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APPLICATIONS OF THE THEORY OF IMAGINARY
POWERS OF OPERATORS

MICHAEL J. FISHER !

AssTracT. Imaginary powers of directional derivatives and
of certain other operators are used to study semigroups which
arise in the analysis of singular integral operators. Imaginary
powers of directional derivatives are used to estimate the
maximal functions and the Littlewood-Paley g-function of the
Poisson integral on a Hilbert space.

I. Introduction. The purpose of this paper is to study some of the
implications of the existence as bounded operators of purely imaginary
powers of the infinitesimal generators of certain semigroups. The
setting of the paper will be Classical Analysis on Hilbert Space.

Let H be a real separable Hilbert space and let L,(H) denote the
Banach space of p-power integrable functions with respect to the
normal distribution with variance parameter 1. Let y— T, denote the
regular representation of the additive group of H as isometries on
L,(H). Fixpinl <p < ». Let B denote a one-one Hilbert-Schmidt
operator on H and let n, denote the normal distribution on H with
variance parameter #/2. Then n,o B~! is a Borel probability measure
on H; for f in L,(H), set

H(f) = fH T,fdn,> B-\(y),

P.(f) = f : H.{f)N(z) dili

where Ny(z) = (wt)~ 2z exp(—t~'22). P,f) is the Poisson integral
of f. If (—D;) denotes the infinitesimal generator of the translation
semigroup Ty, t > 0, and if (—T) denotes the infinitesimal generator
of P,, 2> 0, then (Dp)* and T are strongly continuous groups of
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bounded operators on L,(H). In addition, the analytic semigroup

~(f) = F(a)‘lf: P(f)t=—le~tdt, r> 0, Re(a) >0,

extends to a strongly continuous semigroup on L,(H) in Re(a) = 0. By
using these facts and an interpolation theorem due to E. M. Stein, we
shall study the semigroups I« of powers of the indefinite integral,
(Dgn)*J,®, T*J,*, and (Dpn)*T ~* Results concerning these semigroups will
be applied to the study of singular integral operators.

The boundedness of imaginary powers of certain operators will also
be applied to the study of the maximal functions and the Littlewood-
Paley g-function for the Poisson integral.

The following table summarizes the contents and organization of the

paper.
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Throughout this paper A, A(x), A(x,y), etc. denote positive con-
stants which depend only on the parameters shown; and K, K(x),
K(x,y), etc. denote complex constants which depend only on the
parameters shown. The value of these constants may vary with the
occasion of their use. If T is an operator defined in a Banach space
X to X, D(T) denotes the domain of T and R(T) denotes the range of
T. If 1<p< ®, q denotes the real number conjugate to p;
pt+qg'=1 (f,g)= Jsf(s)g(s) du(s) denotes the dual pairing
between L,(S, u) and L,(S, u). An operator T:L,— L, has norm

T||,.
" S”0rne of the results reported in this paper appeared in other forms in
the papers [7], [8], [9], [10]. They are repeated here in order to give
a more complete picture of the uses of imaginary powers of operators.
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II. Preliminaries.
1. The normal distribution on Hilbert space. To minimize the
discussion of measure theory on Hilbert space we refer the reader to

papers [11], [12], [13] of L. Gross and [19] of L. E. Segal.

DeFiniTION. A weak distribution on a real Hilbert space, H, is an
equivalence class of linear maps, F, from the conjugate space H *of H
to real valued measurable functions (modulo null functions) on a
probability space (depending on F). Two such maps, F and F’, are
equivalent if for any finite set of vectors y;, - - -, y, in H* F(y,), - -,
F(yx) and F'(y,), * -, F'(yx) have the same joint distribution in k-
space. A weak distribution is continuous if a representative is a con-
tinuous linear map (the range space has the topology of convergence
in measure).

In what follows we shall be most interested in the normal distribu-
tion with variance parameter ¢/2 > 0. This distribution is uniquely
determined by the following properties: (1) for any y in H*, ny(y) is
normally distributed with mean zero and variance (c/2)|y|% (2) n.
maps orthogonal vectors to independent random variables. The normal
distribution is continuous. There is an essentially unique (up to ex-
pectation preserving isomorphism) probability space (S, %, ) and a
continuous linear map, F, from H* to the real valued measurable func-
tions on (S, 3, u) such that F is a representative of the normal dis-
tribution. 3 has no proper sub-o-fields with respect to which all of
the F(y), y in H*, are measurable. The measurable functions on H are
the measurable functions on (S, 3, w). Ly(H,n,) = Ly(S, %, n), by
definition. When the variance parameter ¢ = 2, we set n = ny and
L,(H) = L,(H,n). The expectation, E(f), of a measurable func-
tion fis E(f) = [sf dp.

A function f(x) on the points of H is a tame function if there is a
Baire function g on a finite dimensional Euclidean space, Ej, and
orthonormal vectors, hy, * * *, hy, in H* such that

f(x) = g((x’ hl)’ Y (xa h’k))

The span of the h;, i =1, 2, -+ -, k, in H is called the base space of
fo If F is a representative of the normal distribution and f(x) =
g((x, hy), - - -, (x, hy)) is a tame function, then

fls) = g(F(h\)(s), - - -, F(hi)(s))

is a measurable function on H. The expectation of fis

E(f) = (wc) 2 | g(t)exp[—lfcuz—] dt
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where k is the dimension of the base space of f. This equality holds in
the sense that if either side exists and is finite then so is the other and
the two are equal.

Several very useful representatives of the normal distribution are
known. Of these the one in which we shall be most interested is the
mapping studied by Gross in [13] from H* to Borel measurable func-
tions on an abstract Wiener space. We adopt the notation and
terminology of [13]. Let B be a one-one Hilbert-Schmidt operator on
areal separable Hilbert space H. Then ||Bx|| = |x|; isa measurable norm
on H. Let Hp denote the completion of H in this norm. Let S
denote the o-field generated by the closed subsets of Hgp. The
normal distribution n. induces a Borel probability measure N, on Hp
such that the extension of the identity map on Hg* (C H*), regarded as
a densely defined map on H* to measurable functions on (Hg, S, N,)
to H* is a representative of the normal distribution on H. Continuous
functions, f, on Hg are measurable functions on H and if g denotes the
restriction of f to H and if 3 denotes the directed set (ordered by in-
clusion of the ranges) of finite dimensional projections on H, the net
{28(Qx) | Q € T} of measurable tame functions converges in measure to
fas Q tends strongly to the identity through S.

Let N, be as above. We may regard B as an isometry from Hp to H.
Hence N, ° B~!is a Borel measure on H. This measure is usually de-
noted by n. o B~L. See [12] for a discussion of these measures. If f is
a bounded and continuous function from H to a Banach space E,
[ f(x) dn,> B-Yx) = [u, f(By) dN.{y) = E((f> B").

If f, g, and fg are absolutely integrable tame functions on H, (fg)”
=fg (af + g'= af + g for constants a, and if f=g on H, f= 3
almost everywhere. We shall use these properties often.

2. Fractional powers of operators. Early work on the theory of
fractional powers of operators is surveyed in [24]. H. Komatsu [17]
has developed an extensive theory of fractional powers of operators.
In [17-1, II] it is assumed that A is a linear operator (not necessarily
densely defined) such that the negative half line is in the resolvent set
of Aand ||{(t + A)~!|| = N < = forall t > 0. Avis defined for all com-
plex a in §4 of [17-I]. For our purposes it will be sufficient to recall
some of Komatsu's results for the case when (— A) generates a
bounded, strongly continuous semigroup on a reflexive Banach space X.

K-1. If 0 < Re(a) < o < 1, then

sin(ra)
T

when x € D(A), the domain of A.

A = f: F1A(t+ A)-Lx dt
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K-2. If 0 < Re(a) < o < n, n a positive integer, then

I'(m)
INal'(m —
for x € D(AN) when N > m > n [17-11, p. 92].

K-3. If (—A) generates a bounded strongly continuous semigroup
T.on X, x € D(A) and 0 < Re(a) <o < 1, then

A = j :t«—l(A(t + A)-1)ymy dt

A% = (= a)-! jo* (Tex — x)t—o1dt
[17-1, p. 325].

More formally, K-1 and K-3 define an operator A,* on a subspace
De of X; D¢ is defined in [17-1]. If A, denotes the smallest closed
extension of A % whose existence is proved in [17-I, Proposition 4.1],
then A*= A,e Similarly K-2 defines an operator on a natural sub-
space of X and its smallest closed extension is A,* = A*as is shown in
[17-II). When Re(a) < 0, A4 is defined by equation.4.10 of [17-1,
p. 304] and A< is shown to have a smallest closed extension A_«
which is independent of . When Re(a) = 0, Ax is defined by
equation 4.11 of [17-I, p. 305] for x in D°N R". If 0<o, 7<1,
andifx € D°N R, Az,x = xifa= Oandifa # 0,

Aoy = — Sinlra) [j: (¢ + A)-x dt — IZ

T

X

- [0 A+ Ay s

here N is an arbitrary positive real number; N does not influence the
value of Ag,x. The right side of the above equation is analytic in & on
the strip —7 < Re(a) < o and it coincides with A*_ x and A, in the
subdomain —7 < Re(a) < 0 and 0 < Re(a) < o, respectively; so it is
possible to give another definition of fractional powers by means of the
operator A2, even when Re(a) # 0. There is the important

K-4. For every complex a, Ag, has the smallest closed extension Ay
which is independent of o and 7 when —7 < Re(a) <o. If Re(a) > 0,
Ag*= A,*on D(A,*) N R(A) and if Re(a) < 0, Ap* = A_=.

A result similar to K-4 holds for larger values of o and 7; see [17-1].

If A has a bounded inverse, R = X and A_¢ is everywhere defined
and analytic in Re(a) < 0. If x € D°, A% is analytic in Re(a) < 0. If
—(n+ 1) < Re(a) < 0,
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(e + A)-n-1d

._ —sin(ra) n!
A= )J 0

T (a+1) - (a+n

and

K-5. If Re(a) > 0, then A= = Ay*is the inverse of Ay~ = A_~¢ the
D(A.®) is contained in the R(A_~¢). See §5 of [17-1].

K-6. (i) If Re(a) - Re(8) > 0, then AL*ALf = Ay*A.f = A.**Fin the
sense of the product of operators.

(ii) If & and B are any complex numbers, then [Ag*AyP]c = Ag*+F
where [ T] ¢ denotes the smallest closed extension of T.

(iii) If A has a bounded inverse and if Re(a) > 0, then Ay*Ayf =
AOoH—B.

See §7 of [17-1].

From the assumption that ||t(t + A)~!| = M for ¢>0 and the
resolvent equation it follows that (t + A)~! exists for ¢ in the sector
larg(¢)| < Arcsin(M~!) and that #(¢ + A)~! is bounded on each ray of
this sector. Let M(@) = sup{||t(t + A)~!|:|arg(¢)| = ©}, ® = 0; M(®) is
an increasing function of ®. An operator A is said to be of type
(w, M@)),0 = » < 7,if Ais closed, densely defined, the resolvent set of
(— A) contains the sector [arg(t)] < 7 — w, and

sup{||t(t + A)~!] : farg(s)| = O} = M@) <

holds for all0 =@ < 7 — w. An operator A is of type (w, M(@)) for an
o < 7/2 if and only if (—A) generates a semigroup T, which has an
analytic extension to the sector |arg(t)] < 7/2 — o such that the exten-
sion is uniformly bounded on each sector |arg(t)| < 7/2 — @ — €,€ > 0;
[17-1, §10].

