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FIXED LENGTH CONFIDENCE INTERVALS
FOR PARAMETERS OF THE NORMAL DISTRIBUTION
BASED ON TWO-STAGE SAMPLING PROCEDURES!

L.H. KOOPMANS AND CLIFFORD QUALLS

1. Introduction and summary. In many industrial situations the
statistician is required to estimate a statistical parameter not only with
prescribed confidence or reliability but also with prescribed precision.
The most natural procedure is to construct a confidence interval for the
parameter for which both the confidence coefficient, 1 — a, and the
length of the interval, 2L, can be specified in advance.

In this paper fixed length confidence intervals based on two-stage
sampling procedures are proposed for the variance and coefficient of
variation in the case of a single normal distribution and for the differ-
ence in means and ratio and difference of variances in the case of two
populations.

The usual one-stage sampling methods do not lead to confidence
intervals with both prescribed confidence coefficient and length for
any of the parameters we consider. In fact, no one-stage confidence
interval can be constructed for any of these parameters which satisfy
both requirements. (See, e.g. [1], [2].) The reason for this difficulty
can be seen, heuristically, by studying the classical confidence interval
for the mean p of a normal distribution when the variance o2 is also
unknown. The endpoints are X + t,s/Vn where X is the mean of a
sample of size n, ¢, is a percentile of the Student’s ¢ distribution, and s2 is
the unbiased sample variance. Now our ignorance of the magnitude of
o and consequently of its estimate s makes it impossible to select, in
advance, a sample size n which will guarantee a prescribed bound on
the length of this confidence interval.

In a pioneering paper [7] Stein showed how to overcome this prob-
lem by employing two stages of sampling. The first sampling stage is
used to obtain an estimate of @. If the usual 100(1 — a)% confidence
interval (above) computed for the first sample is not short enough to
meet the length requirement, a second sample size based on the esti-
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mate of o is completed which guarantees the satisfaction of both the
length and confidence requirements.

A fortuitous property of the normal distribution — the independence
of X and s> —makes it possible to do two things in Stein’s procedure
which are seldom possible in two-stage procedures for other distribu-
tions or other parameters of the normal distribution. First, if the usual
confidence interval for the parameter computed in the first stage is
already short enough, a second sample need not be taken. For the pro-
cedures we propose a second sample of size at least one must be taken.
Secondly, the information from the first sample can be used to estimate
the endpoints of the confidence interval as well as determine the second
sample size in Stein’s procedure. In the procedures we propose, the
sole use made of the first sample is to determine the size of the second
sample. This, coupled with the fact that every problem proposed de-
pends on the global inequality P(A M B) = P(A) + P(B) — 1, leads to
the expectation that these two-stage procedures are wasteful of data or
inefficient in the traditional statistical sense.

Why then does not one use sequential procedures? This would be
the best in many cases. However, in many other important situations
items are relatively inexpensive to test but the tests are very time con-
suming. For example in determining the yield of, say, a new strain of
rice, each experimental stage will require at least the time for the
growth of the plants to maturity —a period of several weeks. The
experimental units, either individual plants or small plots, will be
relatively inexpensive compared with the possible economic and
sociological cost of delaying the use of an improved product. In yet
other situations items are relatively inexpensive to test, but the “set up”
costs for each stage of experimentation are high. This is often the case
when the experiment requires an expensive laboratory. In the above
cases, sample size is not the appropriate measure of loss. The number
of sampling stages becomes the important component of the loss func-
tion. Now, sequential procedures become quite unattractive and,
since at least two stages are needed to guarantee both preassigned
confidence and length, procedures with exactly two stages are best.

Though sample size is of secondary importance (when compared to
the number of stages) in the cost of experimentation, sample sizes are
kept within reason as much as possible in the procedures proposed
here by taking advantage of the best one-stage procedures in each stage
of sampling.

Before the detailed procedures of this paper are given, two com-
ments are in order. Unfortunately, little guidance is available in select-
ing the first stage sample sizes, since an optimal selection (in terms of
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the total sample size of both stages) would depend on the unknown
parameters of the distribution. For a discussion of this problem for
Stein’s procedure, see Seelbinder [6] and Moshman [5]. In terms of
controlling total sample size it is probably better to take too large a
first sample than one which is too small since the second stage sample
size is often relatively sensitive to errors of estimation in the first stage.
In lieu of no prior information, one might suggest initial sample sizes
of from 25 to 50.

