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ABSTRACT. Imaginary powers of directional derivatives and 
of certain other operators are used to study semigroups which 
arise in the analysis of singular integral operators. Imaginary 
powers of directional derivatives are used to estimate the 
maximal functions and the Littlewood-Paley g-function of the 
Poisson integral on a Hilbert space. 

I. Introduction. The purpose of this paper is to study some of the 
implications of the existence as bounded operators of purely imaginary 
powers of the infinitesimal generators of certain semigroups. The 
setting of the paper will be Classical Analysis on Hilbert Space. 

Let H be a real separable Hilbert space and let LP(H) denote the 
Banach space of p-power integrable functions with respect to the 
normal distribution with variance parameter 1. Let y—>Ty denote the 
regular representation of the additive group of H as isometries on 
Lp(H). Fix p in 1 < p < oo. Let B denote a one-one Hilbert-Schmidt 
operator on H and let nt denote the normal distribution on H with 
variance parameter tl2. Then nt ° B~l is a Borei probability measure 
on H; for fin LP(H), set 

W ) = \H TyfdntoB-\y\ 

Pz(f) = JJ Ht(f)Nt(z) dtlt 

where Nt(z) = (7rt)~ll2zexip( — t~lz2). Pz(f) is the Poisson integral 
of / . If ( — Dh) denotes the infinitesimal generator of the translation 
semigroup Tth, t > 0, and if ( — T) denotes the infinitesimal generator 
of Pz, z > 0, then (Dh)

ic and Tic are strongly continuous groups of 
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bounded operators on LP(H). In addition, the analytic semigroup 

Jr«(f) = r ( a ) - 1 J " Pt(f)V>-ie-r< dt, r > 0, Re(a) > 0, 

extends to a strongly continuous semigroup on Lp(H) in Re(a) = 0. By 
using these facts and an interpolation theorem due to E. M. Stein, we 
shall study the semigroups Ia of powers of the indefinite integral, 
(DBh)ajA TaJr

a, and (DBh)aT~a. Results concerning these semigroups will 
be applied to the study of singular integral operators. 

The boundedness of imaginary powers of certain operators will also 
be applied to the study of the maximal functions and the Littlewood-
Paley g-function for the Poisson integral. 

The following table summarizes the contents and organization of the 
paper. 
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Throughout this paper A, A(x), A(x, y), etc. denote positive con­
stants which depend only on the parameters shown; and K, K(x), 
K(x, t/), etc. denote complex constants which depend only on the 
parameters shown. The value of these constants may vary with the 
occasion of their use. If T is an operator defined in a Banach space 
X to X, D(T) denotes the domain of T and R(T) denotes the range of 
T. If 1 < p < oo ? q denotes the real number conjugate to p; 
p~l + q~l = 1. (f,g)= hf(s)g(s)dfji(s) denotes the dual pairing 
between LP(S, JJL) and Lq(S, JJL). An operator T : Lp—> Lp has norm 

Mr 
Some of the results reported in this paper appeared in other forms in 

the papers [7], [8], [9], [10]. They are repeated here in order to give 
a more complete picture of the uses of imaginary powers of operators. 
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II. Preliminaries. 
1. The normal distribution on Hilbert space. To minimize the 

discussion of measure theory on Hilbert space we refer the reader to 
papers [11], [12], [13] of L. Gross and [19] of I. E. Segal. 

DEFINITION. A weak distribution on a real Hilbert space, Hy is an 
equivalence class of linear maps, F, from the conjugate space H* of H 
to real valued measurable functions (modulo null functions) on a 
probability space (depending on F). Two such maps, F and F ' , are 
equivalent if for any finite set of vectors yl7 • • -, yk in //*, F(t/1), * • -, 
F(yk) and F'(tfi), • • *, F'(yk) have the same joint distribution in fc-
space. A weak distribution is continuous if a representative is a con­
tinuous linear map (the range space has the topology of convergence 
in measure). 

In what follows we shall be most interested in the normal distribu­
tion with variance parameter c/2 > 0. This distribution is uniquely 
determined by the following properties: (1) for any y in //*, nc(y) is 
normally distributed with mean zero and variance (c/2)||t/||2; (2) nc 

maps orthogonal vectors to independent random variables. The normal 
distribution is continuous. There is an essentially unique (up to ex­
pectation preserving isomorphism) probability space (S, 2, M) and a 
continuous linear map, F, from H* to the real valued measurable func­
tions on (S, 2, jit) such that F is a representative of the normal dis­
tribution. 2 has no proper sub-a-fields with respect to which all of 
the F(y), y in H*, are measurable. The measurable functions on H are 
the measurable functions on (S, 2 , M)- LP(H, nc) = LP(S, 2, /A), by 
definition. When the variance parameter c = 2, we set n = n2 and 
LP(H) = Lp(H, n). The expectation, E(f), of a measurable func­
tion / is E(f) = SsfdfJL. 

A function f(x) on the points of H is a tame function if there is a 
Baire function g on a finite dimensional Euclidean space, Ek, and 
orthonormal vectors, hiy • • *, hk, in H * such that 

f(x) = g((x,hl),--;(x,hk)). 

The span of the hh i = 1, 2, • • -, k, in H is called the base space of 
/ . If F is a representative of the normal distribution and f(x) = 
g((x, hy), • • -, (x, hk)) is a tame function, then 

/(*) = g m M • • ; F(hk)(s)) 

is a measurable function on H. The expectation off is 

£ ( / ) = (we)-«'* j g ( t ) e x p [ - - J ^ - j d t 
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where k is the dimension of the base space of/ This equality holds in 
the sense that if either side exists and is finite then so is the other and 
the two are equal. 

Several very useful representatives of the normal distribution are 
known. Of these the one in which we shall be most interested is the 
mapping studied by Gross in [13] from H* to Borei measurable func­
tions on an abstract Wiener space. We adopt the notation and 
terminology of [ 13]. Let B be a one-one Hilbert-Schmidt operator on 
a real separable Hilbert space H. Then || Bx\\ = \x\i is a measurable norm 
on H. Let HB denote the completion of H in this norm. Let S 
denote the a-field generated by the closed subsets of HB. The 
normal distribution nc induces a Borei probability measure Nc on HB 

such that the extension of the identity map on HB* (C H*), regarded as 
a densely defined map on H* to measurable functions on (HB, <S, Nc) 
to H* is a representative of the normal distribution on H. Continuous 
functions, / on HB are measurable functions on H and if g denotes the 
restriction o f / t o H and if ^ denotes the directed set (ordered by in­
clusion of the ranges) of finite dimensional projections on H, the net 
{g(Qx) | Ç (E ^?} of measurable tame functions converges in measure to 

/ a s Q tends strongly to the identity through D. 
Let Nc be as above. We may regard B as an isometry from HB to H. 

Hence Nc° B~l is a Borei measure on H. This measure is usually de­
noted by nc ° B _ 1 . See [12] for a discussion of these measures. If/ is 
a bounded and continuous function from H to a Banach space E, 
iHf{x) dnc° B-'(x) = SnJiBy) dNc(y) = E((/° B)'). 

If / ' g> a n d / g a r e absolutely integrable tame functions on H, (fgf 
= / g ' (af + g)~= af+ g f° r constants a, and if / ^ g on H, f^ g 
almost everywhere. We shall use these properties often. 

2. Fractional powers of operators. Early work on the theory of 
fractional powers of operators is surveyed in [24]. H. Komatsu [17] 
has developed an extensive theory of fractional powers of operators. 
In [17-1, II] it is assumed that A is a linear operator (not necessarily 
densely defined) such that the negative half line is in the resolvent set 
of A and \\t(t + A)" [\\ ^ N < <*> for all t > 0. A« is defined for all com­
plex a in §4 of [ 17-1]. For our purposes it will be sufficient to recall 
some of Komatsu's results for the case when (— A) generates a 
bounded, strongly continuous semigroup on a reflexive Banach space X. 

K-l. If 0 < Re(a) < a < 1, then 

TT JO 

when x G D(A), the domain of A. 
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K-2. If 0 < Re(a) < cr < n, n a positive integer, then 

Aa*= w y : rp-l(A(t + A)-l)™*dt 
r (a) r (m - a) J o 

for x E JD( A^) when N > m > n [ 17-11, p. 92]. 
K-3. If ( — A) generates a bounded strongly continuous semigroup 

Tt on X, x E D( A) and 0 < Re(a) < a < 1, then 

A°* = r ( - a)-11°°+ (iv* - x)^-«-1 d* 

[17-1, p. 325]. 
More formally, K-l and K-3 define an operator Aa

a on a subspace 
D" of X; Da is defined in [ 17-1]. If A+

a denotes the smallest closed 
extension of A^", whose existence is proved in [17-1, Proposition 4.1], 
then Aa = A+a. Similarly K-2 defines an operator on a natural sub-
space of X and its smallest closed extension is A+

a = Aa as is shown in 
[17-11]. When Re(a) < 0, A_«a is defined by equation 4.10 of [17-1, 
p. 304] and A_^ is shown to have a smallest closed extension A_a 

which is independent of cr. When Re(a) = 0, A"* is defined by 
equation 4.11 of [17-1, p. 305] for x in D* Pi RT. If 0 < a, r < 1, 
and if x E Da D RT, A«Tx = x if a = 0 and if a ^ 0, 

sin(7ra) r (N 4S Na 

TT LJ o a 

- J" «-"1A(e+ A ) " 1 « * ] ; 

here N is an arbitrary positive real number; N does not influence the 
value of A$Tx. The right side of the above equation is analytic in a on 
the strip — r < Re(a) < cr and it coincides with Aa_Tx and A^ in the 
subdomain —r < Re(a) < 0 and 0 < Re(a) < a, respectively; so it is 
possible to give another definition of fractional powers by means of the 
operator A£T even when Re(a) ^ 0. There is the important 

K-4. For every complex a, AgT has the smallest closed extension Aoa 

which is independent of a and T when — r < Re(a) < cr. If Re(a) > 0, 
Ao« = A+* on D(A+a) Pi R(A) and if Re(a) < 0, Ao" = A_«. 

A result similar to K-4 holds for larger values of cr and r; see [ 17-1]. 
If A has a bounded inverse, RT = X and A_a is everywhere defined 

and analytic in Re(a) < 0. If x E Da, A"x is analytic in Re(a) < cr. If 
- ( n + 1 ) < R e ( a ) < 0 , 
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. — sin(7ra) ni f °° _,_ . , AX 

TT (a + 1) • • • (a + n)Jo 

and 
K-5. If Re(a) > 0, then A+a = Aoa is the inverse of Ao"a = A_-a; the 

D(A+«) is contained in the R(A_ -«). See §5 of [17-1]. 
K-6. (i) If Re(a) • Re(£) > 0, then A±«A±

ß = Ao«AJ = A±«+ß in the 
sense of the product of operators. 

(ii) If a and ß are any complex numbers, then [AoaA0
ß]c = AQ

a+ß 

where [ T] c denotes the smallest closed extension of T. 
(iii) If A has a bounded inverse and if Re(a) > 0, then A0

aA0
ß = 

Ao«+ß. 
See §7 of [17-1]. 
From the assumption that \\t(t + A)_1 | | ^ M for £ > 0 and the 

resolvent equation it follows that (t + A ) - 1 exists for t in the sector 
|arg(£)| < Arcsin(M_1) and that t(t + A ) - 1 is bounded on each ray of 
this sector. Let M(0) = sup{||t(* 4- A)-l\\ : |arg(*)| = ©}, © ^ 0; M(@)is 
an increasing function of 0 . An operator A is said to be of type 
(o>, M(0)), 0 ^ co < TT, if A is closed, densely defined, the resolvent set of 
( — A) contains the sector |arg(£)| < TT — co, and 

sup{||*(* + A)"1! : |arg(t)| = 0 } ^ M(0) < <*> 

holds for all 0 ^ 0 < TT — co. An operator A is of type (co, M(0)) for an 
co < 7T/2 if and only if ( — A) generates a semigroup Tt which has an 
analytic extension to the sector |arg(£)| < TTI2 — co such that the exten­
sion is uniformly bounded on each sector |arg(f)| < TTI2 — co — e, e > 0; 
[17-1, §10]. 

K-7. If A is an operator of type (co, M(0)) and 0 < aco < 7r/2, then 
( — A+a) is the generator of the strongly continuous semigroup 
exp( — tA+a) which is analytic in the sector |arg(£)| ^ TTI2 — aco and 
uniformly bounded on each smaller sector |arg(£)| ^ TTI2 — aco — e, 
e > 0 ; see §10 of [17-1]. 

K-8. Let A be of type (co, M(0)), then (A+a)ß = A+«ß if 0 < a < TT/CO 

and Re(/8) > 0. 
K-9. If 0 < a < 1 and if Tt = exp(-*A), then Tfx = exp(-*A«) = 

Jo TsxN(a, t, s) ds where N(a, t, s) = (2TTÌ)-1 $%±\Z exp(ws - tua) du 
[24]. 

