for $0 \leqq i \leqq s$, then $\chi_{k}=\varphi_{0} a_{0} \ldots$ - $\varphi_{s}{ }^{a_{s}}$. This implies that $X_{n}=\left\{X_{i} \mid 0 \leqq i<m_{n}\right\}$.

Next, let G_{n} be the annihilator of X_{n}, i.e.,

$$
G_{n}=\left\{x \in G ; \chi_{k}(x)=1 \text { for } 0 \leqq k<m_{n}\right\} .
$$

Then, obviously, $G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots, \bigcap_{n=0}^{\infty} G_{n}=\{0\}$ and the G_{n} form a basis for the neighborhoods of zero in G. In [6, 3.2] Vilenkin showed that for each n there is an $x_{n} \in G_{n} \backslash G_{n+1}$ such that $\chi_{m_{n}}\left(x_{n}\right)=\exp \left(2 \pi i / p_{n+1}\right)$. He also observed that each $x \in G$ has a
unique representation $x=\sum{ }_{i=0}^{\infty} b_{i} x_{i}$ with $0 \leqq b_{i}<p_{i+1}$. This enables us to order G by means of the lexicographical ordering of the sequences $\left\{b_{n}\right\}$. Furthermore,

$$
G_{n}=\left\{x \in G ; x=\sum_{i=0}^{\infty} b_{i} x_{i} \text { with } b_{0}=\cdots=b_{n-1}=0\right\}
$$

Consequently, each coset of G_{n} has a representation of the form $z+G_{n}$, where $z=\sum_{i=0}^{n-1} b_{i} x_{i}$ for some choice of the $b_{i}, 0 \leqq b_{i}<p_{i+1}$. We will denote these z, ordered lexicographically, by $z_{\alpha}^{(n)}, 0 \leqq \alpha<m_{n}$. At times we will denote $z_{\alpha}^{(n)}+G_{n}$ simply by $z_{\alpha}+G_{n}$.

Remark 1. Examples of groups G and X as described above are
(a) $G=\prod_{n=1}^{\infty}(Z(2))_{n}$; then X is the group of Walsh functions, see [2].
(b) $G=\prod_{n=1}^{\infty} Z\left(p_{n}\right)$, where $\left\{p_{n}\right\}$ is some sequence of prime numbers; in case $p_{n}=p$ for all n, the elements of X are the generalized Walsh funtctions, see [1].
(c) G is the group of p-adic integers; then $X=Z\left(p^{\infty}\right)$, see [4, § 10 and (25.2)].
3. On Fourier series of functions on G and Dirichlet kernels. Let $d x$ denote the normalized Haar measure on G. If $f \in L_{1}(G)$ then the Fourier series of f is the series

$$
\sum_{i=0}^{\infty} c_{i} \chi_{i}(x) \quad \text { where } c_{i}=\int_{G} f(t) \overline{\chi_{i}(t)} d t
$$

For its partial sums we have

$$
\begin{equation*}
S_{n}(x ; f)=\sum_{i=0}^{n-1} c_{i} \chi_{i}(x)=\int_{G} f(x-t) D_{n}(t) d t \tag{1}
\end{equation*}
$$

where $D_{n}(t)=\sum_{i=0}^{n-1} \chi_{i}(t) . \quad D_{n}(t)$ is called the Dirichlet kernel of order n. We will need the following properties of these Dirichlet kernels.

Lemma 1. For each n,
(a) if $x \in G_{n}$ then $D_{m_{n}}(x)=m_{n}$,
(b) if $x \notin G_{n}$ then $D_{m_{n}}(x)=0$,
(c) if $x \notin G_{n}$ then $\left|D_{k}(x)\right| \leqq m_{n}$ for all k,
(d) if $x \notin G_{n}$ and $k \geqq m_{n}$ then $\int_{x+G_{n}} D_{k}(t) d t=0$.