Secondly, note that in the two-stage procedures given here the pre-
selected length of the confidence interval, 2L, is not used until the cal-
culation of the second stage sample sizes. It is therefore possible after
the first stage is completed to adjust L to obtain smaller second stage
sample sizes, and still preserve the confidence coefficient. Thus an
initially “unrealistic” selection of L can be adjusted. Such a “mixed”
scheme destroys the fixed length property, but will prove to be a useful
(and necessary) technique in many cases.

For the convenience of potential users, the procedures are given in
the body of the paper and all proofs are relegated to a later section.

2. Confidence interval for the parameters of a single normal distri-
bution. Let X;;, Xig, * * *, Xi;, i = 1,2, beindependent, identically distri-
buted N(u, 0%) random variables. We will use subscripts 1 and 2 on
sample sizes and estimators throughout to denote the stage of sampling
to which that statistic applies. In all cases, 1 — a and 2L will denote
the preassigned confidence coefficient and confidence interval length.
X; and s;2 will denote the sample mean and variance calculated by

)—(i= 1 EXij’
s i=12
2 1 < TA:
i = Xi'—.Xiz)
S ni_ljgl( ij )

For completeness, Stein’s procedure is included.

A. Confidence interval for . (Stein’s procedure).

Stage 1. A first sample size n, is selected. (See [5], [6] for guide-
lines on the selection of the first sample size.) On the basis of the first
sample of n; observations, X, and s,2 are computed. If ¢, denotes the
solution of the equation

P<tn,—l = ta) = al2,
where t,, _, has Student’s ¢ distribution with n; — 1 degrees of freedom,
then the confidence interval
Xl - Sltal\/n_l = M = Xl + slta/\/E
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can be used, without further sampling, if
sit/Vn, = L.

If this inequality is not satisfied we must proceed to:

Stage 2. A second sample of size ny = n — n, is taken where
n= [s2t,2/[?] + 1. (Here and henceforth, [x] denotes the largest
integer strictly smaller than x. Thus, for example, [7.5] =7 but
[7] =6.)

Now, if X denotes the sample mean based on the total sample of n
observations, the desired 100(1 — a)% confidence interval is

X—L=u=X+1L.
B. Confidence interval for 2.
Stage 1. For a preselected sample size n;, a 100(1 — a/2)% upper
confidence limit forg?2 is obtained:
7,2 = (n1 — 1)s1%/Bys,
where B, is the solution of
P(X;,-1 = Byp) = al2,

and X7 _, has the chi-square distribution with n, — 1 degrees of free-
dom.

Stage 2. The exact second sample size, ne, is the smallest integer for
which

1 g
(Throughout, “exact” is to be interpreted to mean that the prescribed
level and confidence coefficient are guaranteed by use of the exact
sample size.)
It is shown in [3] that ny is a well defined random variable and in
§4 that the appropriate 100(1 — @)% confidence interval is

ng—1 . . ng — 1
22— [=¢2= 2

822 + L
L) ng

If [(ng — 1)Ing]se? — L <0, the lower endpoint of the interval can
be replaced by 0.

An approximate but explicit expression for the second sample size
ny based on an application of the central limit theorem is

— 2xa?‘il4
(2.2) ne* = [T ] + 1,
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where 1, is the solution of the equation
P(x)=1— o/4

and @ is the standard normal N(0, 1) distribution function.

The use of the approximate value of ny may cause the computed
confidence interval to have confidence coefficient somewhat smaller
than 1 — . When this is to be avoided, the explicit expression will
lead to a good “first guess” toward computing the exact sample size by
means of (2.1).

This procedure can also be used to obtain a 100(1 — a)%, length
2V'L confidence interval fora. See reference [3].

C. Confidence interval for v=olu (the coefficient of variation)
when it is known that p > ¢ for some constant ¢ > 0. The coefficient
of variation, 7 = o/u, is a useful parameter for measuring the (normal-
ized) variability of a nonnegative random variable when the distribu-
tion of such a random variable is approximated by a normal distribu-
tion. It is often the case that a positive lower bound, ¢, is known for p.
In such cases, fixed length confidence intervals for 7 can be constructed
in two stages of sampling. When no such bound for u is known, it can
be shown [2] that a purely sequential scheme is required to obtain
confidence intervals of prescribed length.