If Tt is a bounded semigroup on X, we often need to know when 
A+

aTt is a bounded operator on X; the following theorems give some 
information of this type. 

K-10. Let A be an operator of type (co, M(0)) with co < TTI2, and 
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let Tt be the analytic semigroup generated by ( — A). If |arg(£)| < ir/2 
— ù), t j£ 0, then Ttx is in D(A+") for any x in X and Re(a) > 0, and 
we have 

A+aTtx = (2TTÌ)-1 J (-s)a exp(st)(s + A)~lxds, 

where T is the path consisting of two rays from <x>e~i& to 0 and from 
0 to <*ei& with 7 T 7 2 < © < 7 T / 2 + |arg(f)|. There is a constant N 
depending only on a, € > 0, and A such that ||A+°T,|| g N|*|-Be(a>, 
when |arg(f)| ̂  xr/2 — o> — e. 

K-ll. Let Tt be a bounded semigroup and let ( — A) be its generator. 
If there is a complex number a with Re(a) > 0 such that ||A+°Tf|| ̂  
N|*|-Re(a), t > 0, with constant N, then A is of type (CÜ, M(@)) for an 
Ü) < TT/2. 

K-10 and K-ll are quoted from §12 of [17-1]. 
3. The Poisson integral on Hilbert space. Let H be a real separable 

Hilbert space. For 1 < p < oo let Lp(H) denote the Banach space of 
p-power integrable functions with respect to the weak normal distribu­
tion (with variance parameter 1, centered at the origin) on H. Let 
t/ —» Ty denote the regular representation of the additive group of H 
by isometries on Lp(H). Iff is a bounded tame function, 

w/i.-^^-^]. 
The Ty are strongly continuous and play the role of the "translation 
operators" on LP(H)[5]. If fx is a finite Borei measure on H, then T(f) 
= / * fjL = JH Tyf dfji(y) is a bounded operator on LP(H) with norm 
at most ||/*||, the total variation of JJL. If nt denotes the normal distribu­
tion on H with variance parameter t\% and if B ̂  0 is a Hilbert-
Schmidt operator on H, then nt° B~l is a Borei probability measure 
on H [12]. Let 

»«(/)= \H TyfdntoB-\y), 

Py(f)= /J Ht(f)Nt(y)dtlt 

when Nt(y) = (iTt)~il2y exp( — t~ly2). Pz(f) is the Poisson integral 
of/. H t and Fz were studied in [6]. We shall recall some of the 
properties of these operators; the proofs of the properties not given 
here can be found in [6]. 

P-l. Ht and Pz are strongly continuous, contraction semigroups on 
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P-2. There is a unique Borei probability measure pz on H such that 
Pz(f)= ÎHTyfdpz(y). 

P-3. If a = (aÌ7 • • -,an) is a multi-index of nonnegative integers 
with \a\ = S"=i fl*> ^ ^ *s ti16 infinitesimal generator of the transla­
tion semigroup TtBh, and if Aa = A% • • • A-J^, then 

A°H t(/)= lB Tsjca^dMy) 

where Ca = C% ' • • Ch" and Chi *s t n e infinitesimal generator of 
Tshi, s > 0, acting on Li(H,nt). Thus if t > 0, AaHf is a bounded 
operator on Lp(H) and ||AÖH,||P ^ A(a, p)||/ii||ai • • • ||/in||a" Hfll'2. 

P-4. Pz is infinitely differentiable with respect to z and with respect 
to the space variable and 

A'PJJ)= | o " A'H,(f)N,(z) ddt, 

P-5. If H t = e x p ( - f A ) , then Py = exp(-yT) where T = 2A1'2; 
see [24] orK-9. 

P-6. Pz extends to an analytic semigroup in |arg(z) | < n74. PZ is 
a bounded semigroup in |arg(z)| < 7r/4 — € for each € > 0. 

PROOF. Nt(z) is analytic in |arg(z)| < 7r/2 and the integral Pz(f) 
= Î^Ht(f)Nt(z) dtlt converges uniformly on compacts in 
| a r g ( s ) | < 7 r / 4 - € f o r € > 0. 

P-7. If Pz = exp( — zT), T is one-to-one in LP(H) and R(T) is dense 
in LP(H). 

PROOF. It suffices to show that T2 is one-to-one. If T2f = 0, 
Ht2f = f for all finite t. If Ah denotes the infinitesimal generator 
of TtBh9 t > 0, then AhHt2f = Ahf for all h in H. By P-3, 

| | iVf l lp= K r l l l A l l WfWv for a11 t > 0 > let * tend to °°- Thus 

||Ahjf||p = 0 for all h in H, and TtBhf = f for all t>0 and all 
h in H. If g is a tame function on H, Hörmander's result (see the proof 
of Theorem 1.1 of [16]) that \\ryU + f/||p-> 2llp\\U\\p for U in 
Lp(Enydx) implies that ||TtBhg + g||p-> 21/>>||g||p. Since the tame 
functions are dense in LP(H), an e/3-argument shows that 

| | / | |p as t-*°o. But since T2f = 0, 
21 / p | | / | |p , and this implies that / = 0 and 

T is one-one. By Theorem 3.1 of [17-1], R(T) is dense in LP(H) 
since LP(H) is a reflexive space and T is one-to-one. 

REMARK. We have to assume in what follows that B is a one-to-one 
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Hilbert-Schmidt operator because of the present formulation of P-3 
and its influence in the proof of P-7. It is possible, however, to state 
P-3 in such a way that B is not required to be one-one; then P-7 follows 
as above and we conclude that T is one-one whenever B is not the 
zero operator. 

4. Interpolation. In §IV we shall rely heavily on a special case of 
an interpolation theorem due to E. M. Stein ([21], [25]) to estimate 
the norms of the operators which were mentioned in the introduction. 
Let B denote a dense subset of LP(H) and let C denote a dense subset 
of the dual space Lq(H). Let S be the strip 0 ̂  Re(z) ^ 1, and let 
Tz> z G S, be a family of linear operators on LP(H) which maps B 
into LP(H). 

THEOREM. Let Tz, z G S, be a family of linear operators which 
maps B into LP(H) and satisfies the following conditions: 

(1) If f G B and g G C , then <p(z) = (Tzfig) is continuous on 
S and analytic in the interior of S and 

log|<p(x + iy)\ ^ A exp(a\y |) for 0 ^ x = 1 and a < IT; 

(2) I I T ^ I I P ^ M ^ I I / H P and \\Tl+iyf\\p ^ M2(t/)||/||„ for f in B 
with log Mi(y) = Mi exp(a|t/|), a < IT, i = 1,2. 

Then \\Tt\\p g A(t)for 0 g f g l ; A(t) is bounded in tforO ^ t ^ l . 

In place of the sets B C Lp and C C Lq Stein uses simple functions 
and assumes that the Tz map simple functions to locally integrable 
functions. Zygmund [25] gives an integral formula for A(t) when 
0 < t < 1. If one replaces log Mi(y) by M exp(a|j/|), a < TT, i = 1, 2, 
in this integral and uses M exp(a\y\) ^ 2M Cosh(ay) = 2MCos(iay) 
and a circuit integral, it follows that A(i) is a bounded function in 

III. Imaginary powers of operators. 
1. Singular integrals of imaginary order. In [18] Muckenhoupt 

studied a class of singular integral operators which is of fundamental 
importance in the study of imaginary powers of infinitesimal gener­
ators. We shall only restate some of the one dimensional results here. 

Let c be a nonzero real number and set 

(TJ)(x) = [j f(x - t)t-^ dt - Ä e-* ] . 

PROPOSITION 1.1. Let g(t) be a measurable function on [0,1] 
to a Banach space X. Let (S)Jog(^) dt denote limfo^0+ /Q btb~lg(t) dt. 
Then (Tf)(x) = lime_>0+ (T€f)(x) converges almost everywhere 
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or in Lp( — oo ? oo )-norm only if 

(S) J 1 f(x - t)t~ic~l dt + J " f(x - t)t~ic~l dt 

= ( S ) £ (f(*-t)-f(x))t-*-idt 

- -&$-+ f ° 7 ( x - t)t~ic~'dt 
ic J i 

existe almost everywhere or in Lp-norm. 

Proposition 1.1 is a consequence of the fact that (S) is a regular 
summability method. 

PROPOSITION 1.2. If f is in Lp(—°°?oo)? (T€f)(x) converges almost 
everywhere and in Lp to (Tf)(x) as c—>0+. T€ is a uniformly 
bounded family of operators with \\T€\\ ^ Apq(\c\ + l ) 2 | c | _ 1 . 

Given a bounded semigroup Kt = exp(-tD) on LP(H) we will begin 
by studying the analytic semigroup (r + D)~a, Re(a) > 0, r > 0 is 
fixed. When D is suitably restricted, we shall see that (r + D)~ic is 
a strongly continuous group of bounded operators on LP(H) and that 
D~ic = S-limr_*o+(f + D)~ic, the ( —ic)th power of D is the strong limit 
of the (r + D)~ic. Since we are primarily interested in imaginary 
powers of Dh, Tth = exp( — tDh), of T, Fz = exp(— zT), and of 
(r + T)~\ we shall severely restrict the semigroup Kt from the start. 

Let v be a Borei probability measure on H such that v({0}) = 0 
and if vt(E) = v(Elt) for t > 0 and Borei sets E, then ^ * *>s = vt+s 

for all M > 0 . Set Kt(f) = / „ TJ*dvt(y) and let ( - D ) denote 
the infinitesimal generator of Kt. 

Since imaginary powers were treated in detail in [9], we shall only 
outline the theory in the following sections. 

2. Bessel-Komatsu potentials. For r > 0 and Re(a) > 0, set 

M / ) = r ( a ) " 1 J J Kt(f)**-le-rtdt 

THEOREM 2.1. Lf is an analytic semigroup of hounded operators on 
Lp(H) in |arg(a) | < 7T/2. IV* is one-to-one on LP(H) if Re(a) > 0. 
Lr

a = (Lr
l)a = (r + D)-a, the ath Komatsu power of Lr\ if Re(a) > 0. 

77ie range of Lr
a, R(Lra), is dense in LP(H) if Re(a) > 0. ||Lr

a||p ^ 
r - R e ^r(Re(a)) | r (a) | - 1 . 
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PROOF. TO check the continuity of L/*, let |arg(a)| ^ @ < n72 and 
write 

M" - / = H«)-1 Jo" (Ktf - /)r-^"rt dt + (r-"f-f). 

The last term converges strongly to 0 as a tends to zero. Given 
e > 0 , let 8 > 0 be so small that | | K , / - / | | p < e for 0 < t^ 8. 
Choose rf > 0 such that 

|r(a)|-> f" t R e ( ° ' - 1 e- r t ^<er- R e («>r(Re(a)) | r (a) | - 1 

J s 

when 0 < Re(a) < q. Then | | M / ) - f\\p ^ | r - - 11 | | / | |p 

+ €r- R e ^r(Re(a)) | r (a) | - 1 ( l + 2||/| |p) if 0 < Re(a) < T?. Since 
r(Re(a)) | r (a) | - 1 ^ M(@) < <», continuity is verified. 

Since P1'1 is analytic in Re(a) > 0 for t > 0 and since tx-l\og{t)e~rt 

is integrable, L/"(/) is analytic in Re(a) > 0. Set r(a)-1fa~1^-r* = 
ga(£) if f > 0 and ga(*) = 0 if t < 0. Then 

Lr«L/(f)= r uf)g«*gß(t)dt 
J — oo 

and direct computation shows that ga * g/s(^) = ga+/3(^); thus Lr
a^ 

= L/+0. 
If £/*(/) = 0 for some a in Re(a) > 0, then Lf+W = 

LfLJif) = 0 for all t > 0. By the principle of uniqueness for 
analytic functions Lr

a(f) = 0 for all Re(a) > 0. Strong continuity 
implies that / = 0 and that each L/* is one-one. That Lr

a = (Lr
l)a 

follows from the computation: set L(f) = fQe~rtKt(f) dt, then, if 
0 < Re(a) < 1, 

L«(/) = r(a)-1 JJ tt«-^-™*^/) du 

= r ( a ) - T ( l - a ) " 1 J " J " t-'e-ne-KKufJ) dt du 

= r ( a ) - T ( l - a ) " 1 f00 P ( t - r)-«e-tu dtKJ(f) du 
JO J r 

= r(a)~lr(l - a ) " 1 J"°° (t - r)-» J " e-toKuif) du dt 

= r ( a ) - T ( l - a ) - 1 J " (t - r)-«<t + D)~ifdt 

= r ( a ) - T ( l - a ) " 1 J " ü"a(ü + r + D)~lfdv. 
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Since (v + r + D ) _ 1 = L(vL + l )~ l , set x = t ; - 1 to get 

L«(y) =
 s m ( 7 r a ) J " X - - I L ( X + L ) - y d x = (L)«/ 

by K-1 of §11-2. If Re(a) = 1, use the semigroup property of La and 
K-6 to show that La = (L1)". 