K-7. If A is an operator of type (w, M@)) and 0 < aw < 7/2, then
(—Ay®) is the generator of the strongly continuous semigroup
exp(—tA,*) which is analytic in the sector [arg(f)| = 7/2 — aw and
uniformly bounded on each smaller sector |arg(t)|=7/2 — aw — ¢,
€ > 0; see §10 of [17-1].

K-8. Let A be of type (w, M(@)), then (A,%)f = A, if0 < a< 7w
and Re(8) > 0.

K-9. If 0 < a<1 and if T, = exp(—tA), then Tix = exp(—tA?) =
J6 TxN(e, t,s)ds where N(a, t,s) = (2mi)~! [3*iZ exp(us — tu*) du

24].

[ I]f T, is a bounded semigroup on X, we often need to know when
A.°T; is a bounded operator on X; the following theorems give some
information of this type.

K-10. Let A be an operator of type (w, M@)) with o <7/2, and



THEORY OF IMAGINARY POWERS OF OPERATORS 471

let T, be the analytic semlgroup generated by (— If |arg(t)| < @/2
— o, t # 0, then T is in D(A.®) for any x in X and Re(a) > 0, and
we have

AeTgx = (2mi)-! f (—s) exp(st)(s + A)~lx ds,

where T is the path consisting of two rays from ®e~i® to 0 and from
0 to we® with 7/2 <O <«/2 + [arg(t)] There is a constant N
depending only on o, € >0, and A such that ||A,*T,| = NJ¢| Re@,
when |arg(t)| = 7/2 — w — €.

K-11. Let T, be a bounded semigroup and let (— A) be its generator.
If there is a complex number a with Re(a) > 0 such that ||A.°T|| =
N|¢|~Be@), ¢ > 0, with constant N, then A is of type (w, M(®)) for an
o <72,

K-10 and K-11 are quoted from §12 of [17-I].

3. The Poisson integral on Hilbert space. Let H be a real separable
Hilbert space. For 1 < p < o let L,(H) denote the Banach space of
p-power integrable functions with respect to the weak normal distribu-
tion (with variance parameter 1, centered at the origin) on H. Let
y— T, denote the regular representation of the additive group of H
by isometries on L,(H). If fis a bounded tame function,

(Tuf)@) = fx = y) exp [——L JL'ﬂL]

The T, are strongly continuous and play the role of the “translation
operators” on L,(H)[5]. If  is a finite Borel measure on H, then T(f)
= f* p= [y T,fdu(y) is a bounded operator on L,(H) with norm
at most ||u|, the total variation of p. If n, denotes the normal distribu-
tion on H with variance parameter #2, and if B# 0 is a Hilbert-
Schmidt operator on H, then n,° B~! is a Borel probability measure
on H [12]. Let

H(f)= [, T.fdne B-1(y)

P = [ HU(fINGy) die

when Ny(y) = (wt)~ 2y exp(—t~'y2). P,(f) is the Poisson integral
of f H, and P, were studied in [6]. We shall recall some of the
properties of these operators; the proofs of the properties not given
here can be found in [6].

P-1. H, and P, are strongly continuous, contraction semigroups on

Ly(H).
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P-2. There is a unique Borel probability measure p, on H such that
Pz(f) = fH Tyf sz(y)

P-3. If a= (ay, - * ', a,) is a multi-index of nonnegative integers
with |a| = DL, a;, if A, is the infinitesimal generator of the transla-
tion semigroup Tips, and if A= A}! - - - A,", then

AH(f) = [, Taf C1)(Y) dndy)
where C¢= Cj' * -+ Cn," and Ch, is the infinitesimal generator of
T, s> 0, acting on L,(H,n;). Thus if t> 0, A°H, is a bounded
operator on L,(H) and |A®H,|, = A(a, p)|hi||® - - - ||ha* t1l2

P-4. P, is infinitely differentiable with respect to z and with respect
to the space variable and

APLf)= [ AHUfNz) dil,

(& rin= ;o (4 v

P-5. If H,= exp(—tA), then P, = exp(—yT) where T = 2AV2
see [24] or K-9.

P-6. P, extends to an analytic semigroup in |arg(z)| < /4. P, is
a bounded semigroup in |arg(z)| < /4 — € for each e > 0.

Proor. Ny(z) is analytic in [arg(z)| < #/2 and the integral P,(f)
= [5 H(f)N(z) dtlt converges uniformly on compacts in
larg(z)| < /4 — € fore > 0.

P-7. If P, = exp(—2zT), T is one-to-one in L,(H) and R(T) is dense
in L,(H).

Proor. It suffices to show that T2 is one-to-one. If T2f =0,
H2f = f for all finite ¢. If A, denotes the infinitesimal generator
of Tigp, t>0, then AH2f= A,f for all h in H By P-3,
|Anfll, = Ke=t||A|| |Ifl, for all ¢>0; let t tend to . Thus
|Aufll, = 0 for all h in H, and Tpf = f for all t>0 and all
hin H. If g is a tame function on H, Hormander’s result (see the proof
of Theorem 1.1 of [16]) that |r,U+ Ul|,—2'|U|, for U in
L,(E,, dx) implies that |T.;gng + g|,— 2'7|g|l,- Since the tame
functions are dense in L,(H), an e/3-argument shows that
| Teanf + fllo— 27| fll, a t—®. But since T2f=0,
2l = | Teenf + fllo— 2| f||l,» and this implies that f=0 and
T is one-one. By Theorem 3.1 of [17-I], R(T) is dense in L,(H)
since L,(H) is a reflexive space and T is one-to-one.

RemMark. We have to assume in what follows that B is a one-to-one



THEORY OF IMAGINARY POWERS OF OPERATORS 473

Hilbert-Schmidt operator because of the present formulation of P-3
and its influence in the proof of P-7. It is possible, however, to state
P-3 in such a way that B is not required to be one-one; then P-7 follows
as above and we conclude that T is one-one whenever B is not the
zero operator.

4. Interpolation. In §{IV we shall rely heavily on a special case of
an interpolation theorem due to E. M. Stein ([21], [25]) to estimate
the norms of the operators which were mentioned in the introduction.
Let B denote a dense subset of L,(H) and let C denote a dense subset
of the dual space L,(H). Let S be the strip 0 = Re(z) =1, and let
T, z €S, be a family of linear operators on L,(H) which maps B
into L,(H).

Tueorem. Let T,, z €S, be a family of linear operators which
maps Binto L,(H) and satisfies the following conditions:

(1) If f€ B and g € C, then ¢(z) = (T,f,g) is continuous on
S and analytic in the interior of S and

logle(x + iy)| = Aexp(aly|) for0=x=1landa<m;

@) "Tmf"vE M| fl, and "T1+tyf”p My(y)||fll, for f in B
with ogM(y) M; exp (aly])a<wm,i=1,2

Then | T,||, = A(t) for0 = ¢t = 1; A(t) is bounded in t for 0 = ¢t = 1.

In place of the sets BC L, and C C L, Stein uses simple functions
and assumes that the T, map simple functions to locally integrable
functions. Zygmund [25] gives an integral formula for A(¢) when
0 < t<1. If one replaces log M;(y) by Mexp(aly|), a<m, i=1,2,
in this integral and uses M exp(aly|) = 2M Cosh(ay) = 2M Cos(iay)
and a circuit integral, it follows that A(¢) is a bounded function in
0=:t=1

III. Imaginary powers of operators.

1. Singular integrals of imaginary order. In [18] Muckenhoupt
studied a class of singular integral operators which is of fundamental
importance in the study of imaginary powers of infinitesimal gener-
ators. We shall only restate some of the one dimensional results here.

Let ¢ be a nonzero real number and set

(Tf)(x) = [f flx — t)t-ie-1dt — f(x) —w]

ProposiTioNn 1.1. Let g(t) be a measurable function on [0,1]
to a Banach space X. Let (S) [y g(t) dt denote lim,,_, o [} bt*~'g(t) dt.
Then (Tf)(x) = lim_ (T f)(x) converges almost everywhere
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orin L,(— %, ©)-norm only if
) f; flx — t)t-ie-1 de + ij(x — f)t-ie—1 dt
=) [, (fe =0 =yt e

f(x) * — —ic—1
L +j1f(x f)t-ie—1 di

exists almost everywhere or in L,-norm.

Proposition 1.1 is a consequence of the fact that (S) is a regular
summability method.

PropositioN 1.2. If fis in L(— %, ), (T f)(x) converges almost
everywhere and in L, to (Tf)(x) as €e—>0". T, is a uniformly
bounded family of operators with ||T.| = Apq(lc| + 1)2|c|~ .

Given a bounded semigroup K, = exp(—tD) on L,(H) we will begin
by studying the analytic semigroup (r + D)~% Re(a) >0, r> 0 is
fixed. When D is suitably restricted, we shall see that (r + D)~ is
a strongly continuous group of bounded operators on L,(H) and that
D~ = S-lim,,o* (r + D)%, the (—ic)th power of D is the strong limit
of the (r+ D). Since we are primarily interested in imaginary
powers of D, Ty = exp(—tD,), of T, P,= exp(—zT), and of
(r + T)~!, we shall severely restrict the semigroup K, from the start.

Let v be a Borel probability measure on H such that v»({0}) =0
and if v,(E) = v(E[t) for t > 0 and Borel sets E, then v, * v, = v,
for all t,s>0. Set K(f)= [uT,fdv{y) and let (—D) denote
the infinitesimal generator of K.

Since imaginary powers were treated in detail in [9], we shall only
outline the theory in the following sections.

2. Bessel-Komatsu potentials. For r > 0 and Re(a) > 0, set

L(f) = D)™ [ Kifyeete~rdt

TueoreM 2.1. L,* is an analytic semigroup of bounded operators on
L,(H) in l|arg(a)| <w/2. L, is one-to-one on L,(H) if Re(a)> 0.
L~= (L,')*= (r + D)~ the ath Komatsu power of L,', if Re(a) > 0.
The range of L= R(LS), is dense in L,(H) if Re(a) > 0. ||Le|, =
r~Re@[(Re(a)) [T ()|~ L



THEORY OF IMAGINARY POWERS OF OPERATORS 475

Proor. To check the continuity of L, let |arg(a)| =© < 7/2 and
write

Lef = f= T [ (Kf = fir-terde+ (rof = ).