Stage 1. On the basis of the first sample of size n;, 100(1 — of4)%
confidence intervals fore and u are obtained:

0S0=7, up=p=yp,

where
5= ( (nl —_ 12312 )llz
B, ’
E=max<)_(1—t4sl, C) ﬁ_’c=)—(1+t4sl
Vi ) Vi,
and where
Ba/4 satisﬁes P(X';’;l_l § Bal4) = a/4
and

tys satisfies P(t, _; = ty4) = ofS.

Stage 2. Let [, be the unique positive real solution of the cubic
equation
Lu’c

sy T oy B0 Luo
X 2x \/Qx NG 0.
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As before 2L is the preselected length of the confidence interval for
7. Let [, = [,%V26. Now the exact second sample size ny can be
computed as the larger of the integers n’ and n” where n’ = [k%5%/1,2]
+ 1 and k is the solution of the equation ®(k) = 1 — &8, and n" is the
smallest integer satisfying the inequality

" 2 ” 2

n'l : n"l a
P(n"——:aLéxﬁ/:_l§n”+ —_‘;—>§1— ?

g- g-

Since [, and [, were selected to make n’ and an approximate expres-
sion for n” equal, the choice ny* = [k*6%[,2] + 1 is an approximate,
explicit solution for n,.

Now, let

Ws = max [p, X — L], w*=min [ X, + 1],
and
04 = max [0, ((ng — L)/ny)sy — L],
o* = min [&, ((ny — 1)iny)sz + 1]
If pe = p* and 0% = o™, set 7 = oy ju*, 7= 0*ux. Otherwise, set
7=07=2L.
Then, 1=7=7 is a 100(1 — @)% confidence interval for 7 of

(maximum) length 2L.

3. Confidence intervals for the parameters of two normal distribu-
tions. Let X;, X5, - - -; Y3, Y3, * - - be independent random variables.
The X;’s are all assumed to have the N(ux, ox?) distribution and the
Yi’s the N(uy, oy?) distribution. First and second stage sample sizes
will be denoted by nx;, ny; and nxs, nys respectively.

A. Confidence interval for ux — py.

Stage 1. Upper 100 VI — /2% confidence limits are obtained for
ox? andoy? on the basis of the first samples of size ny; and ny;:

2 2
_ nx; — 1)sx1 2 ny; — 1)Sy1
0%, = (nxy ) 52, = (ny, )

Bx o By
where By and By satisfy the equations
PX: =Bx) =1—VI—al2
PX;, = By) =1— V1 —al2
and

m1=nXl—l, m2=nyl—1.

Stage 2. Let k, be the solution of the equation
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(k) =1 — al4.

The second sample sizes nx, and ny, are selected so as to minimize
the cost of the second sample as a whole subject to the restriction

(3.1) kﬂ(g‘f_+ Fy_2>1/2

nxeg Ny

IA

L.
If cx and cy are the unit sampling costs for the two populations then
the cost of the second sample is
CxNxa + CyMNys.

An explicit allocation of sample sizes which minimizes this cost
subject to (3.1) is

2 Vexdx + Voyd
Ny = [kL cxOx CyOy, _ ]+l,

L2 Vex Ix
_ [ k2 Vexax + Voyoy
Nys [ T2 Vo (3% ]+ 1.

These sample sizes are exact in the sense previously defined but are
possibly larger than the implicitly defined solution. In the case of
equal unit sampling costs, cx = cy, these expressions become

k2 _

nxg = [ 12 Tx(Ox +0'Y)]+ 1
k.2

Nyg = [ 12 6)/(6’)( +6y)]+ 1.

The 100(1 — a)% confidence interval is now
}_(2— 72— L§[Lx“ﬂ-y§22— Y2+ L.

B. Confidence interval forox?ory®.

Stage 1. A joint 100(1 — o/2)% confidence region for ox? and ay? is
obtained based on the initial samples of sizes nx;, ny:

(nx; — 1)sg (nx1 — Dsx}
2 — ANX1 Sx1 — 5 Anx1 Sx1
ox* = s Ox° = >
= B
o, X Aux
where A, x, B, x satisfy

_Vi—a2

PG -1 = Ayx) 3

P(X2 = B,x) = \/1—_“’/_2

ny,—1 =
X1 2
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Upper and lower limits of the confidence interval for oy? are ob-
tained from the same expressions with X replaced by Y.