R(Lr
a) is dense in LP(H) since by Proposition 4.3 of [17-1] 

D((r + D)a) is dense in LP(H) and by K-5, D((r 4- D)a) is contained in 
R((r+ D)_-«). 

Next we shall define and study the boundary value group L>.*c. Let 
8 > 0. If c = 0, set 8L/C(/) = / ; when c ^ 0 set 

8LrHf) = r(fc)-i f f " Kt(f)t^e-«dt + ? / 1; 

let Wc(f) = limô^o+ sLric(f) when this limit exists in the 
p-norm. 

THEOREM 2.2. For r > 0 £foe 6L/C are uniformly bounded in 8 > 0, 
r > 0, and tfie strong limit Lr

ic exists as 8-*0+. ||ôLf
ic||p ^ 

Npq(\c\ + l ) 2 \r(ic + 1 ) | - 1 where the constant N does not depend on 
8 > 0 or r > 0. 

PROOF. First consider 

( V / ) ( x ) = P / ( * - î / ) e x p ( - ylA)y"^dy + %f 
J 8 %C 

on L p ( ( - » , oo)). Let g(t) = r ~ » if t > 0 and g(t) = 0 if « g 0 , 
Since exp( - \t\IA) = (ir)"1 J r . e"ft»A(l + A2;/2)"1 dy, set ft(A, y) 
= A(TT)-\\ + A2y2)~l and write 

(T//)(x) = f " e-*» f J(x - t)e^-^g(t) dth(A, y) dy + ^ f 
J -*> J \t\>8 IC 

= r e~ixy r f f(x - t)e^x-^g(t) dt 
J - °° L J |t|>ô 

+ * ^ / ] * ( A , j , ) d j , . 

By Minkowski's integral inequality, 

|TA/||p=i _["_ h(A,y) 11/ f(x-t)e«'-<»g(t)dt 
|t|>8 

£Ìf?^-,ÌXt/ I I 

efy. 
IP 

file:///t/IA
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By Proposition II.1.2, the norm in the above integral is dominated 
by Npq(\c\ + l ) 2 ^ ) " 1 . Thus TÔ

A is a bounded operator on LP(H) and 
the bound on | |^S

A | |P does not depend on A. By Proposition III.1.2 
and the bounded convergence theorem, the T8

A converge strongly to 
a bounded operator, TA, on Lp(( — °°, °° ), dx) as 8 —» 0+ . 

Let 

8uy(f)=r(fc)-* r r Ttyft^e-«dt + -Ç- / 1 , 
and assume that / is a bounded tame function on H. Then the rota­
tional invariance of the normal distribution can be used as in the proofs 
of Theorems 7 or 4 of [8] or [9] to show that as a consequence of 
the bound on T^K \\sUyf\\p =i Npq(\c\ + l)*|T(fc + 1)\~WP 

where N does not depend on 8, r, or y. The bounded tame functions 
are dense in LP(H), so that the desired estimate holds. The rotational 
invariance of the normal distribution together with the bounded con­
vergence theorem shows that sUy converges strongly to a bounded 
operator Uy on LP(H) as 8—»0+. ÔL/C is the ^-integral with respect 
to y of the 8Uy, so that the gL^ are bounded uniformly in 8 > 0 and 
r > 0. The bounded convergence theorem implies that the ôLr

ic 

converge strongly; the required estimate holds. 

THEOREM 2.3. Lr
ic(f) = lim{L r

b+ic(/) : b-+ 0+} for each fin LP(H). 

PROOF. The integral r(a)~l I°{ Ke(/)*
a-1é?-rt dt, a= b+ ic, 

converges strongly to iLr
ic as fc—>0+. It is sufficient to consider 

Jo1 Kt(f)1?- le~rt dt. This integral is 

J1 bxb~l J1 Klf)tic-le~ndidx. 

The function bxb~l gives a regular summability method on 0 § x = 1. 
Since the integral f0

lKt(f)ta~l(e~rt — 1) dt converges strongly 
to SQ+ Kt(f)t

ic~ \e~n - 1) dt as fo-> 0+ , we consider 

lim f bxb~l f1 Kt(f)t
ic~ldtdx. 

b-+0+ J0 Jx 

From Proposition III. 1.1, we have that this last integral exists if 

lim r Kt(f)t
ic~idt+ ^-f 

exists; when the limit on € exists, the limit on b exists and the two are 
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equal. Theorem 2.2 shows that the limit on € exists, so that Lr
ic(f) 

COROLLARY 2.4. / / Re(a) > 0, Lr
a+ic = Lr

aLr
ic. 

PROOF. If 0 < e < Re(a) and iff G LP(H\ 

\\Ua+icf- V I ^ / I I P 

g rRe(f-«)r(Re(fl _ € ) ) | p ( a _ € ) | - i | | L / ^ / - Lr*Lr
icf\\p 

by the boundedness assertion of Theorem 2.1. Since 

| | V + " / - VLr-/ | |pg | |V + i c / - VC/||P + | |VC / - Lr<L»f\\p, 

let € —» 0+ ; then Theorem 2.3 and Theorem 2.1 give the desired result. 

COROLLARY 2.5. Tr
a = L r

a+ic, a ^ 0, is a strongly continuous family 
of bounded operators on LP(H) with 

||Tr-||p ^ Ar-«p9(|c| + l)2|T(fc + l)!"1-

PROOF. By Corollary 2.4, Lra+ic = Lr
aLr

ic. Since L,.a is strongly con­
tinuous by Theorem 2.1, Tr

a is strongly continuous. The bounds for 
Lr

a in Theorem 2.1 and for Ljc in Theorem 2.2 give the bound on Tr
a. 

COROLLARY 2.6. For each r > 0, Lr
icLr

id = L/<c+d>. 

PROOF. By Corollary 2.4, Lr
e+icLrid = L/+ i ( c + d ) , and by Theorem 

2.3, we may take the limit on each side of this equation as e —» 0 + to 
get the desired equality. 

COROLLARY 2.7. {Lr
ic : c real} is a strongly continuous group of 

bounded operators on LP(H) with Lr
i0 = the identity operator and 

PROOF. Because of Corollary 2.6, we need only show that 
lim{L r

i c/: c - » 0 } = / for each / in LP(H). The bound on 
||L/C||P is Apg(|c| + l)2 | r( ic + I) !" 1 g 4 A p g f r c ) - 1 ' ^ ^ ™ ) ) 1 ' 2 

on \c\ ^ 1 since \T(ic)\ = (TT)ÌI2(C sinh(7rc))~1/2 as follows from the 
well-known identity for r (z) r ( l — z)> Thus ||L/C|| is bounded on 
— 1 ^ c = 1 and lime^o+ Lr

€+icf = Lr
icf uniformly on — 1 ^ c = 1. 

Because of the strong continuity of Lr
a in Re(a) > 0, the following 

equality completes the proof: 

lim Lr
icf= lim lim L/+icf = lim l imL r

e + i c / 
c-»0 c-»0 e—0+ c->0+ c->0 

= lim Wf=f. 
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COROLLARY 2.8. Lr
icf = (r + D)~icf = [(r + D)ic] ~lf for all f in 

LP(H), and (r + D)~ic is a bounded operator on Lp(H)for all real c and 
all r > 0. 

PROOF. By Theorem 2.1, Lr
a = ((r + D)~l)a. By K-5, ((r + D)~l)a 

= (r + D)~a. The desired result follows from K-4 when we note 
that RT = Lp(H) because of the invertibility of (r + D) and the density 
in LP(H) of Da. A corollary of the uniform boundedness principle (p. 
60 of [4] ) can now be used to complete the proof. 

COROLLARY 2.9. Lr
ic is the (ic)th Komatsu power of L,. — Lr

l for 
all real c. 

PROOF. By Theorem 2.1, (Lr)
a = L°. By Theorem 8.2 of [17-1], 

for a dense set of / in LP(H), (L^^f = lima^0+(Lr)
a+icf = 

lima^Q+Lr
a+icf = Lr

icf Since Lr
a+ic (= (Lr)

a+ic) is uniformly 
bounded in a ^ 0, (Lr)

ic is bounded because of a corollary of the 
uniform boundedness principle (p. 60 of [4]) so that Lr

icf = (Lr)icf 
for a l l / i n L>(H). 

3. Imaginary powers of D. In this section we shall assume that D 
is one-to-one and that (±D 2 ) generates a bounded semigroup. If 
Kt= Pu D = T and ( - T2) generates H4t; if Kt = Tth, D = Dh and 
+ (Dh)2 generates the semigroup 

Ht
h(f) = (47Tt)-^ f " TM,/exp((-ti2/4*)) du. 

The significance of these assumptions on D is that by Theorem 
3.1 of [17-1], the range of D and the range of D2 are dense in LP(H). 

Define D(ic)f = limr^0
+ Wc{f) if the limit exists in the 

p-norm. 

THEOREM 3.1. D(ic) is the strong limit of Lr
ic as r - * 0 + and 

\\D(ic)\\p ^ Apq(\c\ + l)2 | r( ic + l)!"1 . Furthermore, D(ic) = Dic, 
the ( — ic)th Komatsu power ofD. 

PROOF. If r1? r2 > 0, 

L £ ( / ) - Hc
2(f)= lim r( ic)" 1 f°° ^ - i [ e - r i » _ e-^]Kt{f)dt 

= ± lim r ( ic ) - 1 \* tic\2 exp(-st)dsKt(f)dt 
S->0+ j ö j r i 

= ± ic P Ls
l+ic(f)ds. 
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The bounded convergence theorem insures that the equality is pre­
served in the interchange of integrals in the last equality above. Since 
by Theorem 3.1 of [17-1], LP(H) = N(D) 0 R(D\ and since N(D\ 
the null space of D, is 0 by our earlier assumption, R(D) is dense in 
LP(H). Suppose t h a t / = Dg for some g G LP(H); then 

\\I4f(Dg) - L£(Dg)||p i£ \c\ I M I , £ \\D(s + D)-»g||p ds. 

Since | | K , | P ^ 1 , | | D ( * + D ) - ' | | P ^ 2 and | |L#Dg) - L£(Dg)||p g 
A(c,p)|r1 — r2|. Since the range of D is dense in LP(H), Theorem 
II.3.6 of [4] implies that D(ic) is a bounded operator on LP(H). 

From the definition on p. 305 of [ 17-1] of purely imaginary powers, 
D-*c/ = / i f c = 0 and if c ^ 0, 

J^nç) r r* ^ + N -
J 7T L J 0 ^ ic 

- J00 ric"1D(t+ D)-{fdt 1 

and by using Corollary 2.8, 

(r + D)-fc/= J É ^ M r f rte(t + r + D)-, /& +*L±f 
7 T L J O tc 

- [°° t-ic-\D + r)(* + r + D)-[fdt 1 

where N is a positive real number. The resolvent equation implies 
that 

Dicf- (r + D)~icf= rK(c)\jN t~ic(t + D)~\t+ r+ D)~ifdt 

- I™ t~ic-[D(t+ r+ D)-l(t+ D)-[fdt 
J N 

+ r t-ic~l(t+ r+ D)lfdt 1 . 

The second and third integrals on the right are bounded operators 
on LP(H). If f = D2g, the first integral on the right converges. 
Since (±D 2 ) generates a bounded semigroup and D 2 is one-one, the 
range of D2 is dense in LP(H) by Theorem 3.1 of [17-1]. Thus 
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Theorem II.3.6 of [4] implies that (r + D)~ic converges strongly to 
D~ic as r - » 0+ and D(ic) = Dic; thus 

\\D-%^Apq(\c\ + mr(ic+l)\-K 

COROLLARY 3.2. Dic is a strongly continuous group of bounded 
operators on LP(H). 

PROOF. DicDid = Di(c+d) by K-6(ii). The continuity of Dic follows 
from the fact that the imaginary powers are continuous on a dense 
subset of LP(H) and from the uniform boundedness of the operators 

COROLLARY 3.3. If the domain D(Da) is equipped with the graph 
norm, D(Da) = D(Db) when Re(a) = Re(&). 

PROOF. Dic is bounded, so Da = Db+ic = DbDic has the graph 
norm on D(Da) equivalent to the graph norm on D(Db). 

THEOREM 3.4. D~ic is given by Muckenhoupfs singular integral 

D-/ = lim+ [Hie)-/; W ^ ^ / ] • 

PROOF. Set D(ic) equal to the integral operator in the statement of 
the theorem. By arguing as in the proof of Theorem 2.2, one sees that 
D(ic) is a bounded operator on LP(H). F o r / G ß(ö) , 

D(ic)f- (r+ D)~icf 

= ± r ( ic)" 1 lim r Kt(f)t
ic~l r te~stdsdt 

s^o JÔ Jo 

= ±ic J" Ls
ic+l(f)ds. 

The dominated convergence theorem insures the last equality. Since 
Ls

ic+Y = Ls
icLs

l and since ||LVC|| does not depend on s, it suffices to 
assume t h a t / = Dg for some g in LP(H) as the range of D is dense in 
LP(H). 