The last term converges strongly to 0 as a tends to zero. Given
€>0, let 8>0 be so small that |Kf—f|,<e for 0<t=3s.
Choosen > 0 such that

IP(@] = [~ ehelw-te=r dt < er-Reor(Re(e) M ()] !

when 0< Re(a) <. Then  |Lf) = fll, = [r— 11| fll»
+ er‘“e“"l‘ Re(a))[M(@)]~'(1 + 2| f]l,) if O<Re(a)<m. Since
(@))|M(a)| ' = M(©) < =, continuity is verified.
Since to=! is analytic in Re(a) > 0 for ¢ > 0 and since t*~!log(t)e "
is integrable, L,(f) is analytic in Re(a) > 0. Set I'(a) 'te—le " =
g(t)ift > 0 and g,(t) = 0if ¢ < 0. Then

LeLe(f) = |* Kif)g.» go(t) dt
and direct computation shows that g, * gg(t) = g,+4(t); thus LeL?
= Lo+h,

If L%f)=0 for some a in Re(a)>0, then L~*Y(f)=
LeL(f) =0 for all t>0. By the principle of uniqueness for
analytic functions L,(f) = 0 for all Re(a) > 0. Strong continuity
implies that f= 0 and that each L is one-one. That L= (L,!)
follows from the computation: set L(f) = [, e "K{(f)dt, then, if
0 < Re(a) <1,

Lof) = (@ [ wteK,(f) d
= (@) 'T(1 - a)-! f: j: t-se-me—K,(f) dt du
= [(@)-'T(l — a)-! jo f (t — 1)=e—t dt K,(f) du
= I(@)-'T(1 — )~ f (t=n=| : e~tK,(f) du dt
= @)~ T(l — a)-! j“’ (t — r)=(t + D)-Ifdt

=Na)"T1 = a)! j: v v +r+ D)~ 'fdv.
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Since (v + r+ D)~! = L(vL + 1)~ setx = v~! to get

sin(ma)

Le(f) = [D e+ 1) de = (L

T
by K-1 of §II-2. If Re(a) = 1, use the semigroup property of L* and
K-6 to show that L~ = (L')=

R(L,%) is dense in L,(H) since by Proposition 4.3 of [17-I]
D((r + D)) is dense in L,(H) and by K-5, D((r + D)®) is contained in
R((r + D)_*).

Next we shall define and study the boundary value group L,. Let
8> 0. Ifc = 0, set ,L,i(f) = f; when ¢ # 0 set

L) = ey [ [ Kipoemte e + 2 f

let Lji(f) = lims,o+ sL°(f) when this limit exists in the
p-norm.

Tueorem 2.2. For r > 0 the ;L are uniformly bounded in & > 0,
r>0, and the strong limit L/ exists as §—>0%. |,L’|,=
Npq(|c| + 1)2 |[(ic + 1)|~! where the constant N does not depend on
§>0o0rr>0.

Proor. First consider
(Ts4f)(x) = L flx = y) exp(—ylA)ye~' dy + %f
on L,((—,»)). Let g(t)= tic-! if t>0 and g(t)=0 if t=0.
Since exp(—|t|/A) = (m)"'[>. e WAl + A%?)~ldy, set h(A,y)
= A(m)~ (1 + A%?)~!and write

(T = |7 e [ fia— et ingle) deh(A,y) dy + & 5

©
— ® 1t|>6

- f :, . [ J 1oy Tl = Deteng(0) de

+ BTe™ ¢ ] h(A, y) dy.

ic
By Minkowski’s integral inequality,

Ieoflo= [ maw) ||[ s = netemen ae

b‘iceixy
4 2=
ic f

| dy.
14


file:///t/IA

THEORY OF IMAGINARY POWERS OF OPERATORS 477

By Proposition 11.1.2, the norm in the above integral is dominated
by Npq(lc| + 1)3[c[~%. Thus T;4 is a bounded operator on L,(H) and
the bound on ||Ts4||, does not depend on A. By Proposition IIL.1.2
and the bounded convergence theorem, the T;* converge strongly to
a bounded operator, T4, on L,((— %, ®), dx) as §— 0.

Let

Uif) =1 [ Tuf

and assume that f is a bounded tame function on H. Then the rota-
tional invariance of the normal distribution can be used as in the proofs
of Theorems 7 or 4 of [8] or [9] to show that as a consequence of
the bound on T, |,U,f|, = Npq(lc| + 1)2[T(ic + 1)|=Y|f]|,
where N does not depend on 8§, , or y. The bounded tame functions
are dense in L,(H), so that the desired estimate holds. The rotational
invariance of the normal distribution together with the bounded con-
vergence theorem shows that ;U, converges strongly to a bounded
operator U, on L,(H) as 86— 0*. ;L is the v-integral with respect
to y of the ;U,, so that the ;L, are bounded uniformly in § > 0 and
r>0. The bounded convergence theorem implies that the ,L,*
converge strongly; the required estimate holds.

Tueorem 2.3. L(f) = lim{L,>*(f) : b— 0+} for each f in L,(H).

Proor. The integral T(a)~![7K(f)t* 'edt, a=Db+ic,
converges strongly to L/ as b— 0". It is sufficient to consider

Jo'K(f)ts—le=rt dt. This integral is

f:) bxb-1 f ' K(f)tie- e dt d.

The function bx?~! gives a regular summability method on 0 = x = 1.
Since the integral Jo'K/(f)t*~Y(e~" — 1)dt converges strong]y
to f0+ K(f)tc~!(e~* — 1) dt as b— 0, we consider

1 1
lim bxb—lf K/ f)#ie=1 dt dx.

b—0* 70

From Proposition III. 1.1, we have that this last integral exists if

li Jl ic—1 €
im | Ky(f)te-'dt + icf

4
-0

exists; when the limit on € exists, the limit on b exists and the two are
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equal. Theorem 2.2 shows that the limit on € exists, so that L,*(f)
= lirnb—~>0+ Lrb+ic(f)'

CoroLLarY 2.4. If Re(a) > 0, L,2*ic = LL,.
Proor. If 0 < € < Re(a) and if f € L,(H),
" Levief — LraLricf "p
= rRe—ar(Re(a —¢))[I(a— €)|~!||Ltif — LeLif],

by the boundedness assertion of Theorem 2.1. Since
ILivef = LA S L = Lifll + Lo = oLl

let € > 0*; then Theorem 2.3 and Theorem 2.1 give the desired result.

CoroLLary 2.5. T,*= L% a =0, is a strongly continuous family
of bounded operators on L,(H) with

T2, = Ar=pq(lc| + 1)2[T(ic + 1)|~ .

Proor. By Corollary 2.4, L,*ic = L. L, Since L, is strongly con-
tinuous by Theorem 2.1, T, is strongly continuous. The bounds for
L,%in Theorem 2.1 and for L, in Theorem 2.2 give the bound on T,

CoroLLARY 2.6. Foreach r > 0, L, °L,id = L ic+d),

Proor. By Corollary 2.4, L,t°L,id = L,cti+d) and by Theorem
2.3, we may take the limit on each side of this equation as € - 0* to

get the desired equality.

CororLary 2.7. {L,:c real} is a strongly continuous group of
bounded operators on L,(H) with L, = the identity operator and
(Lric)—l = Lr—ic'

Proor. Because of Corollary 2.6, we need only show that
lim{Lf:c—>0}=f for each f in L,(H). The bound on
L, is  Apg(|c] + 1)3[T(ic + 1)|~' = 4 Apq(mc)~"*(sinh(mc))!/2
on [¢| =1 since |[(ic)| = (x)"?(c sinh(7c))~ 2 as follows from the
well-known identity for I'(z)['(1 — z). Thus |Lj|| is bounded on
—1=c¢=1 and lim_¢ L*f = Lf uniformly on —1=c=1.
Because of the strong continuity of L% in Re(a) > 0, the following
equality completes the proof:

lim Lif= lim lim LsYf = lim lim Lstef
¢—0 >0 >0 e—0" ¢>0
= lim Lf = f.

e—0"
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CoroLLary 2.8. Lj°f = (r+ D)~f = [(r + D)¥] ~'f for all f in
L,(H), and (r + D)~ is a bounded operator on L,(H) for all real ¢ and
allr > 0.

Proor. By Theorem 2.1, L,*= ((r + D)~ !)o. By K-5, ((r + D)~ !)®
= (r + D)=% The desired result follows from K-4 when we note
that R = L,(H) because of the invertibility of (r + D) and the density
in L,(H) of D°. A corollary of the uniform boundedness principle (p.
60 of [4] ) can now be used to complete the proof.

CoroLLarY 2.9. L, is the (ic)th Komatsu power of L, = L, for
all real c.

Proor. By Theorem 2.1, (L,)* = L% By Theorem 82 of [17-I],
for a dense set of f in L,(H), (L)*f= lim,, ¢ (L,)s"f=
lim,_, o+ L,2*ief = Ljf.  Since L,%** (= (L,)°**) is uniformly
bounded in a= 0, (L,) is bounded because of a corollary of the
uniform boundedness principle (p. 60 of [4]) so that L f = (L,)f
forall f in L,(H).

3. Imaginary powers of D. In this section we shall assume that D
is one-to-one and that (+D?) generates a bounded semigroup. If
K,= P, D= T and (—T?) generates H,,; if K, = T,,, D = D, and
+(Dy)? generates the semigroup

HA(f) = (drt) 2 [ Tunf exp((—u?/4e)) du

The significance of these assumptions on D is that by Theorem
3.1 of [17-1], the range of D and the range of D2 are dense in L,(H).

Define D(ic)f = lim,_ o+ L,(f) if the limit exists in the
p-norm.

TueoreM 3.1. D(ic) is the strong limit of L, as r— 0% and

| DGe)|l, = Apq(lc| + 1)2[C(ic + 1)|~\.  Furthermore, D(ic)= D™,
the (—ic)th Komatsu power of D.

Proor. Ifr, ry > 0,

LA = L) = lim Ty [ detfen = eI K de
30" 8

= + lim [(ic)-! J: fie j " exp(—st) ds K(f) dt

8—0*

==ic [* L1(f) ds.
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The bounded convergence theorem insures that the equality is pre-
served in the interchange of integrals in the last equality above. Since
by Theorem 3.1 of [17-1], L,(H) = N(D) & R(D), and since N(D),
the null space of D, is 0 by our earlier assumption, R(D) is dense in
L,(H). Suppose that f= Dg for some g € L,(H); then

|LiDg) — LiD, = lel |, [* [DGs + D) 1gll, ds.

Since [|Kfl,=1, [D(s+ D)"'[,=2 and |Li(Dg) — Li{Dg)|, =
A(c, p)|ry — ro). Since the range of D is dense in L »(H), Theorem
IL.3.6 of [4] implies that D(ic) is a bounded operator on L,(H).

From the definition on p. 305 of [17-I] of purely imaginary powers,
D-“f = fifc = Oandifc # 0,

D-ief = Sm’”c) [} e+ D) 1fdt+—N—ff

- J: t—iem1D(t + D)—lfdt]

and by using Corollary 2.8,

—ic

N
icf

(r+ D)-ief= Emif—w) Uz t7(t+r+ D)"'f dt +

— [ e+ e+ r+ D)

where N is a positive real number. The resolvent equation implies
that

D-ef — (r+ D) of = 1K@)[ [ (e + D)= + r + D)~'f e
— |t D(t + r+ D) (¢ + D) 'f de

* —ic—1 —1
+ JNt (t+r+ D) fdt ]
The second and third integrals on the right are bounded operators
on L,(H). If f= D3?g, the first integral on the right converges.
Since (+ D?) generates a bounded semigroup and D? is one-one, the
range of D? is dense in L,(H) by Theorem 3.1 of [17-I]. Thus
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Theorem I1.3.6 of [4] implies that (r + D)~ converges strongly to
D¢ as r— 0+ and D(ic) = D~; thus

[D~*|l, = Apq(|c| + 1)?[[(ic + 1)L

CoroLLarYy 3.2. D is a strongly continuous group of bounded
operators on L,(H).