Proof. For (a) and (b), see [6, 2.2]. For (c), see [6, 3.61]. In order to prove (d) we observe that, according to $[6,3.22]$, if $k \geqq m_{n}$ and $x \notin G_{n}$ then

$$
\int_{x+G_{n}} \chi_{k}(t) d t=0
$$

This in addition to (a) shows that

$$
\int_{x+G_{n}} D_{k}(t) d t=\int_{x+G_{n}} D_{m_{n}}(t) d t+\sum_{i=m_{n}}^{k-1} \int_{x+G_{n}} \chi_{i}(t) d t=0
$$

Definition 1. G satisfies property (P) if $\sup p_{n}=p<\infty$.
Lemma 2. Let G satisfy property (P). Then for all k, n and α, $0<\alpha<m_{n}$, we have

$$
\left|D_{k}\left(z_{\alpha}^{(n)}\right)\right|<(p+1) m_{n} / \boldsymbol{\alpha} .
$$

Proof. For each $z_{\alpha}^{(n)}$ there exists an ℓ with $0 \leqq \ell<n$ such that $z_{\alpha}^{(n)} \in G_{\ell} \backslash G_{\ell+1}$. Consequently,

$$
z_{\alpha}^{(n)}=\sum_{i=\ell}^{n-1} b_{i} x_{i}, \quad \text { with } b_{\ell} \neq 0 \text { and } 0 \leqq b_{i}<p_{i+1}
$$

Also,
$\alpha=b_{\ell} p_{\ell+2} \cdot \ldots \cdot p_{n}+b_{\ell+1} p_{\ell+3} \cdot \ldots \cdot p_{n}+\ldots+b_{n-2} p_{n}+b_{n-1}$. Therefore,

$$
\begin{aligned}
m_{\ell+1} \frac{\alpha}{m_{n}} & =b_{\ell}+\frac{b_{\ell+1}}{p_{\ell+2}}+\cdots+\frac{b_{n-2}}{p_{\ell+2} \cdot \ldots \cdot p_{n-1}}+\frac{b_{n-1}}{p_{\ell+2} \cdot \ldots \cdot p_{n}} \\
& <b_{\ell}+2 \leqq p+1
\end{aligned}
$$

Hence, Lemma l(c) implies that

$$
\left|D_{k}\left(z_{\alpha}^{(n)}\right)\right| \leqq m_{\ell+1}<(p+1) m_{n} / \alpha
$$

Remark 2. Lemma 2 is a generalization of Lemma 1 in [2].
4. The main theorem. Before stating our main result we first formulate the analogue on G of the well-known fact that each open subset of the set of real numbers R is the union of at most countably many open intervals.

Definition 2. A subset I in G is called an interval of G if for all $a, b \in I$ with $a<b$ and all $x \in G$ such that $a<x<b$ we have $x \in I$. Here $<$ refers to the ordering of the elements of G as defined in $\$ 2$.

Lemma 3. If E is an open subset in G, then E is the union of at most countably many disjoint open intervals of G, which are separated from each other by elements of $G \backslash E$. We will denote the number of such intervals by $N(E)$.

Since the proof of this lemma is similar to the proof of the classical case, i.e. for R, we omit it. The role of the rational numbers in R is taken over by the elements $z_{\alpha}^{(n)}$ of G, which, from now on, we will call the rational elements of G.

Theorem 1. Let G satisfy property (P). Let f be a continuous function on G with minimum value 0 and maximum value 1 . For $y \in[0,1]$ set

$$
E_{y}=\{x \in G ; f(x)>y\} .
$$

Then

$$
\int_{0}^{1} \log N\left(E_{y}\right) d y<\infty
$$

implies that the Fourier series of f converges uniformly on G.
The proof of the theorem will be preceded by a number of lemmas, many of which are similar to results in [3].