Then \\D(ic)f—(r+D)~icf\\p^=rK which tends to zero as 
r—> 0+ . Since the set of / in LP(H) of the form / = Dg is dense in 
LP(H) by Theorem 3.1 of [17-1] and since both D(ic) and D~ic are 
continuous, D~ic has the desired form. 

THEOREM 3.5. If fŒ R(D) D D(D), the infinitesimal generator of 
the semigroup Dic, c > 0, applied to f is 
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V(f) = -i [£+ (Kt(f) - f) dtlt + J" Uf) dtlt + Cf] 

where C is Euler's constant. R(D) fi D(D) is dense in LP(H). 

PROOF. If / G R(D), t^UKIflds is in R(D) fi D(D) and 
as t—>0+, the integral converges to f. Since R(D) is dense in LP(H), 
D(D) fi R(D) is dense in LP(H). 

L e t / G D(D) H R(D). Then by Theorem 3.4, 

c-i(D*/ - f)= Hm - i fr(l - fc)-1 fl (Ktf - f)t-ic~l dt 

+ r ( i - fc)-' |°° Ktft-^-idt 

+ /(r(i-ic)-'-i)(-ic)-'] 

= -.T(l - fc)"' [\l (Kj-fìt-to-idt + J" Ktft-*->dt 

+ /(i-r(i-fc))(-fc)-»]. 
Because / G D(D), the first integral converges absolutely, and as 
c—» 0+ , the first integral converges to the appropriate integral. Since 
/ E R(D), f=Dg for some g in LP(H). Restrict c to - 1 ^ c ^ 1; 
after integration by parts 

J" Wf)*-*-1 dt = K,(g) + (-ic - 1) }" Ug)t-ic-2dt. 

This last integral converges absolutely and one can apply the domi­
nated convergence theorem to take the limit as c^>0+. Since C = 
- r ' (1), V(/) has the desired form. 

IV. Some analytic semigroups. In this section we shall use the 
boundedness of certain purely imaginary powers to estimate the 
norms of operators and to study some analytic semigroups which arise 
in the study of singular integrals. We shall begin with a discussion of 
the indefinite integral. 

1. Powers of the integral. Let Re(a) > 0 and set 

(/«/)(*) = r(a)-1j* (x-y)-lf(y)dy 

for f in Lp(0, °° ). In [14] Hardy and Littlewood showed that if 
0 < Re(a) < p-{ and r = p(l - p Re(a))"1, then ||I*/||f ^ 
A(a, p)||/||p. When restricted to Lp(0,1), Ia is an analytic semi-
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group in |arg(a) | < n72. We shall define and study Iic for c real. 
Let € > 0, c be real, and / be in Lp(0, °° ) and set Iicf=f if 
c = 0 and if c / 0, set 

Set Iicf(x) = lim^o+ Ve'}*(*)if this limit exists. 

THEOREM 1.1. I€
ic is a bounded family of continuous linear operators 

on Lp(0, oo) for € > 0 and each fixed c; \\l€
ic\\P ^ Apq(\c\ + l ) 2 

• |r(ic + 1) | - 1 . ^ör / in Lp(0, » ), as € - * 0 + , IJcf(x) converges 
almost everywhere and in Lp(0, oo ). Jic is a strongly continuous group 
of bounded operators on Lp(0, °° ). 

PROOF. Notice that l€
icf(x) = 0 if x < 0. Set F(x) = f(x) if 

x > 0 and F(x) = 0 if x < 0. Then F G L p ( - o o ? o o ) and | |/ | |p = 
Il FI and 

{*/(*) = T/F(x) = r(fc)"1 [ J " F(x - t / ) ^ " 1 <fy + ^ F(x) ] . 

By Proposition III.1.2, | |T /F | | P ^ Ap<7(|c| + l)2 | r ( ic +. l ) ! ^ ^ ^ ; 
IJC is uniformly bounded in e > 0 on Lp(0, oo ). By Theorem 6 of 
[18], T€

cF(x) converges almost everywhere and in Lp(—oo?oo) 
to TcF(x) as e ->0+; then, of course, ||TC||P ^ Apq(\c\ + l ) 2 

• |r(ic + 1)|~ l and Iic has the desired form and bound. 
An integration by parts shows that the Laplace transform of Iicf 

is t-ic(Lf)(t) and this shows that IicIid = Ii(c+d) for all real c and d. 
To show that Iic is strongly continuous we need only show that 
limc_^Z ic/ = / for a fundamental set in Lp since ||/ic||p is bounded 
on |c| = 1. Characteristic functions of the intervals [0, a ] , a > 0, 
generate the step functions so that we need only show that Iicfa 

converges to fa in Lp when fa is the characteristic function [0, a]. 
Direct computation shows that Iicfa(x) = T(ic + l)_ 1x i c on 0 < x < a 
and Iicfa(x) = r(fc + l ) " 1 ^ - (x - a)ic) if x > a. By the bounded 
convergence theorem, 

lim I \xic- l\pdx = 0, 
c-M) J 0 

lim \xtc - (x - a)ic\p dx = 0. 

Since \xic - (x - a)fc| = |1 — (1 — a/x)ic| = \c\ |J#*(1 - f)^"1 dt\ 
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^ \c\(alx)(l — alx) l = \c\a(x — a) \ and since (x — a)~l is in 
Lp(2a, oo )? the dominated convergence theorem implies that 

lim r \xic - (x - a)ic\vdx = 0. 
c->0 J 2a 

Iic is a strongly continuous group of bounded operators on Lp(0, °° ). 
Now restrict to Lp(0,1). 

COROLLARY 1.2. Za is an analytic semigroup on Lp(0,1) in |arg(a)| 
< 7T/2, and Za is a strongly continuous semigroup in Re(a) = 0. 

PROOF. The analyticity is proved in [15]. Iic is a strongly con­
tinuous group by Theorem 1.1 and by taking Laplace transforms, one 
shows that IicIa = Iic+a for Re(a) > 0. Strong continuity in Re(a) è 0 
follows from the strong continuity of lic and l\ t > 0. 

THEOREM 1.3. Zic = (dldx)~icfor all real numbers c. 

PROOF. Set D = dldx, the negative of the infinitesimal generator of 
(Ttf)(x) = f(x - t). For / <E Lp(0, oo ), extend / to ( - oo, oo ) 
by setting/(x) = 0 if x < 0. Then 

(r + D)~icf(x) = lim+ r ( ic ) - 1 [ J 0 0 /(x - y)e~ryyic~l dy + ^ - / ( x ) l 

= lim H i c ) - ^ J* /(x - y)e-ryyic-1 dy + ^ - / ( x ) l 

has (r + D)~icf(x) = 0 if x < 0. Thus (r + D)" i c and D~ic map 
Lp(0, oo ) to LP(0, oo ). For / in R(D), 

[(r + D)- i c - Zic]/(x) = lim r ( ic ) - 1 [* /(x - t/)(e-rî/ - % i c _ 1 dy 

= - r ( i c ) " 1 lim J* f(x-y) I e~^dsyicdy 

= -ic I"' (s + D)-i-icf(x)ds. 
Jo 

Since / G R(D), / = Dg and ||(r + D)" i c / - Zic/||p ^ 
rA(c, p)||g||p, so that (r + D)~ic converges strongly to Iic. Thus 
T~)—ic = Tic 

We shall continue to let D = dldx in the next theorem. 

THEOREM 1.4. Let cu > IT 12, let p ^ r, and set 
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Äf r)(x) = ( / J \exp(-»\c\)D*f(x)\' dc ) * . 

Then\\^{fr)\\p^ A(p,r^)\\f\\p. 

PROOF. By Theorems 1.1 and 1.3, | |D i c / | |p S A(p,7j) exp(ij|c|)||/||p 

where rj > TTI2 and 7) — TTI2 is arbitrarily small. Minkowski's integral 
inequality implies that ||/ut(f, r)\\p ^ A(p, r, Û>)||/ | |P if p = r. 

In the next section we shall study another semigroup which consists 
of smoothing operators. 

2. Bessel potentials. In §111 let Kt be the semigroup Pt, the Poisson 
integral. Then for r > 0, Lr

a = Jr
a is the semigroup of Bessel potentials. 

The following theorem restates the main properties of L,." for Jr
a. 

THEOREM 2.1. Jr
a is an analytic semigroup of bounded operators 

in |arg(a)| < TT/2 and Jr
a is a strongly continuous semigroup in 

Re(a) ^ 0. For Re(a) ^ 0, Jr
a is the ath Komatsu power of Jr\ Jr

a 

is one-to-one, and the range ofJr
a is dense in LP(H). 

DEFINITION. Let Lp
a(H) be R(Jia) with the norm ||g||p,a = | | / | |p 

when g = J*f=Jl*f. 

COROLLARY 2.2. I/Re(a) = Re(0), LP«(H) = Lp
Re^>(tf) with equiva­

lent norms. 

This corollary follows from the fact that Jic is a bounded operator 
with a bounded inverse. We shall see soon that Lp

a(H) could have 
been defined with any of the Jr

a and an equivalent space of functions 
would have resulted. We want to show that Lp

a(H) = D(Ta) with 
equivalent norms when D(Ta) is equipped with the graph norm; 
( — T) is the infinitesimal generator of the Poisson integral. To do 
this we shall study the semigroup (r + T)aJu

a when r ^ 0 and u > 0. 

THEOREM 2.3. (r + T)aJu
a is an analytic semigroup of bounded 

operators on LP(H) in |arg(a)| < 7TI2 and a strongly continuous semi­
group of bounded operators on LP(H) in Re(a) ^ 0 for r è 0 and 
u>0. If Re(a) ^ n, 

IK' + W U I P ^ A(p) exp(2;r|Im(a)|) [u~\u + \r - u\)} » 

PROOF, (r + T)JU* = I - (r - u)Ju* so that \\(r + T)%% =g 
(u~\u + \r - u\))n. By Theorem III.2.2 and Corollary III.2.8, 

\\(r + ry%% ^ AYq2(\c\ + i)4|r(ic + i)|-* 

^ A(p)exp(27r|Im(a)|). 

By Proposition 6.3 of [17-1], (r + T)"JU° = [ ( r + T)(u + T)"1]« for 
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Re(a) > 0 , so that by Proposition 8.2 of [17-1] and by K-6, 
(r + T)aJu

a is an analytic semigroup in |arg(a) | < 77/2. Strong con­
tinuity on Re(a) ^ 0 follows from the strong continuity of (r + T)icJu

ic 

and the strong continuity of (r + T)(u + T~[y in t^O. By Stein's 
interpolation theorem, 

IK*" + T ) " / « 1 P = Mp) exp(ar|Im(«)!)(«-'(« +\r- «I))" 

when Re(a) = n. 
REMARK. An exact computation can be used to show that (r + T)aJu

a 

is given by convolution with a finite Borei measure if Re(a) > 0. 
See [7] where this is done for r = 0 and u = 1. 

Since Jic is bounded and invertible and since Tic is bounded and 
invertible, LP<*(H) = Lp

R^a\H) and D(Ta) = D(rRe<«>). Thus to prove 
that Lp

a(H) = D(Ta), it suffices to verify this equivalence for real a. 

THEOREM 2.4. Lp
a(H) = D(Ta) with equivalent norms for Re(a) ^ 0. 

PROOF. It will be sufficient to prove equivalence when a is real. 
F o r / G V ( H ) , l l / IU = ||(1 + D°/||p. Thus 

||/||p+||r«/||pg||/||p+||7-/«(i + r)«/||p 

^||/«(i + r)°/| |p+||r^(i + r)«/||p 

^ (i + ||3V1P)||(I + Trfl 
^A(a,p)\\f\\p,a 

by Theorem 2.3, and Lp
a(H) C D(Ta). 

Let fE.D(Ta) and suppose first that 0 ^ a ^ 1. Then (1 + T)"f 
= Taf + B / where Bis a bounded operator of LP(H). For 

( l + T ) « / = y—L\ F-l(T+ l)(f + 1 + T)~lfdt 
77 J 0 

, d n ^ f- 1 + 

77 JO 

+ rin^r- + 1 + 

77 JO 

Since ||(f + 1 + T)-1!! ^ A(t + l ) " 1 , the first integral on the right 
represents a bounded operator on LP(H). By the resolvent equation 
(* + 1 + T)- 1 - (t + T)- 1 = - ( * + ! + T)- !(^ + T)"1. Thus 
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sin(7ra) 
J""3 F-lT(t+ 1 + T)~lfdt 
1 o 

sin/TTOL) C °° 
= Tcf ^—^-J p-iT(t+T)-l(t+l+T)-lfdt. 