Proor. DiDd = Di+d) by K-6(ii). The continuity of Dic follows
from the fact that the imaginary powers are continuous on a dense

subset of L,(H) and from the uniform boundedness of the operators
Dcin —1=c=1.

CoroLrary 3.3. If the domain D(D?) is equipped with the graph
norm, D(D?% = D(D") when Re(a) = Re(b).

Proor. D' is bounded, so D*= D’*i = D!Di¢ has the graph
norm on D(D?) equivalent to the graph norm on D(D?).

TueoreM 3.4. D~ is given by Muckenhoupt's singular integral

—icf =1 RN ic—1 &
D-ef =lim [l”(w) L Ky dt+ -2 f B

Proor. Set D(ic) equal to the integral operator in the statement of
the theorem. By arguing as in the proof of Theorem 2.2, one sees that
D(ic) is a bounded operator on L,(H). For f € R(D),

D(ic)f — (r + D)~f

= % (i) lim j: K(f)eie1 jo te=st ds dt
&

==xic [ Liwfds

The dominated convergence theorem insures the last equality. Since
Ljc+! = LJL,' and since |L,*|| does not depend on s, it suffices to
assume that f = Dg for some g in L,(H) as the range of D is dense in
L,(H).

Then |D(ic)f — (r + D)~f||, = rK which tends to zero as
r— 0*. Since the set of f in L,(H) of the form f = Dg is dense in
L,(H) by Theorem 3.1 of [17-I] and since both D(ic) and D~ are
continuous, D~ has the desired form.

TueoremM 3.5. If f € R(D) N D(D), the infinitesimal generator of
the semigroup D', c > 0, applied to f is
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V(f) = —i U; (KAf) = f) ddle + | K(f) dile + Cf |
where C is Euler’s constant. R(D) N D(D) is dense in L,(H).

Proor. If fER(D), t~'[{K(f)ds is in R(D) N D(D) and
as t— 0%, the integral converges to f. Since R(D) is dense in L,(H),
D(D) N R(D) is dense in L,(H).

Let f € D(D) N R(D). Then by Theorem 3.4,

C"I(Dic‘f—f) = lim —i [F(l — ic)—lJ; (th_f)t_ic_ldt

80"
+ Il —ic)! jj K ft—ic-1dt
+ frQ — ie)~! — 1)(—50)—1]
= —ir{d —ic)™! [Ll, (Kf — f)r-ie="de + j? K ft=e= dt

+ fl-r1Q - ic))(—ic)—l] .
Because f € D(D), the first integral converges absolutely, and as
c— 0, the first integral converges to the appropriate integral. Since
f € R(D), f= Dg for some g in L,(H). Restrict ¢ to —1=c=1;
after integration by parts

[" iyt ae= Kig) + (=i = 1) [ K-z

This last integral converges absolutely and one can apply the domi-
nated convergence theorem to take the limit as ¢— 0*. Since C =
—TI'(1), V(f) has the desired form.

IV. Some analytic semigroups. In this section we shall use the
boundedness of certain purely imaginary powers to estimate the
norms of operators and to study some analytic semigroups which arise
in the study of singular integrals. We shall begin with a discussion of
the indefinite integral.

1. Powers of the integral. Let Re(a) > 0 and set

()@ = 1@~ [ (v = yr='fiy) dy

for f in L,0,®). In [14] Hardy and Littlewood showed that if
0<Re(a)<p~! and r=p(l—pRe(@) !, then |I«f|,=
Ale, )| fll,» When restricted to L,(0,1), I is an analytic semi-
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group in |arg(a)| < w/2. We shall define and study I‘¢ for ¢ real
Let € >0, ¢ be real, and f be in L,0, ) and set I‘f= f if
c—OandlfciéO set

) ]

Licf(x) = T'(ic)~ [J flx — yy
Set I°f(x) = lim o+ L*f(x) if this limit exists.
TueoreM 1.1. L is a bounded family of continuous linear operators
on L,0,%) for € >0 and each fixed c; ||L“|,= Apq(|c|+ 1)
lF(w + 1)|=L For f in L,0, »), as € >0, Li°f(x) converges
almost everywhere and in L,0, ©). I isa strongly continuous group
of bounded operators on L,(0, ).

Proor. Notice that Lif(x) =0 if x<0. Set F(x)= f(x) if
x>0 and F(x)=0 if x<0. Then FEL,(—®, %) and |f|,=
I Fll» and

Lef(x) = ToF(x) = T(ie) ™ [ |7 Fe— iy dy + e,—c P |-

By Proposition IIL1.2, |T.°F|,= Apq(lc| + 1)%[T(ic + 1)|~Y| F||»
L' is uniformly bounded in € > 0 on L,0, ©). By Theorem 6 of
[18], T< °F(x) converges almost everywhere and in L,(— %, )
to T°F(x) as e€—>0* then, of course, |[T¢|,= Apq(|c]+ 1)2
- |l(ic + 1)|~! and I‘c has the desired form and bound.

An integration by parts shows that the Laplace transform of I‘“f
is t~°(Lf)(t) and this shows that [ic[id = [i¢*+d) for all real ¢ and d.
To show that I‘° is strongly continuous we need only show that
lim,_o I'“f = f for a fundamental set in L, since ||I’||, is bounded
on |c|=1. Characteristic functions of the intervals [0, a], a > 0,
generate the step functions so that we need only show that If,
converges to f, in L, when f, is the characteristic function [0, a].
Direct computation shows that I“f,(x) = I'(ic + 1) " x* on 0 < x < a
and I‘f,(x) = [(ic + 1)~ xi — (x — a)*) if x > a. By the bounded
convergence theorem,

lci_rflo Jo |xic — 1|7 dx = 0,

lim = [xic — (x — a)i[rdx = 0
c-0 Ja

Since v — (x — a)| = | = (1= al)| = Je| [ [ — o= d
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= e)(alx)(1 — alx)~' = |cla(x — a@)~!, and since (x —a)”! is in
L,(2a, » ), the dominated convergence theorem implies that

o0
lim [xic — (x — a)ic|r dx = 0.
c—0 Y 2a

I‘c is a strongly continuous group of bounded operators on L,(0, ).
Now restrict to L,(0, 1).

CoroLLARY 1.2. [« is an analytic semigroup on L0, 1) in |arg(a)|
< /2, and I* is a strongly continuous semigroup in Re(a) = 0.

Proor. The analyticity is proved in [15]. Ii° is a strongly con-
tinuous group by Theorem 1.1 and by taking Laplace transforms, one
shows that Iic]* = Jic*= for Re(a) > 0. Strong continuity in Re(a) = 0
follows from the strong continuity of I'“ and I, t > 0.

TueoreM 1.3. I = (d/dx) ' for all real numbers c.

Proor. Set D = d/dx, the negative of the infinitesimal generator of
(Tef)x) = f(x — t). For fELL0,®), extend f to (—®,®)
by setting f(x) = 0 ifx < 0. Then

(r+ D)~*f(x) = Elin(} I(ic)~! [Lm flx — y)e~vyic~tdy + i—z f(x)]

= lim F(ic)“‘[ﬁ flx — yle~yic—ldy + % f(x)]

e—0*

has (r + D)=f(x) = 0 if x<0. Thus (r+ D)~ and D~ map
L,(0, ©)to L,(0, ). For fin R(D),

[(r+ D)~ic — [] f(x) = lim I(ic)~! J: flx = y)e v — L)y“~ldy

50"

= —TI(ic)~" lim J: flx—y) f:) e~ vdsy“dy

50
= —ic jo (s + D)~1="f(x) ds.

Since f € R(D), f=Dg and |(r + D)~icf — Iief|, =
rA(c, p)|lgll,» so that (r+ D)~ converges strongly to I‘. Thus
D—ic = Iic_

We shall continue to let D = d/dx in the next theorem.

THEOREM 1.4. Let w > 7/2, let p = r, and set
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u(fine) = ([ lexp(=wlehDef)l de ) "

Then ||u(f, 1|l = Alp, 1, ©)| fll,-

Proor. By Theorems 1.1 and 1.3, |D¥f|, = A(p,m) expmlc))|f|»
where n > 7/2 and n — #/2 is arbitrarily small. Minkowski’s integral
inequality implies that ||u(f, 1|, = A(p, 1, 0)| f|, ifp = r.

In the next section we shall study another semigroup which consists
of smoothing operators.

2. Bessel potentials. In §III let K, be the semigroup P,, the Poisson
integral. Then for r > 0, L,> = J,~is the semigroup of Bessel potentials.
The following theorem restates the main properties of L, for ]~

THEoREM 2.1. [, is an analytic semigroup of bounded operators
in |arg(e)| < @l2 and ]~ is a strongly continuous semigroup in
Re(a) = 0. For Re(a) =0, ] is the ath Komatsu power of J,', ]
is one-to-one, and the range of ], is dense in L,(H).

DeriniTioN.  Let L,(H) be R(J,%) with the norm ||g|,. = || fll»
when g = Jof = Jof.

CoroLLARy 2.2. If Re(a) = Re(B), L,X(H) = L,R°¥)(H) with equiva-
lent norms.

This corollary follows from the fact that Ji is a bounded operator
with a bounded inverse. We shall see soon that L, H) could have
been defined with any of the J,* and an equivalent space of functions
would have resulted. We want to show that L,(H) = D(T*) with
equivalent norms when D(T¢) is equipped with the graph norm;
(—T) is the infinitesimal generator of the Poisson integral. To do
this we shall study the semigroup (r + T)*J,* when r= 0 and u > 0.

Tueorem 2.3. (r + T)*J,~ is an analytic semigroup of bounded
operators on L,(H) in |arg(a)| < 72 and a strongly continuous semi-
group of bounded operators on L,(H) in Re(a) =0 for r=0 and
u>0. IfRe(a) = n,

Ir + TyTell, = Alp) exp(@r[Im(e)]) [u='(u + r — ul)]™

Proor. (r+ T)J,'=1— (r—w)],' so that |(r+ T)",=
(u='(u + |r — ul))". By Theorem II1.2.2 and Corollary II1.2.8,

||(r + T)"Cj,,"C”,, = A%2q%([c| + 1)*T(ic + 1)| 2
= A(p) exp(2r[Im(a))).

By Proposition 6.3 of [17-I], (r+ T)*J,2= [(r+ T)(u + T)~1]< for
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Re(a) > 0, so that by Proposition 82 of [17-I] and by K-6,
(r+ T)J,* is an analytic semigroup in [arg(a)| < m/2. Strong con-
tinuity on Re(a) = 0 follows from the strong continuity of (r + T)iJ, i
and the strong continuity of (r + T)(u + T~!)* in t= 0. By Stein’s
interpolation theorem,

[(r + T)Ju(lp = Alp) exp(2r [Im(e) [)(u~'(u + |r — u)))"

when Re(a) = n.

REMARK. An exact computation can be used to show that (r + T)J,*
is given by convolution with a finite Borel measure if Re(a)> 0.
See [7] where this is done for r = O and u = 1.

Since Ji¢ is bounded and invertible and since T is bounded and
invertible, L,%(H) = L,R¢@(H) and D(T%) = D(T®¢@). Thus to prove
that L,o(H) = D(T°), it suffices to verify this equivalence for real o

TuEOREM 2.4. L,°(H) = D(T?) with equivalent norms for Re(a) = 0.