Stage 2. The (exact) second stage sample sizes nxy, ny, are again
selected to minimize the total cost of the second stage of sampling:
Let nxg = my + 1, nyg = my + 1. Then, m; and my are to be the
integers for which cxm; + cym, is smallest subject to the condition

Pl - Loy¥ox*< F, =1+ Loyiax)Z 1~ al2,

where Fy,  m, has the F-distribution with (m;, m,) degrees of freedom.
Explicit values of m; and my based on an approximation detailed in
the proof are

. _ [20"X4ka(\/c_x+ Vey) ]+ 1

m

Loy>Vcx
25 x ko (Vex + Vey)
* — X Y
m* = [P e ]

when, as before, cx and cy are the unit sampling costs and k, is
the solution of the equation

(k) - ®(-k)=1-2, =TI

ox’oy? '

In the case cx = c¢y,

7t
ml*= m2*= [_‘k‘;x—ka]_l_ 1.

A simpler equation for k,, which leads to a somewhat larger value
of k, thus to larger sample sizes, is

dk,) =1- ad
Finally, the desired 100(1 — )% confidence interval for ox*oy? is
S)%g/&‘)gz = L= zeb'yz = S}%z/é‘;'z + L.

C. Confidence interval for ox> —ay? The procedure of 2.B is
used to obtain 100V1 — a% confidence intervals for ox2 and oy?2
separately.

Stage 1. Let

2 2
_ 5 _ (nxy — 1)sxy _ 5, _ (ny; — 1)svy
Oox= = > oy* =
B B
X Y

when By is the solution of the equation
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P(X2, = Bx) = _l___\gl___i
and By is the solution of
P0G, < By) =+ V1=

form; = nx; — 1, mg = ny; — 1.

Stage 2. The computation of exact sample sizes nys, nys to mini-
mize cxnyxg + Cynyy can be carried out as follows: Fixy, 0 <y <1,
and determine the smallest integers m; = m,(y) and my = my(y) such
that

ax -t = ax: /= 2
and
P(mg m—i-—‘lel L=y, _ §m2+m2(1_27)1‘>§1+ Vi~ a
O'Y 6’y' 2

As vy varies between 0 and 1, m,(y) and my(y) will vary discontinu-
ously. For some interval of y values, cxm,(y) + cymsy(y) will assume
its minimum among the possible values it can assume for 0 <y < 1.
If y* is any value of y in this interval, set

nxe = my(y*), Ny = mz(‘)'*)-

Approximate but explicit expressions for nx, and ny, are

nlk, = [x%x§u+v! ]_‘_1’

L2y?

k= [2x L.(U_+v)2]+1’

where

and x, is the solution of the equation

3+ V]l — a
4

D(x) =

Ifo = Cy,
= [6x¥3D] + 1, n}, = [6y*3D] + 1,

where D = 2x,%(@x*3 + dy*3)/L,. Finally, the desired 100(1 — a)%
confidence interval forgx2 — oy?is
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nxs — 1 2 nys — 1
as Sxo — r2 S}%z + L.
nxo Nyo

A

4. Proofs. The proofs for the various procedures will be given using
the notation established in the main part of the paper as much as
possible. For clarity, it will be necessary to introduce some new nota-
tion in places and to emphasize the underlying probability space
(©2, B) upon which all the random variables are defined. Our notation
will follow that of Loéve [4]. For simplicity, we will designate the
various schemes by their section and letter indices. Thus, Stein’s
procedure (which we do not reprove) would be designated as 2.A.

2.B. First, the second sample size, the smallest integer satisfying
(2.1), is a well defined random variable. The details of the proof of the
measurability and finiteness of ny(w) are given in [3]. The proof in
[3] is the prototype of the arguments for the remainder of the implicit-
ly defined sample sizes, and we will omit these discussions hereafter.

Next, we show that the confidence interval given in 2.B has the
prescribed length and confidence coefficient. Let

no—1 » . o2
—2—— 55— o2 |§_9L .
Ny o~

A, = [02=a,% and B, = [

Recall that s,2 depends on ® both through the second sample size
ng(w) and through the second stage random sample.
Now if o« € A, N B,, then
I Ng — 1
ng
Thus,

o2

A

2
. . o .
$o%(w) — o? |—<_- ‘ L=L, since L

7% (w) 0 (w)

[ Inz_—l 52 — o2
Ny

=L ]DA,,ﬁBa.