Since \\T(t + T)~l\\ ^ A and \\(t +1+ T)~l\\ ^ A(t + l ) " 1 , the last 
integral on the right represents a bounded operator on LP(H). 
Thus if 0 ^ a < 1, l l / IU = ||(1 + T)rf\p =i \\Bf\\p + ||T«/||P 

g A(p, o)(||/||p + ||T-/||P). For a = n + d, 0 ^ 3 < 1, n a positive 
integer, (1 + T)« = (1 + T)»(T* + B) = S ? _o4kï* + 2*"=o B*I*+ * 
where the A* and the Bk are bounded operators on Lp(H). By Theorem 
6.5 of [17-1], D(Ta) C D(T^) continuously forß ^ a, so that 

| | ( l + T ) « / | | p ^ A ( p , a ) ( | | / | | p + ||T«/||p) and D(T<") C LP«(H). 

3. Directional derivatives. Let h EL H and let Ah denote the in­
finitesimal generator of the translation semigroup TtBh. We shall 
study the semigroup ( — Ah)

aJa for Re(a) ^ 0 when / a is the Bessel 
potential of order a; Ja = J^. 

PROPOSITION 3.1. ( — Ah)
icJic is a strongly continuous group of 

bounded operators on LP(H). | | ( - Ah) ic/ ic||p ^ A(p) exp(2?r|c|). 

PROOF. ( — Ah)
ic and Jic are strongly continuous groups of bounded 

operators by Corollary III.3.2 and Corollary III.2.7. Since Theorems 
III.2.2 and III.3.1 give estimates for the norm of each of these operators 
of the form Apq(\c\ + l ) 2 | r ( l + ic)\~\ and since |r(fc)| = 
(7r)1/2(csinh(7Tc))~1/2, we have the desired estimate for ( — Ah)

icJic. 

PROPOSITION 3.2. Ah J is a bounded operator on LP(H). 

PROOF. The proof requires the following useful lemma. 

LEMMA 3.3. Iffis in LP(H), 1 < p < oo? and if<p(t) is the Fourier 
transform of a bounded, even, Borei measure fi on the real line, then 

< D A ( / ) = l i m f Ttyf<p(tA-i) dtlt 
e-+0 J \t\>€ 

satisfies ||4>A(/)||P ë N(p)||/i,|| | | / | |p where the constant N(p) is inde­
pendent of A and y in H. 

PROOF. First set 

(TAf)(x) = lim f f(x - t)<p(tA-1) dtlt 
€->0 J \t\>e 

for / in Lp[( — oo? oo ), dx]. Then for smooth / with compact 
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support 

(TAf)(x) = r eiux lim \ f(x - y)eiu^~x^ -& dpA(u) 
J - 0 0 €^Q J \y\>€ y 

where gxA(E) = ii(AE) for Borei sets E in the real line. By the M. 
Riesz theorem on the Hilbert transform, | |TA/ | |P ^ Mp) |HI ll/IU 
since ||/UL|| = ||/xA|| for all \A\ > 0; N(p) depends only on p. 

Let / be a bounded continuous tame function on H which is 
based in the finite dimensional subspace E of H; dimension of E = k. 
Since the normal distribution on H is rotationally invariant, let K 
be the span of E and y and let eÌ9 • • -, ek+ì be an orthonormal basis 
for K with ex = co = t/||t/||-1. Then 

If Ttyf<p(tA-i)dtlt\\P 

l j
ô < | t | < p I I» 

= f I [ g(* - ta>)Dp(x, to>) 
8||y||s|t|<p|M| | p 

• ( ^ I I - Ï A - 1 ) ^ ! rfn(x) 
where g is the restriction of / to K and where Dv(x, t<o) = 
exp[(x, t(*))lp — t2l2p]. If we write the integral over K as an iterated 
integral and write the first integral as 

£(* i ~~ t, Xo, ' • ', xk+]) M 
8|MI^I* I<PIMI 

-^—*¥- m\,»it\u.\\-iA-i\Mt. r exp L ~ 2p ] ^^iiyi i"1^1)d t i t rdxu 

it follows from the discussion of TA over (— °° , °° ) in the first para­
graph of this proof and from the dominated convergence theorem 
that | |*A( / ) | |P ^ Mp) |HI ll/IU t h e desired conclusion. 

PROOF OF PROPOSITION 3.2. By P-3 of §11.3, 

AhHt2(f) = t-i jHg TtByfCh(l)(y) dn^y), 

where C^ is the infinitesimal generator of Tsh acting on L^H, n j . 
Since Ah is a closed operator, 

where 

AhW = il L TtBvfCh(l)(y) druiyMt) dtit 
JO J

 "B 

<p(t)= r 2 J zexp(-zH-2)e-zdz, t>0. 
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Since Cfc(l)(t/) is a homogeneous polynomial of degree 1 in y, this last 
integral may be written as 

\J(f) = V uni f f TtByfCh(l)(y) dn.iyMt) dtlt 
Z €->0 J 1*1 >« J MB 

when <p(t) = <p( — t) for negative t. By Minkowski's integral in­
equality, 

||Ah//||p^ M \ H*||B„„</)||P IC^lXy)!^^) ^ N(p)||H| ||/||p 
J HB 

by Lemma 3.3, if cp(t) is the Fourier transform of a finite even Borei 
measure fi on the real line. Note that (p(t) is even by definition and 
that, on t > 0, 

<p(t) = I £ exp [ — £2 — te] dz 

so that <p'(t)^0 and </>"(£) > 0. Thus Polya's criterion [3, p. 169] 
guarantees that <p(t) is the Fourier transform of a finite even Borei 
measure on the line. 

THEOREM 3.4. ( — Ah)
aJa is an analytic semigroup of bounded 

operators on LP(H) in |arg(a)| < 7r/2 and ( — Ah)
aJa is a strongly con­

tinuous semigroup in Re(a) = 0. For Re(a) S n, 

IK- Ah)«J«\\p ̂  A(p)||fc||HeWexp(ar|Im(«)l)(l + ||AJ||P)», H = 1-

PROOF. If / G D(Ah
N) for N > Re(a), (-Ah)"J«f is analytic in 

0 < Re(a) < N by Theorem 8.2 of [17-1]. Since D(Ah
N) is dense in 

LP(H), Stein's interpolation theorem applies if we set Uz = 
( — Ah)

n+zJn+z when n is a nonnegative integer and 0 ^ Re(z) â 1. 
Then the boundedness of ( — Ah)

icJic and the boundedness of (— A^)n/n 

= ( - A J ) " imply that \\Ut\\p g A(t>P) ^ A(n, p). Since (-Ah)« = 
( - |H |AJ« = ||/i||«(- A.)-, H | = l, and since (-A,)«/« = ( - Ah)T 
( — Ah)

icJic when a = t + ic, we have boundedness for ( — \)aJa if 
Re(a) è 0. Set S„ = ( - Ah)°J«. Then if/ G LP(H), 

»s,/ - /||P g n v - SJ«/IIP + iisj«/ - vi + m - fi 
^A(p)\\J<f-f\\p+\\SJ<f-J<f\\p 

since ||Sf|| is bounded on 0 < t < 1. Let 8 > 0 and take € sufficiently 
small that | |/e/ - f\\p < Ô. Let t<e; then / £ / E D ( ( - 4 ) f ) 
and lim t_o+ | |SJ€ /—/€ / | |p = 0. Thus St is strongly continuous 
in £ ilü 0. Let IV be a positive integer and let 0 < Re(a) < N. If 
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/ G D(Ah
N\ SJ is analytic in Re(a) < N by Theorem 8.2 of [17-1]. 

For any f G LP(H\ let { / n } C D ( 4 N ) converge to / in LP(H). 
Since ||(-Ah)«/«||p is bounded in Re(a) ^ N, |Im(a)| ^ A < oo? SJ* 
is a uniform limit of analytic functions so that S ^ is analytic in 
Re(a) > 0. If |arg(a)| ^ 0 < TT/2, a = t + tc, 

| | S J - / | | p â | | S ^ - S ^ | | p + | | S ^ - / | | p 

^A(p,t) | |S f a /-/ | |p+||S tf-/ | |p . 

Since both St and Sic are both strongly continuous semigroups, if 
a—>0 in |arg(a) | ^ @ < 7T/2, S a / tends t o / . Sa is an analytic semi­
group in |arg(a) | < 7r/2 and Sa is strongly continuous in Re(a) § 0. 
Stein's interpolation theorem gives the desired estimate for ||Sa||p. 

COROLLARY 3.5. Let r > 0. ( — Ah)
aJr

a is an analytic semigroup of 
bounded operators on LP(H) in |arg(a) | < nl2 and ( —Ah)

aJr
a is a 

strongly continuous semigroup in Re(a) = 0. For Re(a) = N, 

| | ( - Ahyjr"\\p g A(N, p) exp(27r|Im(a)|)(r-i(r + |r - 1|))N. 

PROOF. Since ( - Ah)
a//* = ( - Ah)«/a[(l + T)aJr

a], and since ( - Ah)
aJa 

and (1 + T)a/r
a have the properties of analyticity and continuity, 

( — Ah)
aJr

a has these properties. The estimate follows from Theorems 
2.3 and 3.4. 

COROLLARY 3.6. There is a constant Ay(t, p) such that 

| |(a/at)[(-4.m/)] UP ^ t-^Mp, t)(l + |log|HII)WII/||P; 
Ax(p, t) is bounded for O S t^ N < oo . Furthermore, 

(didt)[(- Ahy^p^(f)] = -i(didc) [(-Ahy^p^(f)]. 

PROOF. The last derivative formula is a consequence of the analytici­
ty of ( - Ahyj« in Re(a) > 0. Set St = ( - A , ) ' / ' for TJ = fo||fe||-i and 
let Û>O = liminff_o(log||St||rt). Then for CD > CÜ0, ||Se|| ^§ Mexp(a>£), 
M = M(û>), and £ - a , tS t = Ut is a bounded, strongly continuous semi­
group in ^ 0 which extends to an analytic semigroup in |arg(a) | < 
TT/2. By K-ll of §11-2, \\(dldt)Ut\\ ̂  Nit where N is a finite con­
stant. Thus ||(d/d£)St|| ^ (M1/^)exp(co1f) for CU! > co > co0. Since 
(-Ahyp= ||/i||%, the desired estimate of \\(dldt)[(- Ah)7'] || holds. 

4. Riesz operators. If ( — T) denotes the infinitesimal generators 
of the Poisson integral and if Ah denotes the infinitesimal generator 
of the translation semigroup TtBh, t > 0, then ( — Ah)T~[ is the Riesz 
operator for the direction h. We shall consider the semigroup 
( — Ah)

aT~a for Re(a) ^ 0. Since Pz is an analytic semigroup in 
|arg(z) |< 77-/4, T-«f=\imN^„r(cx)-iS%Pt(f)t(*-ldt for each / in 
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D(T-«) by Theorem 6.3 of [ 17-III]. 

THEOREM 4.1. ( — Ah)°T_a is an analytic semigroup of bounded 
operators on Lp(H)for |arg(a)| < nl2. ( — Ah)

aTa is strongly continuous 
in Re(a) ^ 0. For Re(a) = n, 

| |(-Afc)«T-iPâ A(p)||/i||^>exp(2,r|Im(a)|)(l + K r - ' | | p ) » 

when (o = —/i||/i||_1. 

PROOF. (—• Ah)
icT~ic is a strongly continuous group of bounded 

operators on LP(H) since both ( — Ah)
ic and T~ic have this property by 

Corollary III.3.2. By Theorem III.3.1, | | ( - Ah)
icT~ic\\v g 

A(p)exp(&r|Im(a)|). 
Le t / G D(Afc)nH(T), then 

A»T~lf= \lWf)dV= r r AhHt2(f)Nt2(y)^dy. 

t/„(/) = \\AhHtHf)dt 
J 0 

= y j - P J " . TtBvfÊ-Ch(l)(y)dN(y) 

by P-3 of §11-3. Lemma 3.3 and Minkowski's integral inequality 
show that ||l/fc||p=i A(p)||/i||. Since the operators S€^\t\^R TtByf dtlt 
are uniformly bounded in € and R, we may interchange integrals 
above and write AhT~lf = KUh(f). Thus \\AhT-% ^ A(p)\\h\\. 
Now apply Stein's interpolation theorem to the family of operators 
Uz= (-Ah)

n+zT-(n+z); the boundedness of the operators (-Ah)
aT-a 

follows. 
To see that (-Ah)

aT-«(f) is analytic in Re(a) > 0, let f G R(T\ 
f = Tg, and consider 

(-Ahyv-<if)-(-Ahy>jr'if) 

= r(a)-i Jo" (-Ah)«Pt(f)t>-\l - e~«)dt 

= r(a)- 1f" (-AhyPt(f)F P e-"'dudt 
J o+ • ' J o 

= a| r
o (-Ah)%°+i(f)du 

= j ' o a(-Ah)*T-"T"+%"+\g)du. 
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Since | | ( - Ah)"T-% S A(p, a)||/i||Re<«> ^ A < » for 0 ^ Re(o) ^ N 
and | I m ( a ) | ^ r < » , and since \\Ta+lJu"+l\\p^ A(p,a) < A (inde­
pendent of u) for 0 g Re(a) ^ N and |Im(a)| ^ T < °°, 

| | ( - 4 , ) « T - « / - (-Ah)<"//"(/)||„=i rA||g||„ 

for a in a compact subset of the right half-plane. Thus ( — AhYJr
af 

converges uniformly on compact subsets of Re(a) > 0 to ( — AhYT~af 
as r - > 0 + and (-AhYT~af is analytic in Re(a) > 0 if / G R(T). 
Since R(T) is dense in LP(H) and since ||( — AhYJr

a\\P = 
| | ( -A h) ar- a | | p | |T a / r

a | | p ^ A < oo if a is in a compact subset of the 
right half-plane, for r > 0, an e/3-argument shows that ( — AhYT~a(f) 
is analytic in Re(a) > 0 for all / in LP(H). To see that St = 
( — AhYT't is strongly continuous in £ ^ 0 , let f Œ. R(T) and write 

\\stf-f\\p^\\stf- {-Ahyj/f\\p+\\(-Ahyj/f-f\\p; 

let e > 0 and take r sufficiently small that | | S t / - (— Ah)f///]|p < € for 
O^t^l; \\(-AhYJSf-f\\p tends to zero as *-• 0. Since R(T) 
is dense in LP(H) and since St is bounded on 0 = t = 1, St is strongly 
continuous. Since St and Sic are strongly continuous, Sa has the re­
quired continuity properties. 