Proor. It will be sufficient to prove equivalence when « is real.
For f € Ly(H), |flla= |1 + T)f|,» Thus

Il + 0Tefllo = Ifllo + 1T + T)<f ]l
= @+ Tfllp + [T+ T)fl
= (LA T + T)f
é A(a’ P)”f”n,a
by Theorem 2.3, and L,*(H) C D(T*).

Let f € D(T*) and suppose first that 0= a«=1. Then (1 + T)*f
= T*f + Bf where B is a bounded operator of L,(H). For

sin(ra)

(1 + T)f = j: =T + 1)(t + 1+ T)-'f dt

™
sin(ra)

= Z2TE " i+ 1+ T)"f dt
™ 0

sin(may) (= | )
+ I fo t==1T(t + 1 + T)-'f dt.

Since |[(t+ 1+ T)~!| = A(t + 1)~!, the first integral on the right
represents a bounded operator on L,(H). By the resolvent equation
(t+1+T)'— @+ T)'=—(t+ 1+ T)"(t + T)~". Thus
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L[ =1T(¢ + 1+ T)-'f de

sin ‘ﬂ'a

= Tof — j =1T(E + T) -\t + 1 + T)-'f de.

Since |T(t+ T)"Y|= A and ||[(¢t+ 1+ T)"!| = A(t + 1)7!, the last
integral on the right represents a bounded operator on L,(H).
Thus it 0 <L, * Il = 10+ Tl = 31l + [
= Alp, (|| fll» + | T*f]l,). For a=n+9, 0=9<1, n a positive
integer, (14 T)*=(1+ T)YT°+ B) = Zk_oAkT +§)k o BiTk+?
where the A and the By are bounded operators on L,(H). By Theorem
6.5 of [17-1], D(T*) C D(T*) continuously for 8 = e, so that

I+ T)fll, = Alp, &)([Ifllp + ITf,) and D(T) C Ly=(H).

3. Directional derivatives. Let h € H and let A, denote the in-
finitesimal generator of the translation semigroup T.z,. We shall
study the semigroup (— Ay)?J* for Re(a) = 0 when J* is the Bessel
potential of order o; J* = ],

ProposiTioN 3.1. (—Ap)J¥ is a strongly continuous group of
bounded operators on L,(H). ||(— Aw)J|, = A(p) exp(2r]c]).

Proor. (— Ap)* and Ji are strongly continuous groups of bounded
operators by Corollary II1.3.2 and Corollary II1.2.7. Since Theorems
II1.2.2 and II1.3.1 give estimates for the norm of each of these operators
of the form Apq(lc|+ 1)%C(1 +ic)|~', and since [[(ic)|=
(m)V2%(c sinh(mc)) =2, we have the desired estimate for (—A;)iJic.

ProposiTion 3.2. A, ] is a bounded operator on L,(H).
Proor. The proof requires the following useful lemma.

LemmMa 3.3. If fisin L,(H), 1 < p < ®, and if ¢(t) is the Fourier
transform of a bounded, even, Borel measure p on the real line, then

®4(f) = lim J .. Tufe(ta dut
e—0 e
satisfies |®s(f)], = N(p)|n|l |fll, where the constant N(p) is inde-
pendent of Aandy in H
Proor. First set

(Taf)(x) = lim flx — Ho(tA-Y) dilt

e—0 J |t|>e

for f in L,[(—%,®),dx]. Then for smooth f with compact
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support

—= 0 7 |y|>e

T = [ et [ fix = e Yyt

where ps(E) = w(AE) for Borel sets E in the real line. By the M.
Riesz theorem on the Hilbert transform, |Taf], = N(p)|u| ||lf]»
since ||| = ||mal| for all |A| > 0; N(p) depends only on p.

Let f be a bounded continuous tame function on H which is
based in the finite dimensional subspace E of H; dimension of E = k.
Since the normal distribution on H is rotationally invariant, let K
be the span of E and y and let e,, - - -, ., be an orthonormal basis
for Kwith e; = @ = y||y||~". Then

| j T, fo(tA~") dilt ” ’
8<|t|<p P

= _, D ’t
leJSIIyIIéItI<pIIy|| glx = tw)Dy(x, tw) r

elelyl-1a- e | dn

where g is the restriction of f to K and where Dz, tw) =

exp[(x, tw)/p — t32p]. If we write the integral over K as an iterated
integral and write the first integral as

i 7| [ R
= llull <1t <pllyll g 2 ker1)

(2, —

)2 )
e[ =B Tyl a-y ate | an,

it follows from the discussion of T, over (—®, ) in the first para-
graph of this proof and from the dominated convergence theorem
that |[®4(f)|, = N(p)||n| || f|l,» the desired conclusion.

Proor oF ProposrTion 3.2. By P-3 of §I1.3,

AHS) = 17 [, T fCA1)y) dui(y),

where Cj, is the infinitesimal generator of Ty, acting on L,(H, n;).
Since Ay, is a closed operator,

A= [ [, TmfC1y) dniyie(s) die

where

o(t) = t2 J: zexp(—z%t~2)e *dz, t>0.
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Since Cp(1)(y) is a homogeneous polynomial of degree 1 in y, this last
integral may be written as

Ay =5 lim [ [ TaufCuL(y) dm(y)e(t) dit

[t]>e
when ¢(t) = ¢(—t) for negative ¢t. By Minkowski’s integral in-
equality, ‘

lanJfll, = M jHa @yl 1CG)] drily) = Np)llell |11l

by Lemma 3.3, if ¢(t) is the Fourier transform of a finite even Borel
measure p on the real line. Note that ¢(¢) is even by definition and
that,ont > 0,

o(t) = f: zexp[—z% — tz] dz

so that ¢'(f) = 0 and ¢"(¢) > 0. Thus Polya’s criterion [3, p. 169]
guarantees that ¢(t) is the Fourier transform of a finite even Borel
measure on the line.

Tueorem 3.4. (—A)J~ is an analytic semigroup of bounded
operators on L,(H) in |arg(a)| < 7/2 and (— Ap)*J* is a strongly con-
tinuous semigroup in Re(a) = 0. For Re(a) = n,

I Al = AR expmltm@(1 + 4] o] = 1.

Proor. If f €& D(A,N) for N> Re(a), (—Ap)J*f is analytic in
0 < Re(a) < N by Theorem 8.2 of [17-I]. Since D(A.N) is dense in
L,(H), Stein’s interpolation theorem applies if we set U,=
(—Ap)"**J*** when n is a nonnegative integer and 0= Re(z) = 1.
Then the boundedness of (— Ay)“J* and the boundedness of (— A;,)"J"
= (—A,])* imply that U], = A(t, p) = A(n,p). Since (—A,)*=
(= [ A = [h](~ A, u] = 1, and since (= Ay = (~ Ay
(—Ap)ieJic when a =t + ic, we have boundedness for (—A,)y* if
Re(a) = 0. Set S, = (—Ap)9J~ Theniff € L,(H),

ISef = fllo = I8ef = STfllp + [1STf = Tfllo + T = Sl
= ApWS = fllo + 1SIf = TSl

since ||S;|| is bounded on 0 < £ < 1. Let 8 > 0 and take € sufficiently
small that |Jf — f|l, <8 Let t<e; then Jf € D((—AY
and lim, o ||SJ¢f — Jfl,=0. Thus S, is strongly continuous
in t=0. Let N be a positive integer and let 0 < Re(a) < N. If
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f € D(AyN), S,f is analytic in Re(a) < N by Theorem 8.2 of [17-].
For any f & L,(H), let {f,} C D(A.") converge to f in L,(H).
Since |(—An)?J°||, is bounded in Re(a) = N, |Im(a)| = A< », S, f
is a uniform limit of analytic functions so that S,f is analytic in
Re(a) > 0. If |arg(a)| =0 <7/2,a=t + ic,

1S = o = 18 = Sl + 156 = £,
=< A, OISuf = fll + IS = fl»

Since both S, and §;. are both strongly continuous semigroups, if
a—0 in |arg(a)| =0 < 7/2, S,f tends to f. S, is an analytic semi-
group in |arg(a)| < /2 and §, is strongly continuous in Re(a)= 0.
Stein’s interpolation theorem gives the desired estimate for ||S,] .

CoroLrLarY 3.5. Let r> 0. (— Ap)*J,* is an analytic semigroup of
bounded operators on L,(H) in |arg(a)| < w/2 and (— Ap)]~ is a
strongly continuous semigroup in Re(a) = 0. For Re(a) = N,

(= Aw)T:ell, = AN, p) exp(@a [Im(a)[)(r~'(r + |r — 1]))~.

Proor. Since (— Ap)?f,* = (— An)J°[(1 + T)°J,9], and since (— A,)*J*
and (1 + T)%J,* have the properties of analyticity and continuity,

(— Ap)9,® has these properties. The estimate follows from Theorems
2.3 and 3.4,

CoroLLARY 3.6. There is a constant A,(t, p) such that

(8108 [(— An) TN (I, = ¢~ Alp, )1 + Nlog|[RIDIAI f
Ay(p, t) is bounded for0 = t = N < . Furthermore,

(a/at) [( Ah t+w]t+w(f) — i 3/36) [( Ah)t+ic]t+ic(f>] .

Proor. The last derivative formula is a consequence of the analytici-
ty of (—Ap)J* in Re(a) > 0. Set S, = (—A,)!Jt for n = h||h|~' and
let w, = liminf,_o(log|S|/f). Then for w > w,, ||S:|| = M exp(wt),
M = M(w), and e~“tS, = U, is a bounded, strongly continuous semi-
group in ¢= 0 which extends to an analytlc semigroup in arg(a)| <
7/2. By K-11 of §II-2, where N is a finite con-
stant. Thus ||(8/0t)S,| = (Ml/t)exp(wlt) for @, > 0> w, Since
(= Ap)t = ||h||'S, the de51red estimate of |[(8/8¢)[(— A,)J] || holds.

4. Riesz operators. If (—T) denotes the infinitesimal generators
of the Poisson integral and if A, denotes the infinitesimal generator
of the translation semigroup Tgs, t > 0, then (—A;)T~! is the Riesz
operator for the direction h. We shall consider the semigroup
(—Ap)*T~= for Re(a) = 0. Since P, is an analytic semigroup in
larg(z)| < /4, T~f = limy_,.[(a) = [ Pi(f)te='dt for each f in

IP;
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D(T ) by Theorem 6.3 of [17-I11].

TueorREM 4.1. (—Ap)*T~ is an analytic semigroup of bounded
operators on L,(H) for |arg(e)| < w/2. (— An)*T* is strongly continuous
in Re(a) = 0. For Re(a) = n,

(= An)=T||, = Alp)||h|Re@exp(2r|Im(e)|)(1 + [|A, T~ ||,)"
when @ = —hl|h|-L

ProoF. (—Ap)*T~ is a strongly continuous group of bounded
operators on L,(H) since both (— A,)* and T~ have this property by
Corollary IIL32. By Theorem IIL31, |(—A,)*T |, =
A(p)exp(2r [Im(a)|).