If P, ,(A) denotes the probability of the event A based on the
N(u, o2) distribution, we obtain from the well known inequality

P(AN B)= P(A) + P(B) — 1,

the inequalities

(Jrtsr-ot =L )2 R0 0B

ny

P

"o

=P, .(A,) + P, (B,)—1.
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But by the construction of 7,2,
P, o(A) = P0G, Z Bus) = 1 — a2

Moreover,

Puo(B) = Buo

]
"'U

01° = £ ) Bu(n, dé),

where s,%(n) is the random variable s;2 based on a second sample of
sizenand P, (n, §) = P,, (np = n, 7,2 = §).

Now, let F(n, ) = P(X2_, — n| = nL/€) and let C, be the set of
values of @,2 which lead to ny = n through the definition of ny. It
follows that F(n, §) = 1 — a/2 for every £ € C, and, since [ny = n]
= [612 = Cn]’ P,,,,v(nz =n, 612 e B) = P,M,(nz =n, 612 c Cn N B)
for every Borel set B. Moreover, since the events [|(n — 1)s2%(n)lo?
— n| = nL/§] depend only on the observations of the second sample,
whereas events of the form [n, = n, ;2 € B] depend only on the
observations from the first sample, the independence of the sample
observations implies the independence of the two types of events.
It follows that the conditioning on ny = n and &,2= £ in the last
expression for P, ,(B,) can be omitted.

Furthermore, under the condition that u and o2 are the true mean
and variance of the observations, (n — 1)sy2(n)/o2has the X2_, distri-
bution. Thus,
o[BI 2Ly g

%4 o2

Finally, we obtain

B.B)= 3 [, FOE fndb

v

a @
(- 3) Zpnc

1-<
27

v
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since ey Py(n, C,) =P, (1Sn, < @) = 1.

We next indicate the basis for the approximate expression for ny,
For even moderate values of n the difference between the distribution
of X, and X2_, is negligible. Since E(X,?) = n and V(X,2) = 2n, the
Central Limit Theorem implies that

X2 —n
P Post
2n

Thus, if x, is the solution of the equation

P(x,) =1 — al4,

([ = =g
Ven T/ e

But n, is to be the smallest integer for which
P(Xz_, — n|=nLlg,2) =1 — a/2.
Thus, ny will approximately satisfy the equation

P[5 =5

\/20' 1
This suggests the approximation

=x)52¢>(x)—l.

we will have

a
=1- <
2

\\//gj:L x, or mny*= [%li]+ 1.
1

2.C. The confidence interval for 7 given here is based on Theorem
3of [2], and is given in detall in 1eference [3].

3.A. The statistics G, and &3, are independent random variables
since each depends on a different sample and they are the standard
upper endpoints of 100V1 — /2% confidence intervals for ox? and
oy? respectively. If we let

A= [O'X —(TX Uy -Uy]

and A = (ux, py, ox2,0y2), it follows that P,(A) = 1 — of2.
Let k,, nxs and ny; be selected as described in the text and take

%y — e —ui<1 (X +¢ﬁ>1/2
[lxz Yo — (ux — wy)| = ke <nx2 e ]
Then

ANBCC=[|X;— Yo — (mx —mw)|= L],
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since, by definition of nxy and ny,, if @ € A N Bthen

[Xo(w) — Yo(w) — (ux — py)| = ka( ox® " oy? )1/2

nxz(®) nys(w)

< Fx*(w) + ay*(w) V- L

o (nxz(w) nys(w) )1/2—

But, if ij and Y;, denote the second stage sample means based
on sample sizes of j and £ respectively, then

Py(B)

llMg

2:: (lxzj‘ Yoo~ (ux — my)|

2 2 /2
ag
+9

(3.A1) =k (25 470 ) na=jmm=2)

X PA(nxg =j, Nyg = f,)

By the independence of the first and second stage samples the con-
ditioning in the last expression can be omitted as in the proof of 2.B.
Furthermore, when A is the “true” vector of parameter values,

X2 Y, ¢ is normally distributed with mean ux — py and variance
0'x2[] + oy2/2. Thus,

Pu(Res = Yar G = o)l Sk (2 +227 ) = 200k - 1
2

for all j, k = 1. It follows from (3.A.1) that

2 2(1—-——)PA(nx2=j,ny2=2)=1—%.
j=1 2=1

Finally, P,(C)= P,(AN B)= P,(A)+ P,(B)— 1= 2(1— af2)
— 1=1— a Thus, the confidence interval has the desired length
and confidence coefficient.