Lemma 4. Let G satisfy condition (P). Let E be an open subset of G for which $N(E)<\infty$ and let ψ_{E} be the characteristic function of E. Let

$$
S^{*}\left(x ; \psi_{E}\right)=\sup _{n}\left|S_{n}\left(x ; \psi_{E}\right)\right|
$$

Then there exist constants A and B, independent of E, such that for all $x \in G$

$$
\begin{equation*}
S^{*}\left(x ; \psi_{E}\right) \leqq A+B \log N(E) \tag{2}
\end{equation*}
$$

Proof. Let $E=I_{1} \cup I_{2} \cup \cdots \cup I_{N(E)}$, where the I_{j} are the disjoint open intervals as in Lemma 2 and set $\psi_{I_{j}}(x)=\psi_{j}(x), j=1,2$, $\cdots, N(E)$. For any given k choose n so that $m_{n-1} \leqq k<m_{n}$. Then, according to (1)

$$
\begin{aligned}
& S_{k}\left(x ; \psi_{E}\right)=\int_{G} \psi_{E}(x-t) D_{k}(t) d t \\
& \quad=\int_{G_{n-1}} \psi_{E}(x-t) D_{k}(t) d t+\sum_{i=1}^{N(E)} \sum_{\alpha=1}^{m_{n-1}^{-1}} \int_{\alpha_{\alpha}+G_{n-1}} \psi_{i}(x-t) D_{k}(t) d t \\
& \quad=B_{1}+B_{2}
\end{aligned}
$$

It is obvious that

$$
\begin{equation*}
\left|B_{1}\right| \leqq \int_{G_{n-1}}\left|D_{k}(t)\right| d t \leqq m_{n-1}^{-1} k \leqq p \tag{3}
\end{equation*}
$$

In order to find an estimate for B_{2} we observe that if $z \notin G_{n-1}$ and if $\psi_{i}(x-t)$ is constant on $z+G_{n-1}$ then Lemma $1(d)$ implies that

$$
\int_{z+G_{n-1}} \psi_{i}(x-t) D_{k}(t) d t=0
$$

Therefore, for each interval $I_{i}, i=1,2, \cdots, N(E)$, at most two cosets of G_{n-1} will contribute to B_{2}, say $z_{\alpha(i, 1)}+G_{n-1}$ and $z_{\alpha(i, 2)}+G_{n-1}$. Hence

$$
\left|B_{2}\right| \leqq \sum_{i=1}^{N(E)} \sum_{j=1}^{2} \int_{z_{\alpha(i, j)}+G_{n-1}}\left|D_{k}(t)\right| d t,
$$

where, if $\alpha(i, j)=\alpha(k, \ell)$ for some $i \neq k$ or $j \neq \ell$, we count such a term only once in this sum. Using this summation convention again we obtain from Lemma 2,

$$
\begin{align*}
\left|B_{2}\right| & \leqq \sum_{i=1}^{N(E)} \sum_{j=1}^{2} \sum_{k=0}^{p_{n}-1} \int_{z^{(n-1)}{ }_{(i, j)}+k x_{n-1}+G_{n}}\left|D_{k}(t)\right| d t \tag{4}\\
& \leqq m_{n}^{-1}(p+1) m_{n} \sum_{\alpha=1}^{2 p_{n} N(E)} \alpha^{-1} \leqq(p+1) C \log 2 p_{n} N(E)
\end{align*}
$$

for some constant C. Combining (3) and (4) we easily obtain (2).
In [6, 3.2] Vilenkin defined the concept of bounded variation for functions on G in the usual way. In the following we derive a characterization for functions of bounded variation.

Definition 3. For a real-valued function f in $L_{1}(G)$ and any n let

$$
F_{n}(f)=m_{n} \int_{G_{n}} \sum_{\alpha=0}^{m_{n}-2}\left|f\left(t+z_{\alpha}^{(n)}\right)-f\left(t+z_{\alpha+1}^{(n)}\right)\right| d t .
$$

Lemma 5. Let f be a real-valued function in $L_{1}(G)$. Then $F_{n}(f)$ $=O(1)$ as $n \rightarrow \infty$ if and only iff is equivalent to a function of bounded variation on G. Moreover, if f is continuous on G and $F_{n}(f)=O(1)$ as $n \rightarrow \infty$, then is of bounded variation on G.
Proof. (i) Assume $F_{n}(f)=O(1)$ as $n \rightarrow \infty$. For each n and each $x \in G$ set