Let f € D(A;) N R(T), then

aTf= [T anpdy=[" [ aHa N L
Uf) = [ AH(f) dt

- %fﬁ P jjm TtBuf%t— Cu(1)(y) dN(y)

by P-3 of §II-3. Lemma 3.3 and Minkowski’s integral inequality
show that ||U4|, = A(p)||h||. Since the operators [.<y=r Ti,f dtlt
are uniformly bounded in € and R, we may interchange integrals
above and write A,T-'f= KUy(f). Thus [|A T, = A(p)|A|.
Now apply Stein’s interpolation theorem to the family of operators
U, = (— A,)"**T~+2; the boundedness of the operators (—A)T—=
follows.

To see that (— A,)*T~%(f) is analytic in Re(a) > 0, let f € R(T),
f = Tg, and consider

= A T~(f) — (— Ap) a] «(f)
= T(@)~" [ (—A)P(f)e-1(1 — e dt

= 1@ [ (~ayR(f)e [ edude
=o' (= AT 1(f) du

= JT) a(_Ah)aT—aTa+l]“a+l(g) du.
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Since [[(— An)*T~||, = A(p, a)||h||f*@ =A< © for 0= Re(a) =N
and [Im(e)| =T < ®, and since ||Te*!],«*!||, = A(p, @) < A (inde-
pendent of u) for 0 = Re(a) = Nand Im(e)| =T < =,

” _Ah aT—af— _Ah a]ra(f)“ﬁ = TA”g”,,

for @ in a compact subset of the right half-plane. Thus (—A,)*J.*f
converges uniformly on compact subsets of Re(a) > 0 to (— Ay,)*T~*f
as r = 0" and (—A,)*T—¢f is analytic in Re(a) >0 if f € R(T).

Since R(T) is dense in L,(H) and since |[(—An) |, =
(= An) T, | T, = A< @ if & is in a compact subset of the
right half-plane, for r > 0, an €/3-argument shows that (— A,)*T~(f)

is analytic in Re(a) >0 for all f in L,(H). To see that S,=
(—Ap)!T* is strongly continuous in t= 0, let f € R(T) and write

ISef = fllo = 18f = (= AT + 1= AT = Sllos

let € > 0 and take r sufﬁmently small that ||S,f — (— Ax)YJ.Hf||, < € for
0=t=1 |(—AwY!f— fll, tends to zero as t— 0. Since R(T)
is dense in L,(H) and since S, is bounded on 0 = t = 1, S, is strongly
continuous. Since S; and §;; are strongly continuous, S, has the re-
quired continuity properties.

5. A characterization of L,(H). We know that L,*(H) is equivalent
to D(T*) and that if f € L,(H), then (— A,)*f is in L,(H) for all
REH with 1= AFl S Alp ol Tel,  when = T
We shall prove a converse of this last fact.

Let B be the one-one Hilbert-Schmidt operator in the definition of
the Poisson integral and let G: H* — Borel measurable functions on
Hpg denote the Wiener space representative for the normal distribution
on H. Let p' be a Borel probability measure on Hg such that P,f =
Ju, Tipyf dp'(y). In [12] itis shown that such a measure p” exists.

TueoreM 5.1. Let f € L,(H) and suppose that ¢(y) = (— Ay)*f
is a Borel measurable function from Hp to L,(H) such that
Ju, (—Ay)f dp'(y)isin L,(H). Then f isin L,(H).

Proor. By Theorem 4.4 of [17-1I], if 0 < Re(a) =m and if
f E D((—Ay)?),
—A)f = Kleym)™ [ (I= Top,ynft=t dt

where K(a, m) = [2(1 — e~*)"t~*~'dt. Since (—A,)*f is p'-measur-
able and fiy, (— A)f dp'(y) € Ly(H),


file:///~JI-

THEORY OF IMAGINARY POWERS OF OPERATORS 493

Tef = K(o, m)~! jo (I— Pymfeo-1 dt

= Klam)~ [ [ (1= Tw)"f dp' (=== de
= |, CAxfdp'w)
and f € D(T*) which is equivalent to L,*(H).

V. Singular integrals. In this section we shall use the analytic
semigroups of §{IV to study the singular integrals of Calderon-
Zygmund, Muckenhoupt, and Wheeden. Let Tz, denote the trans-
lation semigroup for the direction By and let A, denote its infinitesimal
generator. Let n be a nonnegative integer and set

Ba(fye )= () [ (6= P Tun f du

=t [ (6= W [T A =~ Afl du ifnZ L,
= TtByf - f ifn=0,

Let u be a Borel measure (possibly unbounded) on H such that
du,(y) = |ly||* du(y) is finite and has zero mass at y = 0 and set

G(f) = [ |, Rulfy 1) duty)r-1 de

when 0 = n = Re(a) < n + 1. The operators G* include the classes
of singular integral operators mentioned above when p is suitably
restricted. We shall state three theorems regarding these operators.
The proofs will be given after all of the theorems have been stated.

Tueorem 1. Let u be a Borel measure on H such that
Julyl|fe@ dlul(y) < ©. If n<Re(l@ <n+1, n a nonnegative
integer, then

CT) = [t Teinrad Ju (AT dity)

when ]« is the Bessel potential of order a. G*J~is a bounded operator on
L,(H) with norm

|Gl = Ap) [ gl dily).

Tueorem 2. Let Re(a) = n, a nonnegative integer, and let
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Im(a) = c#0. Suppose that [y|y||"d|plly) <> and that
Ju paly) du(y) = 0 for all Borel measurable functions p,(y) with
[pa(y)| = M|ly||" which are homogeneous of degree n. Then

T

G =t Do) | AT dry)

when J* is the Bessel potential of order a. GeJ* is a bounded operator
on L,(H) with norm

Gl = A, [, gl dinsiy)

TueoreM 3. Let Re(a) = n, a positive integer, and let Im(a) = 0.
Suppose that [y (|y[|"*+ |yl|"~9) dluly) < = for all sufficiently
small € >0 and suppose that [yp,(y)du(y) =0 for all Borel
measurable functions p,(y) with |p.(y)| = M||y||* which are homo-
geneous of degree n. Then

| (= A)f) Lo dily)

H da

G (f) =

when J(J*) is the Bessel potential of order n(a). G"J" is a bounded
operator on L,(H) with norm

IG7, = Apm) [+ NoglylDlyll* dlnly)

Proor oF THEOREM 1. Set @« = n + B where 0 < Re(8) <1 and
Ri(f,y,t) = Twp,f — fifn=0and

B(fy.0) =) [ (6= w) (TunASf =~ A du iEnZ 1.
Since A%, f = t"A,"f, Ru(f.y,t) = Ru(f, ty, 1) and

[ Tun Ao = AZJf1EP =4 de = (—1)T(=B)u(~ A)T(f)

by K-3. Since I'(n)~'fo'(1 —u)""'ufdu=T(B+ l(a+ 1)"!, we
have that

—)"r(=p)re +1) .
T+ 1) IH (= A J(f) duly)

cye(f) = !

-

= et st | (AT duy)

The estimate for the norm of G*J* follows from Minkowski’s integral
inequality and Theorem IV.3.4.
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Proor oF THEOREM 2. Since [y p,(y) du(y) = 0 for measurable
functions which are homogeneous of degree n and have [p,(y)|=
M|y||", Ju A,"J*f duly) = Ofor all f in L,(H). Thus

[ Refy0duy) = [ RaiUfy 0 duty)
Write

Rua(Jof, 9, ) = D)~ [ (8= w) Tuny47f) ds

Then R,_,(J°f,y,t) = R,_,(Jf,ty,1) and since ¢t A%, = A", we
have that

G(f) = [ |7 Rty Dot deduty)

fl (]*_Tlg:)_lﬂijb'[ lim : Ty, A fu=ic=! du

0 e—0"

_ (EU) ic
ic

AMf | duty) do

_ ( )nFlE(a + l l + lC j ( Ay)a]afdll«

B I"(a—-l-_ﬁm JH (—AYJ(f) duly)

by Theorem II1.3.4. The estimate for the norm of G%J* follows from
Minkowski’s integral inequality and Theorem IV.3.4.
Proor oF THEOREM 3. First consider the constant

—al(a+ 1)~ sin(ra)) !

=+ 1) [T = ](5— )

sin(rn) — sin(ra)
as a tends to n, 7(n — a)(sin(zn) — sm(na)) ! converges to (cos(mrn)) !
= (—=1)~ Since i (= A)"J"(f) dﬂ(y)
ofa 1_>" : AVIT— (= A)T)
A +1)M<°‘)J (a— n)

for a near n where M'(a) tends to 1 as a tends to n. Let a@ = t be real
so that

duly)
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(AT = (=407 = [ @Iwl(= AT du
By Corollary IV.3.6,

a uJu,
L= a7

| = eap 001 + loglyliDlyllf 1
P
A,(p, t) is bounded on finite t-intervals. Thus

[= A7 F = (—a)yrsl = [+ loglyllyl 2 A1,

u

Since (1 + [log|lylDllyl*= A€e)(ly|*+<+ |ly|*~<) for small e€>0
and because the last function is |u[-integrable,

tim Gf) = 2 (Z AT ben dily) = K

is a bounded operator on L,(H) with
K", = An, p) fH (L + fogllylIDllyll" dlwl(y).
By Corollary IV.3.6,

._g_t_ [(Ay)t+ic]t+ic(f)] = —j 360_ [(_Ay)t+ic]t+ic(f>]

= —j [Vy(_Ay)t+ic]t+ic(f> + (_Ay)t+ic 9 ]t+i0(f)] .

dc

Since J* is an analytic semigroup, —i(d8/dc)Jt+ie(f) =
(3/da)Jo(f) is a bounded operator on L,(H) for Re(a) >0 and
T (= A)"(319)J*(f)|a=n dps(y) = 0. Thus

k() = LG ], Vi AP duty

when V, is the infinitesimal generator of the semigroup (—A,)%,
¢ > 0. By Theorem II1.3.5,

Vi@ =i [ [ Tmg—gdtt+ [~ Tgdit+ Cg |

when g € R(A,) N D(4,) and C is Euler’s constant. Set g, =
(—A)Y(f) so that g, € R(A,) and assume that f is in L,'(H),
f € D(A,), so that g, € D(A,). Then
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1 n
k()= = ) [ (T — g e
+ | Tigdit + Cg, | duty)

- (—_n‘l_)n .[H j; T‘By(_Ay)"]"(f)i?du(y)

since [y (—A)YYf)dw(y) =0. Thus Ko= G~ This com-
pletes the proof of Theorem 3.

When 0 < a < 2, G~ is the hypersingular integral operator studied
by Wheeden in [23]. If Re(a) =0, Im(a) #0, G* is the singular
integral operator studied by Muckenhoupt in [18]. When a = 0 and
Ju du(y) = 0, G= is a Calderon-Zygmund operator; the present treat-
ment says nothing about the boundedness of Calderon-Zygmund
operators. See [1] and [5].

VI Littlewood-Paley theory. In this section we shall use imaginary
powers of the directional derivatives and imaginary powers of T to
estimate the p-norm of the Littlewood-Paley g-function and the p-
norms of the maximal functions associated with the Poisson integral.
The Littlewood-Paley g-function is

&)= ([ wreprdyy ) ",

1=r< ®, 1=Re(a) < ® and the most interesting maximal func-
tions are

M,(f) = sup ly=T*P,(f)I,

0 = Re(a) < ». Neither of these functions is linear, but, by Min-
kowski’s inequality, each of them is sublinear. M, is just g, for
Re(a) = 1. We shall use certain linear operators to approximate M,
and g and to aid in the estimation of |g/(f)|, and ||M.(f)|,-
As before, pisfixedinl < p < .