5. A characterization of Lp
a(H). We know that Lp

a(H) is equivalent 
to D(T«) and that if / E Lp

a(H), then ( - \Yf ™ in LP(H) for all 
h<EH with IK- AhYf\\P ^ A(p, a)||/i||Re^||g||p when / = /«g. 
We shall prove a converse of this last fact. 

Let B be the one-one Hilbert-Schmidt operator in the definition of 
the Poisson integral and let G : H* —* Borei measurable functions on 
HB denote the Wiener space representative for the normal distribution 
on H. Let p ' be a Borei probability measure on HB such that Ptf = 
SHB TtByf dp'(y). In [ 12] it is shown that such a measure p ' exists. 

THEOREM 5.1. Let f E. LP(H) and suppose that <p{y) = ( —AyYf 
is a Borei measurable function from HB to LP(H) such that 
ÎHB ( - AyYf dp \y) is in LP(H). Then f is in Lp

a(H). 

PROOF. By Theorem 4.4 of [17-11], if 0 < Re(a) ^ m and if 
fGD((-AyY), 

(~AyYf= K(a,m)-i \~JI- T^ft—^ dt 

where K(a,m) = /0+(1 - e-')m*~a_1 d*. Since ( — AyYf is p'-measur­
able and J„fl ( - AyYf dp '(y) G LP(H), 

file:///~JI-
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T»/ = K(a, m)-{j\ (I - P()
m/*~a_1 dt 

= K(a,m)-i I"" [ (I- TtByrfdp\y)t-^dt 
JO J HB 

= j (-A.Yfdp'iy) 

a n d / G D(Ta) which is equivalent to Lp
a(H). 

V. Singular integrals. In this section we shall use the analytic 
semigroups of §IV to study the singular integrals of Calderon-
Zygmund, Muckenhoupt, and Wheeden. Let TtBy denote the trans­
lation semigroup for the direction By and let Ay denote its infinitesimal 
generator. Let n be a nonnegative integer and set 

B B ( / , y ,* )= (n I ) - 1 \[ {t-uYT^Ay^fdu 

= nn)-l\\ (t-ur-i[TuByAy"f- V/l du ifn^ 1, 

= TtBuf-f i f n = 0. 

Let /i be a Borei measure (possibly unbounded) on H such that 
dfjLa(y) — \\y\\a dfx(y) is finite and has zero mass at y = 0 and set 

G"(/) = Jo" L ^ y ' t } M y ) * ' " 1 & 
when 0 ^§ n = Re(a) < n + 1. The operators Ga include the classes 
of singular integral operators mentioned above when fi is suitably 
restricted. We shall state three theorems regarding these operators. 
The proofs will be given after all of the theorems have been stated. 

THEOREM 1. Let //, be a Borei measure on H such that 
JH||y||Re(a) d\fji\(y) < oo . If n< Re(a) < n + 1, n a nonnegative 
integer, then 

G W - ix. + 7)1«,,») L (-AJWXM») 
when Ja is the Bessel potential of order a. GaJa is a bounded operator on 
LP(H) with norm 

\\G°J°\\p^A(p>a)jH\\y\\K^dM(y). 

THEOREM 2. Let Re(a) = n, a nonnegative integer, and let 
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Im(a) = c ^ 0. Suppose that JH \\y\\n d\fi\(y) < °° and that 
iH Pn(y) dfx(y) = 0 for all Borei measurable functions pn(y) with 
\pn(y)\ = M\\y\\n which are homogeneous of degree n. Then 

when Ja is the Bessel potential of order a. GaJa is a bounded operator 
on LP(H) with norm 

\\G°J°\\pSA(p,a)\H MndMy). 

THEOREM 3. Let Re(a) = n, a positive integer, and let Im(a) = 0. 
Suppose that JH (||t/||n+e + \\y\\n~e) d\fi\(y) < °° for all sufficiently 
small € > 0 and suppose that fH pn(y) dfi(y) = 0 for all Borei 
measurable functions pn(y) with |pn(t/)| = M||j/||n which are homo­
geneous of degree n. Then 

GT(f) = ( z^FJH ^(-A,)W) U«Wy) 
when Jn(Ja) is the Bessel potential of order n(a). GnJn is a bounded 
operator on LP(H) with norm 

||G»/»||p=i A(p,n) \H (1 + llogllyllDllyl-dl/tKy). 

PROOF OF THEOREM 1. Set a= n + ß where 0 < Reiß) < 1 and 
Bn(f,y,t)= Taj - f tin = 0 and 

RJJ, y> t) = r (n ) " 1 £ (t - u )"^ ( W V / - \nf)du if n ^ 1. 

Since A%f = ( » V / . Mf, y, t) = Mf, ty, 1) and 

Jo" [T^Wf- V/"/]*-"-1* = ( -DTi-^^-^t f / ) 

by K-3. Since r ( n ) - ' / „ ' ( l ~ w)""1«" d« = T(/3 + l ) r ( a + 1)~', we 
have that 

ow)-'-1)^;yy+"j.(-^)w)w 

The estimate for the norm of GaJa follows from Minkowski's integral 
inequality and Theorem IV.3.4. 
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PROOF OF THEOREM 2. Since ÎH pn(y) dfi(y) = 0 for measurable 
functions which are homogeneous of degree n and have \pn(y) | = 
MIMI", fuAyTfdfiiy) = 0 for a l l / i n LP(H). Thus 

Write 

f KU-f, y, t) dvly) = \ R„_i(/a/, y, t) dn{y). 

K-i(Jaf, y, t) = Tin)-1 Jl (t - uY^TuBy\-nf) du. 

Then Rn-i(Jaf,y,t)= Rn-i(Jaf,ty,l) and since t~nA%= Ay", we 
have that 

< W ) = \H j0" t-nRn-i(Jaf> ty, l)t-*-ldtdrty) 

n (1 — v)n~lvic e r f °° 

- L m Lia? LT^w>-~-i*> 

(-i)nr(-fc)r(i + ic) r , A x r , , , \ 
- r(a+l) J* (-ArW^) 

•JÄ(-4,)W)d*%) r ( a + l)sin(ira) 

by Theorem III.3.4. The estimate for the norm of GaJa follows from 
Minkowski's integral inequality and Theorem IV.3.4. 

PROOF OF THEOREM 3. First consider the constant 

- i r r ( a + l j - ^ s in^a ) ) " l 

= r a + l)-1 . . \—r7~r- n - «)_1; 
L sm(7rn) — sin(7ra) J 

as a tends to n, 7r(n — a)(sin(7rn) — s i n ^ a ) ) - 1 converges to (cos(77-n))_1 

= (-1)». Since / „ ( - \)T{f) drfy) = 0, 

for a near n where M '(a) tends to 1 as a tends to n. Let a = t be real 
so that 
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( - AM/) - ( - A)W) = f (dldu) [ ( - A)W)] d«. 
J n 

By Corollary IV.3.6, 

1 gt-'A^od+iiogiiyllDlyll'll/IU 

Ai(p, t) is bounded on finite ^-intervals. Thus 

\\{-A.ypf - {-A.rrfW ^\[ (i+|iog|M||)|M|«^A(p)||/||, 

Since (l+|log|M||)|M|"^A(e)(||y||»+«+||y||»-«) for small e>0 
and because the last function is |/x|-integrable, 

lim G«/tf) = {Zl)l+l\H jl(-\)tJWUd^y) = K«if) 
a-+n r(n + 1) JH at 

is a bounded operator on LP(H) with 

\\K%^A(n,p) \H (1 + | log | î , | | ) | |y | |»d | /%). 

By Corollary IV.3.6, 

•j^ [(A),+iT+ic(/)] = -i -^[(-A,Y+icJt+ic(f)i 

= -i [vw(-A)(+ic;i+ic(/) + ( -A) ( + i c^ Jt+ic(f)] • 

Since Ja is an analytic semigroup, —i(dldc)Jt+ic(f) = 
(dlda)Ja(f) is a bounded operator on Lp(ff) for Re(a) > 0 and 
/„ ( - A W W l f l U <W = 0. Thus 

K"(/) = ("r(r+(i")°/n v-<-VW>«W 
when Vy is the infinitesimal generator of the semigroup ( — Ay)ic, 
c > 0. By Theorem III.3.5, 

Vy(g) = -< [£+ ( W - g) d«/t + J" TtByg d^ + Cg ] 

when g G R(A,) fi D(Ay) and C is Euler's constant. Set gy = 
(-Ay)nJn(f) so that gy G R(Ay) and assume that / is in Lpl(H\ 
f G D(Ay), so that gy G D( A,). Then 
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+ / " Tœygydtlt + Cgy ] dfi(y) 

= ^L/;W-A,)W)fdM(y) 
since SH ( - Ay)nJn(f) dfi(y) = 0. Thus Kn = GnJn. This com-
pletes the proof of Theorem 3. 

When 0 < a < 2, Ga is the hypersingular integral operator studied 
by Wheeden in [23]. If Re(a) = 0, Im(a) fO, Ga is the singular 
integral operator studied by Muckenhoupt in [18]. When a = 0 and 
SH dfi(y) = 0, Ga is a Calderon-Zygmund operator; the present treat­
ment says nothing about the boundedness of Calderon-Zygmund 
operators. See [1] and [5]. 

VI. Littlewood-Paley theory. In this section we shall use imaginary 
powers of the directional derivatives and imaginary powers of T to 
estimate the p-norm of the Littlewood-Paley g-function and the p-
norms of the maximal functions associated with the Poisson integral. 
The Littlewood-Paley g-function is 

&/(/)= (jjy"T°Py(f)\<dyly)llr, 

l = r < °°, 1 ~ Re(a) < a> and the most interesting maximal func­
tions are 

MJJ)= sup| rT«P,,(/) | , 
y>0 

0 ^ Re(a) < oo. Neither of these functions is linear, but, by Min­
kowski's inequality, each of them is sublinear. Ma is just g«00 for 
Re(a) = 1. We shall use certain linear operators to approximate Ma 

and gj and to aid in the estimation of ||gar(/)||P and ||Ma(/)||p. 
As before, p is fixed in 1 < p < oo . 

1, Certain linear operators. Let k be a positive integer, let Py 

denote the Poisson integral, set (-dldx)%= Py
{k) = T%, and if 

Re(a) ^ 0, set Py
{a) = TaPy. The following lemma will be used re­

peatedly. 

LEMMA 1.1. There is a polynomial P (̂w) of degree k such that 
yk(dldy)k(y exp [ - r y ] ) = yPk(r y ) e x p [ - r y ] . 
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PROOF. Since (dldy)(y exp[-t~ly2]) = (1 ~ 2t~ly2)exp[-t-ly2], 
the statement is true for fc = 1. Assume that it is true for fc — 1 and 
write yk-l(dldy)k-l(y exp[-1~[y2] ) = yPk-i(t~^2)exp[-1~ly2]. 
Then 

yk(dldy)k(yexp[-t-y]) 

= y\my) (y2-kPk-i(t-y)exp[-t-y] \ 

and direct computation shows that this expression has the desired form. 
Let <p be a function from (0, oo ) = R+ to measurable functions on 

H such that <p G Ll(R
+, dyly) C\ L2(R+, dyly). Let G : H*-> measur­

able functions on (H, N) be a representative of the normal distribution 
on H and set 

| M | r . = ess_sup ( | o \<P(y)\rdyly J* 

for 1 ^ r < oo . Set 

W ) = T,( / ) = \ l y«Py^(fMy) dyly 

when Re(a) = 1. The linear operators T^ are closely related to the 
g-function and to the maximal functions. 