$$
\tilde{f_{n}}(x)=m_{n} \int_{x+G_{n}} f(t) d t .
$$

Then, according to $[6,3.32], \lim _{n \rightarrow \infty} \tilde{f_{n}}(x)=f(x)$ a.e. on G, say for all $x \notin H$, where H is a set of measure zero. Also, if f is continuous then H is empty. Let $x_{1}<x_{2}<\cdots<x_{n}$ be elements of $G \backslash H$. Choose q so large that the cosets $x_{i}+G_{q}$ are mutually disjoint and
let $x_{i}+G_{q}=z_{\alpha(i)}+G_{q}$. Then $\alpha(1)<\alpha(2)<\cdots<\alpha(n)$ and consequently

$$
\begin{gathered}
\sum_{i=1}^{n-1}\left|\tilde{f_{q}}\left(x_{i}\right)-\tilde{f_{q}}\left(x_{i+1}\right)\right| \leqq \sum_{i=1}^{n-1} m_{q} \int_{G_{q}}\left|f\left(t+z_{\alpha(i)}^{(q)}\right)-f\left(t+z_{\alpha(i+1)}^{(q)}\right)\right| d t \\
\quad \leqq \sum_{\alpha=0}^{m_{n}-2} m_{q} \int_{G q} \mid f\left(t+z_{\alpha}^{(q)}-f\left(t+z_{\alpha+1}^{(q)}\right) \mid d t=O(1)\right.
\end{gathered}
$$

Therefore, f is of bounded variation on $G \backslash H$. A standard argument completes the proof.
(ii) Let g be of bounded variation and $g(x)=f(x)$ a.e. Then by [6, 3.22] there are two monotone increasing functions g_{1}, g_{2} on G such that $g(x)=g_{1}(x)-g_{2}(x)$ for all $x \in G$. For each n we have $F_{n}(f)=F_{n}(g) \leqq F_{n}\left(g_{1}\right)+F_{n}\left(g_{2}\right)$. From the monotonicity of g_{1} and g_{2} it follows that

$$
\begin{aligned}
F_{n}(f) & \leqq \sum_{i=1}^{2} m_{n} \int_{G_{n}} \sum_{\alpha=0}^{m_{n}-2}\left(g_{i}\left(t+z_{\alpha}^{(n)}\right)-g_{i}\left(t+z_{\alpha+1}^{(n)}\right)\right) d t \\
& =\sum_{i=1}^{2} m_{n} \int_{G_{n}}\left(g_{i}\left(t+z_{m_{n}-1}^{(n)}\right)-g_{i}\left(t+z_{0}^{(n)}\right)\right) d t \\
& \leqq \sum_{i=1}^{2} m_{n} m_{n}^{-1} 2 M_{i}
\end{aligned}
$$

where $M_{i}=\operatorname{lub}\left\{g_{i}(x) ; x \in G\right\}$. So $F_{n}(f)$ is bounded uniformly in n.
Remark 3. A straightforward computation shows that for each $f \in L_{1}(G), F_{n}(f)$ is an increasing function of n, so that $F_{n}(f)=O(1)$ as $n \rightarrow \infty$ if and only if $\lim _{n \rightarrow \infty} F_{n}(f)$ exists and is finite.

Lemma 6. Let G, f, E_{y} and $N\left(E_{y}\right)$ be as in Theorem 1 and let $\hat{N}\left(E_{y}\right)$ be defined by $\hat{N}\left(E_{y}\right)=\frac{1}{2} \lim _{n \rightarrow \infty} F_{n}\left(\psi_{E_{y}}\right)$. Then $\hat{N}\left(E_{y}\right)$ $\leqq N\left(E_{y}\right)$ except for at most countably many $y \in[0,1]$.

Proof. Since the proof is similar to the proof of Lemma 2.1 in [3] we will only give an outline here. Let Γ be the set of all $y \in[0,1]$ such that each two open intervals of E_{y} are separated by a coset of some G_{n} on which $f(x)<y$, and if $0 \notin E_{y}$ or $e \notin E_{y}$, where $0=$ $\sum_{i=0} 0 x_{i}$ and $e=\sum_{i=0}^{\infty}\left(p_{i+1}-1\right) x_{i}$, then $f(x)<y$ on the coset of some G_{n} containing 0 or e. Let Φ be the set of all $y \in[0,1]$ such that y is a relative maximum or relative minimum of f on G. Then the following holds:
(a) $[0,1] \backslash \Gamma \subset \Phi$,
(b) Φ is at most countable.