1. Certain linear operators. Let k be a positive integer, let P,
denote the Poisson integral, set (—d/dx)*P, = P,¥ = T*P,, and if
Re(a) = 0, set P, = T°P,. The following lemma will be used re-
peatedly.

Lemma 1.1, There is a polynomml P(u) of degree k such that
yX(dldy)X(y exp[—t7'y"]) = yPult™'y?exp[—¢7'y?].
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Proor. Since (dldy)(yexp[—t~'y?])= (1 — 2t~ 'y?exp[—t"1y?,
the statement is true for k = 1. Assume that it is true for k — 1 and

write y*~!(dldy)*~yexp[—t~'y?]) = yPi_ (t~'yDexp[—t~'y?].
Then

yXdldy)* (y exp[ —t~'y?])
= yK(dldy) (y>~*Px_,(t~"yHexp[— t~'y?]),

and direct computation shows that this expression has the desired form.

Let ¢ be a function from (0, ©) = R* to measurable functions on
H such that ¢ € L\(R*, dyly) N Ly(R*, dyly). Let G: H* — measur-

able functions on (H, N) be a representative of the normal distribution
on H and set

© 1/r
lell-= = ess sup ( [ el ayty )
for1=r< . Set

Te(f) = T,() = [, yB,fely) dyly

when Re(a) = 1. The linear operators T, are closely related to the
g-function and to the maximal functions.

Lemma 12. Let ||, < ®© for r=1, 2. If k is a positive integer,
T, (f)

=k [ [ rk=wp(pr (1—‘2ﬂ )®(0) do dn,e B-1(y)

when (— D,) is the infinitesimal generator of the translation semi-
group T, t > 0, and ® is the Mellin transform of ¢.

Proor. Assume that ¢ € L,(R*, dyly) N Ly(R*, dyly). Then

LK) = T.(N= | 4*BX(fely) dyly

=K j : H2(F)w(t) dilt

where

W)= | Nulyhely) dyly when Niyle) = yX(— alay)N2(y).
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By Lemma 1.1, Nx(y/t) = (y/t)Pi(y*t—2)exp(—yt~2) when Py is a
polynomial of degree k. Set t= e* and y = e”, then Y(e*) = v(u)
is the convolution of two functions each of which is in Ly(— o, ),
thus »(u) is the Fourier transform of a function L(v) in L(—%, ®),
Replace t= e* to write Y(t) = [=, t*L(v) dv. Set Mi(X) = Ni(e¥)
and ®(X) = ¢(eX). Then L(v) = KM(v)®(—v) where * denotes the
Fourier transform; ®(u) is also the Mellin transform of ¢ at u.

We shall calculate Mi(v) explicitly, show that u~'M(u) is a
rapidly decreasing smooth function in the sense of Laurent Schwartz,
and show that

lim | top~IL(v) do = 0

t>0* J -
with the limit existing boundedly in x € H. Set szk(Y)
J2a e XMi(X)dX and replace x=eX so that M(Y)
J 5 xYNi(x) dx/x. Since Ni(x)= Kx*(d/dx)*(x exp(—x2)), k integra-
tions by parts show that

M(Y) = K ,ﬁl (n + 1Y) J: xYexp(—x2) dx.

n=0

Set t = x2 to conclude that

M(Y) = K[((GY + 1)[2) k[_]l (n + iY).

n=0
Since

0

f: xYexp(—x?) dx = J_ e'"Xexp(X)exp(—e2¥) dX,

Y-!'Mi(Y) is a rapidly decreasing smooth function since M(Y)
contains a factor of Y and since exp(X)exp(—e?X) is a rapidly de-
creasing smooth function. Thus Y~!Mi(y) is in L,(R, dY) for all
1 = p = . By Holder’s inequality and the Hausdorff-Young theorem,
J2« [v7'L(v)| dv is in L=(H) since ||¢]|,« = M for some rin1 = r = 2.
Set t = e, so that [*, t?v~!L(v) dv is the Fourier transform of an
L,-function evaluated at (—p). By the Riemann-Lebesgue lemma, the
integral converges to zero as p tends to +o. This shows that
lim, ¢+ JZ«tPv"'L(v)dv =0 and the limit exists boundedly in
x € H.
Now let y € H and set
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Uf) = |, Tufwle) dil

f f 0+ tyf ¢ _L

= [ tim U T, fto-1 dt + :—vf—%f |2 do.

.
e—0

By an argument similar to that used in the proof of Theorem I11.2.2,
one shows that the inner integral defines a bounded operator on
L,(H)with norm at most Apg[(|v| + 1)%jv|=! + |v|~!] and that U f=
I Tyftv=1dt + (eliv) f converges almost everywhere and in
L,(H) to I'(iv)D, *f as a sequence €,~ 0. Thus for almost every
x € H, Uf(x) is a bounded function of €,. Since L(v)(x) is in
L\(R,dv) for almost every x € H, the dominated convergence
theorem implies that

=" 1m [j” T, f et de + S Jrw ao

e—0"

Cm [T €
lim io L(v) dof

—_ 00
e—0"

= [ ro)D, (f)Liv) dv
= KJ (—iv)D,(f)My(— 0) (v) do

= k[7_ (k= iw)D,(f)r (I‘T“’ )b(w) do.

Since  Te*(f) = Ju U,(f)dn,°> B-(y), we have the desired
identity.
We need one last basic lemma to estimate the T, =

LemMa 13. Let h be a nonzero element of H and let o > /2.
Then

o . 1/r
w(fir @ = ([* lexp(= alehDicflde)
satisfies |u(f, . h)||, = Alp, r, o)||f|, forr < p < .
Proor. Since |Dyf||, = A(p)expmlc))|fll, for m >=/2 and
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n — w/2 arbitrarily small, Minkowski’s integral inequality implies that
the desired estimate for u holds.

THeoreM 14. If Re(@)=1, if 1=r=2, and if p=r, then
1T, fll» = Alp, 7, )| flls [l

Proor. Since [['(ic)| = 7#Y%(|c[sinh7|c[)~2, for § > 0 and small,
IC(k + ic)| = A(8)exp(— (w/2 — 8)|c|); since

7P (2z2) = 22+~ T (2)[(z + 1/2), |T((1 + ic)2)| = Aexp(—w|c|/4).
Thus if

U= [~ rk—iops(fr (1 =1 Yb(v) d,

then |[U,(f)| = w(f, r, y)|®|l» = u(f 7, y)|l¢|l,~ Wwhenr—' + r'~1 = 1by
Holder’s inequality and the Hausdorff-Young Theorem. Since
T,Hf) = K [qU,(f) dn = B-(y), [T, = Alp, 7 RSl lell =
by Minkowski’s integral inequality and Lemma 1.3.

If @« = k + iu when k is a positive integer and u is a real number,
then i ¢uy) = yUply) Toif) = TE(T%) and [T, (f),
= A(p, r, k)exp(mlu))||fllo]le|l-= Since TeP,(f) is analytic in
k < Re(a) < k + 1 and continuous in k = Re(a) = k + 1 for a dense
set of f in L,(H) by Theorem 82 of [17-I], Stein’s interpolation
theorem applies to the T, and [T, tf I, = A(p, NF ||<p||,w
for k=t=k+ 1. Since if a=t+iu, T,o(f)= T’”f)
have that the desired inequality holds for all Re(a) =1.

2. The maximal theorems. In this section we shall use the operators
T, to estimate the p-norm of the maximal function M,(f), Re(a) = 1,
and we shall investigate some of the implications of the inequalities
for M(f). If Re(a) = 0, set

MJ(f) = sup ly=T=P,(f)|
and if Re(a) < 0, set
M= sup |y [l =0 Ry |

In general, denote M, f = supys o|y*(— d/dy)*P,(f)|.

Tueorem 2.1. If Re(@=1 and if 1<p<oo, |Mf)l,=
Alp, o)||f |,
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Proor. For Re(a)=1, ||M,f||,,=sup{||T “flp: lelli»=1}
By Theorem 14, |T,%,= Alp,a)|¢|,- so that | u(f)”,,§

)| £l

We shall now extend the result of Theorem 2.1 to —© < Re(a) < I;
the following propositions contribute to the general result.

Proposition 2.2. Let y— T, be the regular representation of the
additive group of H acting on L,(H) and let h € H. Then

@ = sup = | [ (Tf)w) ds
satisfies || f||, = |Nf|l, = A(p)||f||, where A(p) does not depend on H.

Proor.
Ik
e [ Tafds=@plr [ " I,.fds where w = |[h]-h,

so that Nf is independent of |h| if h#0. If h=0, Nf=f
Suppose first that f is a bounded tame function based on K; and let
K denote the span of K, and h. Then Nf is tame and based on K,
and

INfllp = JK l sup t—lﬁ) flx — tw)

[(tw, x)
exp 2

> ] a Ipdn(x).

Let F(x) = f(x)exp[— |x||?/2p], so that

INFllz = (@m)-42 jK li‘i{? g1 j; Flx — tw)dt |"dx

= @mke [ Pl dx

where k= dim(K) and F*(x) = sup;sot~!|/§F(x — tw)dt|. By
the Dunford-Schwartz Ergodic Theorem [4], ||F *”,,E Ap)|Fll, =
Il s0 that [Nfl,= Ap)fls Ap) = 2q docs
not depend on w. Let f= 0 be in L,(H) and let f,, = 0 be a sequence
of bounded tame functions which converge to f in L,(H). Since
INf, — Nfu| = N(|f, — ful), the sequence Nf, is Cauchy in
L,(H); let G(x) be the limit of the Nf, in L,(H). By taking a sub-
sequence if necessary, we may suppose that the Nf,(x) converge
almost everywhere to G(x) and that the f, converge almost every-



THEORY OF IMAGINARY POWERS OF OPERATORS 503

where to f(x). Then ¢! [§(T,,f,)(x) ds= Nf,(x) almost every-
where for all n, and t~!Jq (T, f)(x) ds< G(x) almost everywhere.
Thus (N f)(x) =Gx) and |Nf|,= |G|, = AP)|f|l,»  Since

t=Jo(Tsuf)(x)ds| = t=' o T,,|fl(x)ds, the right-hand side
of the desired 1nequa11ty is verified. For bounded tame functions,
lime_o+ ¢! Jo(T,,f)(x) ds = f(x) almost everywhere, so that the
left-hand inequality holds also; in fact, |f(x)| = (Nf)(x) almost

everywhere.

CoroLLary 2.3. Let P,(f) be the Poisson integral of f and set

(Nif)(x) = sup t~! ” fx)dz

t>0

Then ||fll, = |N.fll, = Ap)I|fll»-

Proor. Write P,(f) = [u(T,f)dp(y) = Su Tof dpi(y). Then
(Nif)(x) = [u (Nf)(x dpl y). By Minkowski’s integral inequality
and by Proposition 2.2, |N,f|,= A(p)|fll,- Since lim, ot !

“JoP(f)dz = f in L, there is a sequence t, tending to zero
such that t,~! fo" P,f dz converges to f almost everywhere and the
left-hand inequality holds.

