SOME PROBABILISTIC REMARKS ON FERMAT'S LAST THEOREM

P. ERDÖS AND S. ULAM

Let $a_{1}<a_{2}<\cdots$ be an infinite sequence of integers satisfying $a_{n}=(c+o(1)) n^{\alpha}$ for some $\alpha>1$. One can ask: Is it likely that $a_{i}+a_{j}=a_{r}$ or, more generally, $a_{i_{1}}+\cdots+a_{i_{n}}=a_{i_{r}}$ has infinitely many solutions. We will formulate this problem precisely and show that if $\alpha>3$ then with probability $1, a_{i}+a_{j}=a_{r}$ has only finitely many solutions, but for $\alpha \leqq 3, a_{i}+a_{j}=a_{r}$ has with probability 1 infinitely many solutions. Several related questions will also be discussed.

Following [1] we define a measure in the space of sequences of integers. Let $\alpha>1$ be any real number. The measure of the set of sequences containing n has measure $c_{1} n^{1 / \alpha-1}$ and the measure of the set of sequences not containing n has measure $1-c_{1} n^{1 / \alpha-1}$. It easily follows from the law of large numbers (see [1]) that for almost all sequences $A=\left\{a_{1}<a_{2}<\cdots\right\}$ ("almost all" of course, means that we neglect a set of sequences which has measure 0 in our measure) we have

$$
\begin{equation*}
A(x)=(1+o(1)) c_{1} \sum_{n=1}^{x} \frac{1}{n^{1 / \alpha-1}}=(1+o(1)) c_{1} \alpha x^{1 / \alpha} \tag{1}
\end{equation*}
$$

where $A(x)=\sum_{a_{i}<x} 1$. (1) implies that for almost all sequences A

$$
\begin{equation*}
a_{n}=(1+o(1))\left(n / c_{i} \alpha\right)^{\alpha} \tag{2}
\end{equation*}
$$

Now we prove the following
Theorem. Let $\alpha>3$. Then for almost all A

$$
\begin{equation*}
a_{i}+a_{j}=a_{r} \tag{3}
\end{equation*}
$$

has only a finite number of solutions. If $\boldsymbol{\alpha} \leqq 3$, then for almost all A, (3) has infinitely many solutions.

It is well known that $x^{3}+y^{3}=z^{3}$ has no solutions, thus the sequence $\left\{n^{3}\right\}$ belongs to the exceptional set of measure 0 .

Assume $\alpha>3$. Denote by E_{α} the expected number of solutions of $a_{i}+a_{j}=a_{r}$. We show that E_{α} is finite and this will immediately
imply that for almost all sequences $A, a_{i}+a_{j}=a_{r}$ has only a finite number of solutions. Denote by $P(u)$ the probability (or measure) that u is in A. We evidently have

$$
\begin{aligned}
E_{\alpha} & =\sum_{n=1}^{\infty} P(n) \sum_{u+v=n} P(u) P(v) \\
& =c_{1}^{3} \sum_{n=1}^{\infty} \frac{1}{n^{1-1 / \alpha}} \sum_{u+v=n} \frac{1}{u^{1-1 / \alpha} v^{1-1 / \alpha}} \\
& <c_{2} \sum_{n=1}^{\infty} \frac{1}{n^{1-1 / \alpha}} \frac{1}{n^{1-2 / \alpha}}=c_{2} \sum_{n=1}^{\infty} \frac{1}{n^{2-3 / \alpha}}<c_{3}
\end{aligned}
$$

which proves our theorem for $\alpha>3$. One could calculate the probability that (3) has exactly r solutions $(r=0,1, \cdots)$.

Let now $\alpha \leqq 3$. The case $\alpha=3$ is the most interesting; the case $\alpha<3$ can be dealt with similarly. Denote by $E_{\alpha}(x)$ the expected number of solutions of (3) if a_{i}, a_{j} and a_{r} are $\leqq x$. We have

$$
\begin{align*}
E_{3}(x) & =\sum_{n=1}^{x} P(n) \sum_{u+v=n} P(u) P(v)=c_{1}{ }^{3} \sum_{n=1}^{x} \frac{1}{n^{2 / 3}} \sum_{u+v=n} \frac{1}{(u v)^{2 / 3}} \tag{4}\\
& =(1+o(1)) c_{1}{ }^{3} \sum_{n=1}^{x} \frac{1}{n^{2 / 3}} \frac{c_{2}}{n^{1 / 3}}=(1+o(1)) c_{1}{ }^{3} c_{2} \log x .
\end{align*}
$$

By a little calculation, it would be easy to determine c_{2} explicitly. Now we prove by a simple second moment argument that for almost all A the number of solutions $f_{3}(A, x)$ of $a_{i}+a_{j}=a_{r}, a_{r} \leqq x$ satisfies

$$
\begin{equation*}
f_{3}(A, x)=(1+o(1)) c_{1}{ }^{3} c_{2} \log x, \text { that is } f_{3}(A, x) / E_{3}(x) \rightarrow 1 \tag{5}
\end{equation*}
$$