The explicit expressions for the second sample sizes were obtained
by replacing the original minimization problem by the continuous
version in which x and y are to be found which minimize cxx + cyy
subject to the restriction

k, (*6)(2 + —&Yz )”2=
a x y
The Lagrange multiplier method readily leads to the solution
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k O'X
L*Vex

The integer values of nx,, ny; given in the text, which are obtained
by taking the smallest integers larger than x and y, can be no smaller
than the optimal integer solution. Consequently, both length and
confidence coefficient specifications are met by the explicit solution.

3.B. The proof that the confidence interval given in the text has
the correct confidence coefficient follows closely the pattern of the
proofs of 2.B and 3.A with

T (Varax+ Varoy, 4 =55 v (Vedx + Vaoy)

X =

A= [ox?=0x2=0x2,0y2 = 0y2 = 0y,

ox gx’ay? _ Sx2 — Ox ox® Oy
B= 2 2 =3 =5+ 2 2|
Ty Oy” Ox~ Sy2 Oy~ oy® Ox
and
ox2 S%2 ox2 Sxts oy’ — Sp
= : — 2 _ X X2
Oy~ Sy2 Oy~ Y2 Oy~ Sya
We omit this proof.

The explicit expressions for the second stage sample sizes were ob-
tained by the following argument. The given minimization problem
is equivalent to minimizing my + Km; subject to the constraint

Pl—a=Fp m=1+b)Z1-al2

where K= cxlcy, a= L(gy%6x2) and b= L(GyYax2). If we
allow L to approach 0, necessarily m; and m; tend to infinity. For
large m; and my, the distribution of Fom,, m, is very nearly the same as
the distribution of the ratio of independent normal random variables
by the Central Limit Theorem:

1> My =

\/2m1W1 + m, = )
a= \/_ 2W2 + mo L+b
where W, and W, are independent N(0, 1). By a linear change of

variables from W,, W; to U;, U, this last probability can be written
in the form

Pl—a=F, ,=1+b= (1—

PU =c, U, =d)
where U, and Uy are bivariate N(0, 1) with correlation coefficient
p=—{1=a2+r}-12{(1+ b2+ r}""2{1—a)1 + b) + r},
and r = my/m;. The quantities ¢ and d are ¢ = a/Vv, d = b/Vv,

where
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v; = 2((1 — a)®my=! + m;~1), vy =2((1 + b)®my~! + m;71).

We restrict attention to sequences of m; and m, values which tend
to infinity with L in such a manner that L*m,; and L?>my have limits
(possibly 0 or ©) as L— 0. It follows that ¢ and d have limits ¢y and
dy (possibly 0 or ®) and p— —1 as L— 0. Thus, the joint distribution
of U; and U, becomes singular along the line y = —x so that for
small L

PU =¢, Uy=d)=P(—co= U, = dy)
= (I)(d()) - ¢(—CQ).
It is easily seen from the above expressions for ¢ and d that dy = Bco
where B is the quantity given in the text.

We now replace the original minimization problem by the following:
Minimize my + Km, subject to the constraint

(3.B.2) ®(Bc) — D(—c) =1 — a2,

where c¢ is the function of m; and m; given above (which is close to
¢g for small L). Now let ¢, be the solution of (3.B.2). Then, ignoring
the fact that m, and m, are integers, the new constraint is equivalent
to the equation

(3.B.3) my~1 + m;~! = a?/(2¢,2).

(3.B.1)

The minimum value of my; + Km, subject to this condition is
achieved for my = VKm,. The explicit values of m; and my are now
obtained by substituting this expression into (3.B.3). The integer
versions of the solutions are those given in the text.

Note that expression (3.B.2) implies that ¢y and dy are necessarily
finite and positive. The alternate choice of ¢, is justified by the in-
equality

D(Bc) — P(—c) > 2P(c) — 1
which is valid since 8 > 1.

3.C. We also refer the interested reader to [3] for the proof of this
procedure.
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