Now assume that $\tilde{y} \in \Gamma$ and that $N\left(E_{\tilde{y}}\right)=\infty$. Then $\psi_{E_{\dot{y}}}$ is not equivalent to a function of bounded variation. Lemma 5 implies that $\hat{N}\left(E_{\tilde{y}}\right)=\infty$. Next, assume $\tilde{y} \in[0,1] \backslash \Phi$ and $N\left(E_{\tilde{y}}\right)=s<\infty$. We also assume that $0, e \in E_{\dot{j}}$; if this is not the case then the following argument requires some obvious modifications. There exist s open intervals I_{1}, \cdots, I_{s} separated by subsets J_{1}, \cdots, J_{s-1} in $G \backslash E_{\dot{y}}$, so that $I_{1}<J_{1}<I_{2}<\cdots<J_{s-1}<I_{s}$ and, moreover, each of these sets will contain at least one coset of G_{m} for some sufficiently large m. Then it is easy to see that $F_{m}\left(\psi_{E_{\dot{g}}}\right)$ is equal to the number of changes from a set I to a set J or conversely, from which it follows that $\hat{N}\left(E_{\dot{y}}\right)=N\left(E_{\dot{y}}\right)-1$.

Lemma 7. Letfbe as in Theorem 1. For each k let

$$
H_{k}=\left\{y \in[0,1] ; N\left(E_{\dot{y}}\right)=k\right\}
$$

and

$$
f_{k}(x)=\int_{H_{k}} \psi_{E_{y}}(x) d y .
$$

Then each $f_{k}(x)$ is a continuous function of bounded variation on G.
Proof. The continuity of $f_{k}(x)$ follows from

$$
\begin{equation*}
f_{k}(x)=\int_{0}^{1} \psi_{H_{k}}(y) \psi_{E_{y}}(x) d y=\int_{0}^{f(x)} \psi_{H_{k}}(y) d y . \tag{5}
\end{equation*}
$$

Next we determine $F_{n}\left(f_{k}\right)$.

$$
\begin{aligned}
& F_{n}\left(f_{k}\right) \\
& \quad=m_{n} \int_{G_{n}} \sum_{\alpha=0}^{m_{n}-2}\left|\int_{0}^{1} \psi_{H_{k}}(y)\left(\psi_{E_{y}}\left(t+z_{\alpha}^{(n)}\right)-\psi_{E_{y}}\left(t+z_{\alpha+1}^{(n)}\right)\right) d y\right| d t \\
& \quad \leqq m_{n} \sum_{\alpha=0}^{m_{n}-2} \int_{0}^{1} \int_{G_{n}}\left|\psi_{H_{k}}(y)\left(\psi_{E_{y}}\left(t+z_{\alpha}^{(n)}\right)-\psi_{E_{y}}\left(t+z_{\alpha+1}^{(n)}\right)\right)\right| d t d y \\
& \quad=m_{n} \int_{0}^{1} \psi_{H_{k}}(y) \int_{G_{n}} \sum_{\alpha=0}^{m_{n}-2}\left|\psi_{E_{y}}\left(t+z_{\alpha}^{(n)}\right)-\psi_{E_{y}}\left(t+z_{\alpha+1}^{(n)}\right)\right| d t d y .
\end{aligned}
$$

Since $F_{n}\left(\psi_{E_{y}}\right)$ increases with n and $\lim _{n \rightarrow \infty} F_{n}\left(\psi_{E_{y}}\right)=2 \hat{N}\left(E_{y}\right)$, we have

$$
\begin{aligned}
F_{n}\left(f_{k}\right) & \leqq 2 \int_{0}^{1} \psi_{H_{k}}(y) \hat{N}\left(E_{y}\right) d y \\
& \leqq 2 \int_{0}^{1} \psi_{H_{k}}(y) N\left(E_{y}\right) d y<\infty,
\end{aligned}
$$

because $N\left(E_{y}\right)=k$ on H_{k}. An application of Lemma 5 shows that f_{k} is of bounded variation.