To prove (5) we first compute the expected value of $f_{3}(A, x)^{2}$.
The expected value of $f_{3}(A, x)$ was $E_{3}(x)$ which we computed in (4). Denote by $E_{3}{ }^{2}(x)$ the expected value of $f_{3}(A, x)^{2}$. We evidently have

$$
\begin{equation*}
E_{3}^{2}(x)=\sum_{1 \leqq n_{1} \leqq x ; 1 \leqq n_{2} \leqq x} P\left(n_{1}\right) P\left(n_{2}\right) \sum_{u_{1}+v_{1}=n_{1} ; u_{2}+v_{2}=n_{2}} P\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \tag{6}
\end{equation*}
$$

where $P\left(u_{1}, v_{1}, u_{2}, v_{2}\right)$ is the probability that $u_{1}, v_{1}, u_{2}, v_{2}$ occurs in our sequence. If these four numbers are distinct, then clearly $P\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=P\left(u_{1}\right) P\left(u_{2}\right) P\left(v_{1}\right) P\left(v_{2}\right)$, but if say $u_{1}=u_{2}$, the probability is larger. Hence $E_{3}{ }^{2}(x)>\left(E_{3}(x)\right)^{2}$ and to get the opposite inequality we have to add a term which takes into account that the four terms do not have to be distinct, or $n_{1}<n_{2}, u_{1}=u_{2}$.

$$
\begin{align*}
& E_{3}{ }^{2}(x)<\left(E_{3}(x)\right)^{2} \\
&+c \sum_{n_{1}=1}^{x} P\left(n_{1}\right) P\left(n_{1}+v_{2}-v_{1}\right) \sum_{u_{1}+v_{1}=n_{1} ; v_{2}<x} P\left(u_{1}\right) P\left(v_{1}\right) P\left(v_{2}\right) \\
&<\left(E_{3}(x)\right)^{2}+\sum_{n_{1}=1}^{x} \frac{c_{1}}{n_{1}} \sum_{v_{2}=1}^{x} P\left(v_{2}\right) P\left(n_{1}+v_{2}-v_{1}\right) \tag{7}\\
&<\left(E_{3}(x)\right)^{2}+\sum_{n_{1}=1}^{x} \frac{c_{1}}{n_{1}} \sum_{v_{2}=1}^{\infty} P\left(v_{2}\right)^{2}<\left(E_{3}(x)\right)^{2}+\sum_{n=1}^{x} \frac{c_{2}}{n} \\
&<\left(E_{3}(x)^{2}\right)+c_{3} \log x .
\end{align*}
$$

Thus

$$
\begin{equation*}
\left(E_{3}\left(x^{2}\right)\right)<E_{3}^{2}(x)<\left(E_{3}(x)\right)^{2}+c_{3} \log x . \tag{8}
\end{equation*}
$$

(8) implies by the Tchebycheff inequality that the measure of the set A for which

$$
\begin{equation*}
\left|f_{3}(A, x)-E_{3}(x)\right|>\epsilon \log x \tag{9}
\end{equation*}
$$

is less than $c / \epsilon^{2} \log x$. This easily implies that for almost all A

$$
\begin{equation*}
\lim _{x=\infty} f_{3}(A, x) / E_{3}(x)=1 \tag{10}
\end{equation*}
$$

To show (10) let $x_{k}=2^{k(\log k)}$. From (9) and the Borel-Cantelli Lemma it follows that

$$
\begin{equation*}
\lim _{k=\infty} f_{3}(A, x) / E_{3}\left(x_{k}\right)=1 \tag{11}
\end{equation*}
$$

(11) now easily implies (10), $f_{3}(A, x)$ is a nondecreasing function of x, thus if $x_{k}<x<x_{k+1}, f_{3}\left(A, x_{k}\right) \leqq f_{3}(A, x) \leqq f_{3}\left(A, x_{k+1}\right)$. Thus (11) follows from $E_{3}\left(x_{n}\right) / E_{3}\left(x_{k+1}\right) \rightarrow 1$.

By the same method we can prove that for $\alpha<3$

$$
\lim _{x=\infty} \frac{f_{\alpha}(A, x)}{E_{\alpha}(x)} \rightarrow 1
$$

Similarly we can investigate the equation

$$
\begin{equation*}
a_{c_{r}}=a_{c_{1}}+a_{c_{2}}+\cdots+a_{c_{x}} \tag{12}
\end{equation*}
$$

Here by the same method we can prove that for $\alpha>k+1$ with probability 1 , (12) has only a finite number of solutions and for $\boldsymbol{\alpha} \leqq k+1$ it has infinitely many solutions.

Euler conjectured that the sum of $k-1(k t h)$ powers is never a k th power. This is true for $k=3$, unknown for $k=4$ and has been recently disproved for $k=5$ [2]. As far as we know it is possible that
for every $k \geqq 3$ there are only a finite number of k th powers which are the sum of $k-1$ or fewer k th powers.

Let $\beta>1$ be a rational number. One can ask whether $\left[n^{\beta}\right]+\left[m^{\beta}\right]$ $=\left[l^{\beta}\right]$, has solutions in integers n, m, l. One would guess that for $\boldsymbol{\beta}<3$ the equation always has infinitely many solutions but that the measure of the set in $\boldsymbol{\beta}, \boldsymbol{\beta}>3$, for which it has infinitely many solutions has measure 0 , but it is not hard to prove that the β 's for which it has infinitely many solutions is everywhere dense.

References

1. P. Erdös and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. MR 22 \#10970; See also: H. Halberstam and K. F. Roth, Sequences, Vol. 1, Clarendon Press, Oxford, 1966. MR 35 \#1565.
2. L. J. Lander and T. Parkin, A counterexample to Euler's sum of powers conjecture, Math. Comp. 21 (1967), 101-103. MR 36 \#3721.

University of Colorado, Boulder, Colorado 80302