LEMMA 1.2. Let ||<p||r°° < °° for r = 1, 2. If k is a positive integer, 

= K J | ^ r(fc - iv)Dy™(f)r ( ~ ^ )<*>(«) dû d n ^ B-fy) 

u;/ien ( — Dy) is the infinitesimal generator of the translation semi­
group Tty, t > 0, anc/4> is the Mellin transform of (p. 

PROOF. Assume that <p G LY(R+, dyly) Ci L2(ß+ , dyly). Then 

T*k(f)=TAf)= ^ykPyik)(fMy)dyly 

= KJ"o+Ht2(f)4>(t)dtlt 

where 

*(t) = f " Nk(ylt)<p(y) dyly when Nfc(y/t) = yk(-dldy)*Nt2(y). 
J 0+ 
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By Lemma 1.1, Nk(ylt) = (t//f)P fc(t/2r2)exp(~t/2r2) when Pk is a 
polynomial of degree k. Set t = eu and y = eY, then ifr(eu) = v(u) 
is the convolution of two functions each of which is in L2(— °°, °° ); 
thus v(u) is the Fourier transform of a function L(v) in L^—<*>, <» ), 
Replace t = eu to write i^(f) = S^oofvL(v) dv. Set Mk(X)=Nk(e

x) 
and 4>(X) = <p(ex). Then L(Ü) = KMk(v)è(-v) where A denotes the 
Fourier transform; 4>(w) is also the Mellin transform of <p at u. 

We shall calculate Mk(v) explicitly, show that u~lMk(u) is a 
rapidly decreasing smooth function in the sense of Laurent Schwartz, 
and show that 

lim f°° tivv-lL(v) dv = 0 

with the limit existing boundedly in x G H. Set Mfc(Y) = 
J r . eiyxM*(X) dX and replace x = ex so that Mk(Y) = 
foX^Njtix) dxlx. Since Nk(x)= Kxk(dldx)k(x exp( — x2)), k integra­
tions by parts show that 

fc-l Too 

Mk(Y) = K f I ( n + i Y ) x fyexp(-x2) dx. 
n=0 J 0 

Set t— x2 to conclude that 

Mk(Y) = KT((iY + l)/2) n (n + tY). 
n=0 

Since 

f °° x i yexp(-x2) dx = I"" e iyxexp(X)exp(-e2X) dX, 
J 0 J — oo 

Y_1Mfc(Y) is a rapidly decreasing smooth function since Mk(Y) 
contains a factor of Y and since exp(X)exp( — e2X) is a rapidly de­
creasing smooth function. Thus Y~lMk(y) is in Lv(R,dY) for all 
l â p ë » . By Holder's inequality and the Hausdorff- Young theorem, 
J"« \v~lL(v)\ dv is in L°°(H) since ||^||r00 g M for some r in 1 ^ r ^ 2. 
Set t= e~f>, so that / " » tivv~lL(v) dv is the Fourier transform of an 
Li-function evaluated at (— p). By the Riemann-Lebesgue lemma, the 
integral converges to zero as p tends to + °°. This shows that 
limf_>0

+ / - « tivv~lL(v) dv = 0 and the limit exists boundedly in 

Now let y €= H and set 
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Uu(f) = \"o+Ttyf*(t)dtlt 

= J", Ä [/." TtJtiv~ldt+iVf-eif iUv)dv-
By an argument similar to that used in the proof of Theorem III.2.2, 
one shows that the inner integral defines a bounded operator on 
Lp(H)with norm at most Apq[(\v\ + 1 ) 2 M - 1 + \v\~l] and that UJ = 
J"* Ttyft

iv~l dt + (eivliv) f converges almost everywhere and in 
LP(H) to r(iv)Dy~

ivf as a sequence en >à 0. Thus for almost every 
x G H, U€f(x) is a bounded function of cn. Since L(t>)(x) is in 
Lx(R, du) for almost every x €E H, the dominated convergence 
theorem implies that 

W ) = J". J™ [j," W^- '^ + l^f ]^e)do 

r °° € i ü 
— lim —L(v) dvf 

= f00 r(iv)Dy-^(f)L(v) dv 
J — oo 

= K T r(-fo)D'°(/)ltf t(-t5)4»(i5)dt> 
J _ 00 

= K j ^ r(fc- iv)Dv«>(f)r (J^^fav) dv. 

Since T<pk(f) = JH Uy(f) dnY° B~[(y), we have the desired 
identity. 

We need one last basic lemma to estimate the % a. 

LEMMA 1.3. Let h be a nonzero element of H and let co > ir 12. 

Then 

H(f, r, h)(x) = ( / ^ |exp(- n\c\Wf(x)\'dc) *" 

satisfies ||/LL(/, r, /i)||p S A(p, r, û>)||/||p/or r< p< oo . 

PROOF. Since | |Dh
i c/ | |p ^ A(p)expfa|c|)||/||p for TJ > TT/2 and 
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T) — 7772 arbitrarily small, Minkowski's integral inequality implies that 
the desired estimate for /JL holds. 

THEOREM 1.4. If Re(a) = 1, if 1 = r ^ 2, and if p = n £Äen 
| | T , - / | | p ^ A ( p , f , a ) | | / y V | | f . . 

PROOF. Since |r(fc)| = 7r1/2(|c|sinh TT|C|)-1/2
5 for 8 > 0 and small, 

|r(fc + ic)\ ^ A(8)exp(-(îr/2 - 8)|c|); since 

7T,/2r(2z) = 22«-1r(2)r(z + I/2), |r((l + fc)/2)| g Aexp(-ir|c|/4). 

Thus if 

W ) = I". r(fc - to)D^(/)r (1^i^)«t(«)do, 

t hen | t7 B ( / ) |S / t ( / , r , y ) | | * | | r , â M(/,r,y) | |^ | | r-wheiif- ' + r ' " 1 = l b y 
Holder's inequality and the Hausdorff-Young Theorem. Since 
V ( / ) = K / „ ! / , ( / ) d n i o B - ' ( y ) , | | T / ( / ) | | p g A ( p , r, k)\\f\\p\\<p\\r„ 
by Minkowski's integral inequality and Lemma 1.3. 

If a = k + iu when fc is a positive integer and u is a real number, 
then if ft(y)-^(»), W ) = W^f) and ||T,«(/)||P 

g A(p, r, fc)exp(îr|f/|)||/||p||^||roo. Since T 0 ! ^ / ) is analytic in 
fc < Re(a) < fc + 1 and continuous in fc ë Re(a) ^ fc + 1 for a dense 
set o f / in LP(H) by Theorem 8.2 of [17-1], Stein's interpolation 
theorem applies to the 7y* and ||7V/||„ ê A(p, f) | | / | |p |H|r« 
for k^t^k+1. Since if a= t+ iu, T^(f) = T^(Tiuf\ we 
have that the desired inequality holds for all Re(a) ^ 1. 

2. TTie maximal theorems. In this section we shall use the operators 
7Va to estimate the p-norm of the maximal function Ma(f), Re(a) = 1, 
and we shall investigate some of the implications of the inequalities 
for Ma(f). I f R e ( a ) S 0 , s e t 

MJLf)= sup|rr«Py(/)| 

andifRe(a) < 0, set 

Ma(/)= suç | rn-«)-1/^ (y-x)—%(f)dy I. 

In general, denote M,,/ = sup!/>o|t/a( — dldy)aPy(f)\. 

THEOREM 2.1. / / Re(a) ^ 1 and if K p < » , | | M a ( / ) | | p ^ 
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p=sup{| |7V»/ | | p : 
^lli oo, so that 

V l l i ^ l } . 
\Ma(f)\\P^ 

PROOF. For Re(o) ^ 1, \\MJ\\ 
By Theorem 1.4, ||r„«||p ^ A(p,a) 

Mp,<x)\\fl-
We shall now extend the result of Theorem 2.1 to — °° < Re(a) < 1; 

the following propositions contribute to the general result. 

PROPOSITION 2.2. Let y—» Ty be the regular representation of the 
additive group of H acting on LP(H) and let h G H. Then 

(Nf)(x)= SUD r i | j o (Tshf)(x)ds | 

satisfies \\f\\p ^ | |N/||P = A(p)||/ | |p where A(p) does not depend on H. 

PROOF. 

t - 1 J*o Tshfds= (t\\h\\)-i J ^ " T8Jds where o)= \\h\\-% 

so that Nf is independent of \\h\\ if h fi 0. If h = 0, Nf = f 
Suppose first that / is a bounded tame function based on KY and let 
K denote the span of Kx and h. Then Nf is tame and based on K, 
and 

2p 
exp In;—2^ J ' (x)-

Let F(x) = /(x)exp[ - ||x||2/2p], so that 

|N/ | |g = (277)-fc/2 J I sup r 1 J ' F(x - toy) dt Y dx 

= (2T7)-*'2 J |F*(x)|"d* 

where k = dim(K) and F*(x) = sup t > 0 t - ' | /of(x — to>) dt\. By 
the Dunford-Schwartz Ergodic Theorem [4], | |F*||P g A(p)||F||p = 
A(p)||/| |p; so that ||2V/||P=S A(p)||/| |p; A(p) = 2 9 " * does 
not depend on o>. L e t / = 0 be in LP(H) and le t / n = 0 be a sequence 
of bounded tame functions which converge to / in LP(H). Since 
\Nfn - Nfm\ = Ml/n - / m l ) , the sequence Nfn is Cauchy in 
LP(H); let G(x) be the limit of the Nfn in LP(H). By taking a sub­
sequence if necessary, we may suppose that the Nfn(x) converge 
almost everywhere to G(x) and that the fn converge almost every-
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where to /(*). Then t~l Io(T8ùJn)(x) ds^ Nfn(x) almost every­
where for all n, and t~lSo (TSwf)(x) ds ^ G(x) almost everywhere. 
Thus (Nf)(x) g G(x) and ||N/||P ^ ||G||P ^ A(p)\\f\\p. Since 
t-l\Io(TsJ)(x) ds\ ^ t-y U TsJf\(x) dsy the right-hand side 
of the desired inequality is verified. For bounded tame functions, 
linv*o+ t~Y $o(TSO)f)(x) ds = f(x) almost everywhere, so that the 
left-hand inequality holds also; in fact, \f(x)\ â (Nf)(x) almost 
everywhere. 

COROLLARY 2.3. Let Pz(f) be the Poisson integral of f and set 

(N x / ) (x)= sup M I f Pz(f)(x)dz I • 

T^II/IPSIINJIIPS^II/IIP. 

PROOF. Write Pz(f) = JH (Tyf) dpz(y) = J„ Tzyf dPl(y). Then 
(N1/)(x) ë fH (Nf)(x) dp^y). By Minkowski's integral inequality 
and by Proposition 2,2, | | N , / | | p â A(p)||/ | |p. Since lim^o*"1 

• Jo Pz(f) dz = f in Lp, there is a sequence tn tending to zero 
such that tn~

l So" Pzfdz converges to / almost everywhere and the 
left-hand inequality holds. 

COROLLARY 2.4. Set 

(N2f)(x) = sug t-i | £ Hs2(f)(x)ds | . 

Then\\f\\p^\\N2f\\p^A(p)\\f\\p. 

PROOF. Write Hs2(f) = JH Tsyf dnx « B-1(!/)> so that 
N2/(x) = fHNf(x) dni° B~l(y), and the desired right-hand 
inequality holds. The left-hand inequality holds as in the proof of 
Corollary 2.3. 

PROPOSITION 2.5. Let (M0f)(x) = supy>0\Pyf(x)\, then \\f\\p 

S | | M 0 / | | p g A ( p ) | | / | | , 

PROOF. Since Pzf tends to / in Lp as z—»0, any sequence zn 

which tends to zero has a subsequence, also called zn, such that Pz f 
converges almost everywhere to / . Thus \f(x) | = M0/(x), and 
the left-hand side of the inequality holds. 

To prove the right-hand inequality, write 

Pz(f) = {J HtfNt(z) dtlt = 2 JJ Ht2(f)Nt2(z) dtlt. 
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Set Nt2(z) = (7r)-l'2(zlt)exip[-(zlt)2] = N(zlt), and integrate by 
parts to get 

P,f= -2 J] [ r ' £ Hs2(f)ds] [tftt-W(zlt) ]dt. 

Thus 

\Pzf(x)\^2N2f(x) |o" * | - | - ( r W ( « / t ) ) | d * . 

The integral on the right of this inequality is finite and independent 
of z, so \Pzf(x)\ =i ANzfix) and | |M0/ | |P =§ A(p)||/| |p. 

COROLLARY 2.6. If Re(a) < 0, s#£ 

Then (Mj)(x) = suVx>0\yi-dldy)aPy(f)(x)\ satisfies | | / | |p g 

KJMJUP =SA(«,P)||/||P. 
PROOF. A subsequence argument shows that \f(x)\ = Kip^M^x), 

so that the left-hand side of the inequality holds. On the right side 

k (" fy y Pyf{x) I - A(a) l o (1 " M )" 1 " R e < Q > P «^ l /D du 

^ A^Mofix); 

and \\MJ\\pîâA(a,p)\\f\\p. 