As an immediate consequence of Lemma 7 we have
Corollary 1. If f is continuous on G and if $N\left(E_{y}\right)<\infty$ a.e. on [0,1] then there exists a sequence of continuous functions of bounded variation $\left\{f_{k}\right\}$ on G such that $f(x)=\sum_{k=1}^{\infty} f_{k}(x)$ uniformly in $x \in G$.

Proof of Theorem 1. According to Corollary 1 for each $x \in G$ and each m we have

$$
\begin{equation*}
S_{m}(x ; f)=\sum_{k=1}^{\infty} S_{m}\left(x ; f_{k}\right) \tag{6}
\end{equation*}
$$

In [5, Corollary 3] it was shown that the Fourier series of a continuous function of bounded variation on G converges uniformly. Consequently, for each N,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{k=1}^{N} S_{m}\left(x ; f_{k}\right)=\sum_{k=1}^{N} f_{k}(x) \tag{7}
\end{equation*}
$$

uniformly in $x \in G$. Furthermore, using (5) we see that for all $x \in G$ and all m

$$
\begin{aligned}
\sum_{k=N+1}^{\infty}\left|S_{m}\left(x ; f_{k}\right)\right| & \leqq \sum_{k=N+1}^{\infty} \int_{H_{k}}\left|S_{m}\left(x ; \psi_{E_{y}}\right)\right| d y \\
& \leqq \sum_{k=N+1}^{\infty} \int_{H_{k}} S_{m}^{*}\left(x ; \psi_{E_{y}}\right) d y
\end{aligned}
$$

Applying Lemma 4 we obtain

$$
\begin{aligned}
\sum_{k=N+1}^{\infty}\left|S_{m}\left(x ; f_{k}\right)\right| & \leqq \sum_{k=N+1}^{\infty} \int_{H_{k}}\left(A+B \log N\left(E_{y}\right)\right) d y \\
& =A \sum_{k=N+1}^{\infty} \mu\left(H_{k}\right)+B \sum_{k=N+1}^{\infty} \mu\left(H_{k}\right) \log k
\end{aligned}
$$

Since $\sum_{k=1}^{\infty} \mu\left(H_{k}\right) \log k=\int_{0}{ }^{1} \log N\left(E_{y}\right) d y<\infty$, we have, given $\epsilon>0$, for sufficiently large N,

$$
\begin{equation*}
\sum_{k=N+1}^{\infty}\left|S_{m}\left(x ; f_{k}\right)\right|<\epsilon \tag{8}
\end{equation*}
$$

Combining (6), (7) and (8) completes the proof of the theorem.

Remark 4. Lemmas 5 and 6 and a simple computation show that if f is a continuous real-valued function on G with range in $[0,1]$ then f is of bounded variation if and only if $\int_{0}^{1} N\left(E_{y}\right) d y<\infty$. Also, as we observed earlier, the Fourier series of a continuous function of bounded variation converges uniformly on G. Consequently, Theorem 1 can be regarded as an improvement of this result.

Acknowledgement. The results in this paper form a part of the doctoral thesis the author wrote in partial fulfillment of the requirements for the Ph.D. degree at Wayne State University, Detroit. The author wishes to express his sincere thanks to Professor Daniel Waterman for suggesting this problem to him and for his encouragement during its solution.

References

1. H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17-31. MR 16, 920.
2. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 11, 352.
3. A. M. Garsia and S. Sawyer, On some classes of continuous functions with convergent Fourier series, J. Math. Mech. 13 (1964), 589-601. MR 33 \#7777.
4. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; SpringerVerlag, Berlin, 1963. MR 28 \#158.
5. C. W. Onneweer and Daniel Waterman, Uniform convergence of Fourier series on groups. I, Michigan Math. J. 18(1971), 265-273.
6. N. Ja. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 1-35. MR 9, 224; MR 27 \#4001.

University of New Mexico, Albuquerque, New Mexico 87106