COROLLARY 2.7. If Re(a) = 0, a = iy, and if 

(Miyf)(x) = saç | r ( " 4 ) > , / w | > 

^ n | | / | |p ^ Ax(y, p)\\M^f\\p ^ A2(y, p)\\f\\p. 

PROOF. For y real, ( - dldy)*yPy(f) = Py(T^/). Thus M«,/(x) 
= M0(T

iyf)(x), and since T^ is a bounded and invertible operator, 
the desired inequality follows from Proposition 2.5. 

THEOREM 2.8. If- °° < Re(a) S 1, \\MJ\\P g A(p, a) 

PROOF. It only remains to prove the theorem for 0 < Re(a) < 1. 
Set Tva(f) = f0%yPv

{a\f)<p(y) dyly for 0 ^ Re(a) ^ 1 when 
I M I L O » . Then | |M^| |P = sup{||T,«/||p : H | i - ^ 1}. By 
Theorem 2.1, ||T, 1 + i t f) l lP = A(P>")ll/IUMIi» and by Corol-
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laiy 2.7, | | ï V « / | | p g A(p,u)\\fU<p\\i°>- Since T"Py(f) is 
analytic in 0 < Re(a) < 1 and continuous in 0 â Re(a) ^ 1 for a 
dense set o f / in LP(H) by Theorem 8.2 of [17-1], Stein's interpola­
tion theorem applies and ||2V||P ^ A(t, p)|M|i°° for O ^ r S l . If 
<Pi = yiu<P(y\ T*\f)=T\(T»f) for a = t + i t i , and \\MJ\\P^ 
A ( p , a ) | | / | | p f o r O S R e ( a ) ^ l . 

Because of Theorem IV.4.1, we can define a maximal function for 
the directional derivatives. If h G H and Re(a) = 0, set 

MJif) = sup \y"(-Ah)°Py(f)\. 
y>0 

But Ma
h(f) = M a ( ( - Ah)

aT-af) and ( - A ^ T - « is a bounded 
operator on LP(H) for Re(a) = 0. ( — Ah)

aT-a is invertible if Re(a) = 0. 
Thus we have proved 

COROLLARY 2.9. / / R e ( a ) è O , \\Ma
h(f)\\p S A(p? a)||/i||Re(ö) | |/||P 

and if Re(a) = 0, | | / | |p g Mp, «) | |M/( / ) | | p . 

3. Applications of the maximal theorems. In this section we shall 
investigate a few of the implications of the general maximal inequality. 
More applications of the maximal theorems will be given below in §5. 

THEOREM 3.1. Py(f) converges to f almost everywhere as y 
tends to zero through positive values. 

PROOF. Pz(f) is analytic in |arg(z)| < TTI4 and the power series 
representation for Pz(f) about z0 can be thought of as converging 
almost everywhere since it converges in LP(H) and a subsequence of 
the sequence of partial sums converges almost everywhere. Regard 
the series as converging everywhere. Therefore if z0 > 0, limz_Zo Pz(f) 
= P^ (f) almost everywhere. Then 

l i m s u p l P ^ / X x ) - / ^ ) ! 
y-+0+ 

S l i m sup \Py(f-Pt(f))(x)\ 
y-*0 

+ limsup \PvPt(f)(x) - ?,(/)(*)| + \Pt(f)(x) -f(x)\ 
y-*0 

=§ sup \Py(f- Pt(f))(x)\ + |Pt(/)(x) - / ( * ) | 
y>o 

= M0(f-Ptf)+\Ptf-f\. 

Therefore, by Theorem 2.8, ||lim supy^0
+ \Pyf ~ fl ||P = 

\\Mo(f-Ptf)l+\\Ptf-f\\P^A(p)\\f-Ptfl for all t > 0. By 
letting t —> 0+ , we get the desired result. 
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If k is a positive integer, and we write 

yk( i y w = io ™ -Mi ÏN^ m -1+ r 
it follows from the strong continuity of Ht, that || J^||p = A(k)e and it 
follows from the properties of yk(dldy)kNt(y) = Pk(t~

ly2)Nt(y) that 
l i n w ILdp = 0, so that l im^ 0* \\yk(dldy)%(f)\\p = 0. In 
addition, there is 

THEOREM 3.2. Let Re(a) > 0. As y tends to zero through positive 
values, yaPy{a)(f) converges to zero almost everywhere. 

PROOF. Let fc be a positive integer and assume first that Re(a) < k 
and that / E D(Tk). Then yaPv

{a\f) = yaPy(T<*f), and by 
Theorem 3.1, lim^o* Py(T

af) = T°f almost everywhere. Thus 
limy_o+ yaPy(Taf) = 0 almost everywhere. For any / in LP(H), 
use the density of D(Tk) in LP(H) to choose a sequence {/n} in D(Tk) 
which converges in LP(H) to / . Then 

F = lim sup \yaPy{a)(f)\ 
y->0+ 

^ limsup l r P , ( a ) ( / - / „ ) l + Hm sup \tfPy
M{fn)\ 

g SUD l r ^ ( a , ( / - / n ) l = M a ( / - / n ) . 

By Theorems 2.1 and 2.8, | |F||p=g \\Ma(f - fn)\\p ^ A{p, « ) | | / - / n | | P . 
By letting n —» °° , we get the desired result. 

A similar result holds for the directional derivatives ( — Ah)
a since 

(-Ah)«Py(f) = Py <«>((- Ah)«T-«f) and ( -A h )*r-« is a bounded 
operator on LP(H) by Theorem IV.4.1. 

COROLLARY 3.3. If Re(a) > 0, limy^ 0
+ ya( ~ \)aPy(f)

 = 0 almost 
everywhere. 

COROLLARY 3.4. / / Re(a) < 0, limy^0+ya(-dldy)aPy(f) = 
r ( l — a)~lf almost everywhere. 

PROOF. 

-r(-a)- ' j^ ( l -u) - ' (P .^ " / ) * . . 

By the maximal theorem for Py, the dominated convergence theorem 
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applies for almost every x and by Theorem 3.1, limy^0+ ya( — dldy)aPy(f) 
= r ( l — a) - lf almost every where. 

THEOREM 3.5. If —*> < Re(a) < oo, ya( — dldy)aPy(f) converges 
almost everywhere and in LP(H) to 0 as y tends to + °° . 

PROOF. If Re(o) S 0, | | < T W I ^ Mp, « ) | | / | P and \y«Py^f\ 
g \y°T°Pvl2Pyl2(f)\ g A(a)Pyl2(Ma(f)) =1 A1(a)Af0(Af J ) . Thus it is 
sufficient to prove that Pyf converges almost everywhere to zero 
in order to prove the statements of the theorem. If Re(a) < 0, 

\y"{-myypy{f)\< \r(-«)\-lJl (i-u)-^-^\puy(f)\du. 

By the maximal theorem, the dominated convergence theorem applies 
and it is sufficient to prove that Puy(f) converges to zero almost 
everywhere for each u > 0 in order to verify the statements of the 
theorem. 

Let / * = lim supy_+ + oo\Py(f)\ and assume first that f G. R(T) 
so that / = — Tg for some g in LP(H). Then 

Pyif) - Jj Pyig) = J0" Ht(g)-^Nt(y) dtlt 

and 

\-j^ my) I = I M - 1 / 2 ( 1 - 2y2lt)exp(-y*lt)\ =1 Ay-Wt(my) 

where A and m are positive constants. Thus \Py(f)\lë Ay~lPmy(\g\) 
^ Ay~lM0(|g|) converges to zero almost everywhere as y—> oo. Let 
e > 0 , let fGLp(H\ and let f G R(T) with | | / - / i | | P < € . 
Hien / » S / ! » + ( / - / 1 ) » S J f 0 ( / - / i ) . By Theorem 2.8, | |/*||p 

= A(p)| | / — / J I P < €A(p). Thus limy^oo Py(/) = 0 almost everywhere 
and the theorem holds. 

4. Littlewood-Paley inequality. F o r / G LP(H\ set 

&/(/)= (J0" \y°T«py(f)Ydylyy 

for Re(a) ^ 1 and r < oo. gj is the Littlewood-Paley g-function. If 
2 â r < oo a n d r - ' + *- ' = 1, | |ga ' (/) | |P = sup{| |7V(/)| |p : | |v | | ,_ S 1}. 

PROPOSITION 4.1. / / r è 2 and * - s > 1/r', 1/r + 1/r' = 1, g / ( / ) 

gA(r,M)g/(/). 
PROOF. By Theorem 6.3 of [ 17-III], 
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1VS>(/) = r(t - s)-1 Jo" « ' — > P ^ ( / ) d« 

»ret-«)-1 f"(y-z)«—W)^. 
Thus 

|P,(S,(/)I = r ( t - «)-i I f" (j, - zy—hfPvv(f)dyly I 

^ z-»+i/''A(f, t, *) ( J" |(y - z)'-*-yp„<»(/)|'dy )I/r-

Thus 

| Z ' P ^ > ( / ) | r ^ A(S, t, r )z ' -*( \l \(y - zy—WKf)\'dyly ) 

^ A(s, f, f) ( £ y'- 'Kj, - zY-°-yP/\f)\'dyly ) . 

By Fubini's theorem, iff — s > 1/r', 

j0" I^ (s )(/)NZ/Z 

=i A(s, (, r) J J ( £ (y - z)«-'-'dz )f+"-l\PyHf)\r dyly 

^A(s,t,r) {J \y<Py«Kf)\r dyly. 

The next theorem gives the Littlewood-Paley inequality. 

THEOREM 4.2. I / K r ' ^ p < o o and 2 ^ r < o o , ||&/(/)||p = 
A(p, a)||/| |p. 1/ 1 ^ 5 ^ 2 and if 1 < p ^ 5, tfien ||/ | |p ^ 
^i(P> ^)||gfcs(/)||p when fc is a positive integer. 

PROOF. The first inequality follows from Theorem I V.l.4 and the 
fact that l l ^ ^ l l ^ s u p i l l T ^ / I I ^ I ^ H ^ ^ l } , 1/r + 1 / r '= 1. 
To prove the second inequality we need a lemma whose proof will 
be provided after the theorem's proof has been completed. 

LEMMA 4.3. Let fa G LP(H) and f2 G Lq(H\ let ?t(fx) be the 
Poisson integral of fi in LP(H) and let Qtifz) be the Poisson integral 
of f2 in Lq(H). Then (f, /2> = K(fc).f0" ^ - ' W ^ ) , Qt*Kf2))dt 
where (f g) denotes the dual pairing between Lp and Lq. 
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By Lemma 4.3, |</i,/2>| g |K(fc)| ||&'(./i)||p||g**'(/2)||,- By the 
first inequality in Theorem 4.2, \\gks'(f)\\q= Mq,s')\\f\\q for 
2 =§ s ' ê oo. Thus ll/.ll, g A,(p, ^Hg^/Ollp. 

PROOF OF LEMMA 4.3. Qt is the semigroup dual to Pt and the infini­
tesimal generator of Qt is the adjoint of the infinitesimal generator of 
Pt. Therefore 

= K(k) f f y2k-lPy*Kfi)Qy
(kKf2)dydN 

when 0 < 8 < p < °°. Integrate the left-hand side by parts to obtain 

11 ^ {iTinmm dt 

n=o L x at' J ô 

where the A„ are certain real constants. Repeated applications of 
Theorems 3.1, 3.2, and 3.5 show that the sum on the right converges 
almost everywhere and in L^H) to Kfif2 as 8 >* 0 and p s1 oo. This 
proves the lemma. 

COROLLARY 4.4. For h Œ H, set 

W ) = ( jo" l«r(- A«/)lr<¥</ )1/r • 
/ / 1 < r1 g p < °° o n d 2 g r < o o ) tf^« | | M / ) | | P ^ A(p, r, a)\\f\\p. 

PROOF. (-Ah)°Pw(/) = ( - A ^ T - P , , (a)(/) and by Theorem 
IV.4.1, | | ( -A h ) a T-» | | p S A(p,a)| |^| |ReK Thus by Theorem 4.2, | | V ( / ) | | P 

^ | | g a , ( ( - A f c ) a I ' - " / ) | | p ^ A(p,r, a)||/»||ReW||/||p for the same p and 
r as in Theorem 4.2. 

THEOREM 4.5. Jf/c is a positive integer 

g*2(/) = A ( / " „ lr(* - is)THf) I2 * ) 1 / 2 • 

PROOF. The Mellin transform is an isometry from L2(R
+, dyly) to 

L2(R, ds). The Mellin transform of ykPy
ik)(f) is 
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KT ykPy*>(f)y-'-ldy 
J — 00 

and k integrations by parts and use of Theorem III.3.4 shows that this 
integral is KT(k — is)Tis(f) for all real numbers s. Thus the desired 
identity holds. 
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