CoroLLARY 2.4. Set

Vo) = sup tt | [ H2(f)w) ds

Then | fl» = [Nofll, = A(p)IIf,

Proor. Write H2(f) = [y Tyyf dn, > B~ \(y), ) that
Nof(x) = [y Nf(x)dn,° B-'(y), and the desired right-hand
inequality holds. The left-hand inequality holds as in the proof of
Corollary 2.3.

Proposition  2.5.  Let  (Mof)(x) = sup,so[P,f(x)], then |f],
= | Mof|l, = AW)IIf |l

Proor. Since P,f tends to f in L, as z— 0, any sequence z,
which tends to zero has a subsequence, also called z,, such that P, f
converges almost everywhere to f Thus |f(x)|= Myf(x), and
the left-hand side of the inequality holds.

To prove the right-hand inequality, write

PAf)= | HfN) it =2 [T H2(PNS() dite
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Set N2(z) = (7))~ Y*(z/t)exp[ — (z/t)?] = N(z/t), and integrate by
parts to get

Pf=—2 jz [t“ j; H2(f) ds | [t% t-IN(zl) ]dt

Thus

Pf@) = 2Nafx) [ ¢

The integral on the right of this inequality is finite and independent
of z, so |P,f(x)| = AN,f(x) and |Mof|, = AP)| £,

CoroLLARY 2.6. If Re(a) < 0, set

j—t(t—w(z/t)) ldt.

v (=) =Ty [ - a
Then  (M,f)(x) = sup.>oly(—dldy)P,(f)(x)|  satisfies | fl, =
KM fl, = Ale, p)| fl»-

Proor. A subsequence argument shows that |f(x)| = K(a)M,f(x),
so that the left-hand side of the inequality holds. On the right side

v (= &) 2w |= 4@ [ 0= w-rearyin) du
= A)()Mof(a)

and | M.f[l, = Ales p)]|f]l5-
CoroLLARrY 2.7. If Re(a) = 0, = ty, and if

(M f)(x) = sup ly”(-—) P,f(x) ,

then ||f|, = Ay, pIMaofln = Acly, p)IIfllo-

Proor. For vy real, (—d/dy)"P,f)= P,(T?f). Thus M,f(x)
= Mo(Tf)(x), and since T” is a bounded and invertible operator,
the desired inequality follows from Proposition 2.5.

Tueorem 2.8. If — o < Re(a) = 1, | M.f||, = Alp, )| f]|,-
Proor. It only remains to prove the theorem for 0 < Re(a) < 1.

Set T.«(f)= JyayP,f)e(y)dyly for O=Re(@) =1 when

ellie <o~ Then [Mf], —SUP{”T “fllo: lel-=1} By
Theorem 2.1, ||T.'**(f)|, = A(p, w)|fll,|lell~ and by Corol-
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ly 27, [T%fl,S Ap wlflleli-  Since  ToB(f) s
analytic in 0 < Re(e) <1 and continuous in 0 = Re(e) =1 for a
dense set of f in L,(H) by Theorem 8.2 of [17-I], Stein’s interpola-
tion theorem applies and ||T.Y|, = A(t, p)|lef,» for 0=¢t=1. If
qpl = yi“(p(y) Too(f) = T‘(T’“f for a=t+iu, and |Mf],=
)| f||, for 0 = Re(a) =

Because of Theorem IV.4. l we can define a maximal function for

the directional derivatives. If h € H and Re(a) = 0, set

MAf)= sup ly{(— AR/

But M/(f) = — AT~ “f and (—A)*T— is a bounded
operator on L (H) for Re(a) = 0. (— Ap)*T—is invertible if Re(a) = 0.
Thus we have proved

CoroLLary 29. If Re(a) IMAPln = Alp, o) ||R]|F]| £,
and if Re(a) = 0, || f[|, = Ao(p @ IIM Ol

3. Applications of the maximal theorems. In this section we shall
investigate a few of the implications of the general maximal inequality.
More applications of the maximal theorems will be given below in §5.

TueorEM 3.1. P,(f) converges to f almost everywhere as y
tends to zero through positive values.

ProoF. P,(f) is analytic in [arg(z)| <w/4 and the power series
representation for P,f) about z, can be thought of as converging
almost everywhere since it converges in L,(H) and a subsequence of
the sequence of partial sums converges almost everywhere. Regard
the series as converging everywhere. Therefore if 2y > 0, lim,_, P,(f)
= P, (f) almost everywhere. Then

lim sup [P,(f)(x) — f(x)|

= “ffl sup [P,(f = P f))(x)]
+ lim sup [P,P(f)(x) = Pf)x)] + [Pf)(x) — flx)
= sup [P(f = P(f))x)] + IP(f)(x f(x)l

= My(f— Ptf)+ ,Ptf_fl'

Therefore, by  Theorem 28,  |limsup,_o- [P,f — fl|, =

IIMo (f= Bf)ls + IPf = flo = Ap)f = Pfl, for all +>0. By
letting t— 0, we get the desired result.
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If k is a positive integer, and we write

#(&Y win= [ vnip et (& Y an= [, + [

it follows from the strong continuity of H,, that || ||, = A(k)e and it
follows from the properties of yXd/dy)*N«(y) = Pi(t~'y?)N,(y) that
lim, o [, = 0, so that lim,_o Jydidy)R,(f)], = 0. In
addition, there is

Tueorem 3.2. Let Re(a) > 0. As y tends to zero through positive
values, y*P,'“)( f) converges to zero almost everywhere.

Proor. Let k be a positive integer and assume first that Re(a) < k
and that f& D(T%). Then y°P,*(f)= y*P,(T*f), and by
Theorem 3.1, lim,,o+ P(T°f) = T*f almost everywhere. Thus
lim,_+ y*P,(T*f) = 0 almost everywhere. For any f in L,(H),
use the density of D(T*) in L,(H) to choose a sequence {f,} in D(T*)
which converges in L,(H) to f. Then

F = lim sup |yP,(f)|
y—0*
= lim sup |y*P,“(f — f,)| + lim sup |y°P,“(f,)|
y—-0* y—>0*

= sup lyP,“(f — fu)l = M(f — fo).

By Theorems 2.1 and 2.8, ||F ||, = |MJ(f — f), = Alp, o)|f — full»-
By letting n— «, we get the desired result.

A similar result holds for the directional derivatives (— A)* since
(—AR)P,(f) = P, ((— Ap)°T~%f) and (—A,)*T—= is a bounded
operator on L,(H) by Theorem IV .4.1.

CororLary 3.3. If Re(a) >0, lim,, ¢+ y*(— An)*Py(f) = 0 almost
everywhere.

CorOLLARY 3.4, If Re(la) <O, lim, ¢yo(—dldy)P,(f)=
(1 — a)~'f almost everywhere.

Proor.

y"(—j—x)u P(f) — ————m{ o

=T(=a)7 [} (1= )= UPuf — f) du

By the maximal theorem for P,, the dominated convergence theorem
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applies for almost every x and by Theorem 3.1, lim,_,o+ y*(—d/dy)*P,(f)
= I'(1 — a)~'f almost everywhere.

THeorEM 3.5. If —o < Re(a) < ®, y*(—d/dy)P,(f) converges
almost everywhere and in L,(H) to 0 as y tends to + .

Proor. If Re(a)=0, |y°P,“f|, = A(p,d)|f|l, and |y°P,«f]
§ ‘yaTaPy/2Py12(f)| § A(a)PyIQ(Ma(f)) § Al(a)MO(Maf) ThuS it is
sufficient to prove that P,f converges almost everywhere to zero
in order to prove the statements of the theorem. If Re(a) < 0,

ly(—didy)P,(f)] < IN(=e)|~* [ (1 = w)~Re-1|Py ()] s

By the maximal theorem, the dominated convergence theorem applies
and it is sufficient to prove that P,(f) converges to zero almost
everywhere for each u > 0 in order to verify the statements of the
theorem.

Let f*=limsup,,,«|P,(f)| and assume first that f & R(T)
so that f = — Tg for some g in L,(H). Then

Pf) = 5 B = [ Hi Ny dil

and
,36; Niy) | = lr) =131 — 2y)exp(—ye)| = Ay~ N(my)

where A and m are positive constants. Thus |P,(f)| = Ay~ 'P,,(|gl)
= Ay~ 'My(|g|) converges to zero almost everywhere as y— ©. Let
€>0, let fEL(H), and let fyER(T) with |f—fi,<e.
Then f*=f*+ (f— fi)* = Mo(f— f,). By Theorem 28, |f*|,
= APf = fill» < €A(p). Thus lim, . P,(f) = 0 almost everywhere
and the theorem holds.

4. Littlewood-Paley inequality. For f € L,(H), set

&)= ([ wreipray)”

for Re(a) =1 and r< ®. g is the Littlewood-Paley g-function. If
2=r<wandr-! + 57! = L[ g f)ll, = sup{| T : = = 1}

Proposttion 4.1. If r=2 and t— s> 1r’, 1/r+ 1r' =1, g/(f)
é A(T, S, t)gtr(f)‘
Proor. By Theorem 6.3 of [17-1I1],
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pz<s)(f (t— s)"! Jw ut=s— 1P1(f+z(f

t_S le y_ztsIPt)(f
Thus

|P.S(f)] = T(t—s)! I Jj (y — )1 'ysP,0(f) dyly® I

é z_S+l/”A(T, t, -S') < J"” I(y — z)f—s—lySPy(t)(f)lf dy ) Ur,

z

Thus

_IzS_PZ(:MK—§ A(s, t, r)z’_z( J: I(y — z)t_s_lyspy(t)(f)lrdyly>

= As, t,7) ( J': yr—ll(y — z)ts lysPy(t)(f)l" dy/y ) .

By Fubini’s theorem, if t — s > 1/r’,

[ rptfyr dalz

=Astn [ ([ 4= arerds )y el dyly

= A(s, t, 1) J: lyP, ()| dyly.
The next theorem gives the Littlewood-Paley inequality.

TaeoreM 4.2. If 1<r'=p<® and 2=r< o, ||gf)|,=
Afl, If 1=s=2 and if 1<p=s, then |f|,=
Ai(p, K)|lge(f)||, when k is a positive integer.

Proor. The first inequality follows from Theorem IV.1.4 and the
fact that g/ (f)ll, = sup{| Te*fl,: llelln= =1}, Ur+ Ur' =1.

To prove the second inequality we need a lemma whose proof will
be provided after the theorem’s proof has been completed.

LemMa 43. Let fi € L,(H) and f, € L,(H), let P(f,) be the
Poisson integral of f, in L,(H) and let Q.(f,) be the Poisson integral
of fo in Ly(H). Then (fi, fo) = K(k)[5t**=(P,X(f,), Q:*(f))dt
where (f, g) denotes the dual pairing between L, and L,.
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By Lemma 43, [(fifu)l = KK [ge(fl le’(f)l. By the
first inequality in Theorem 4.2, |g*'(f)|ls= Alg,s")|fllq for
2= 5= . Thus |fil, = Ap. gl

Proor orF LEMMA 4.3. Q, is the semigroup dual to P, and the infini-
tesimal generator of Q, is the adjoint of the infinitesimal generator of
P.. Therefore

[ [ o= (L) earaoup aean

=KK®) [ [y W£)Q,0(f) dy AN

when 0 < § < p < ®. Integrate the left-hand side by parts to obtain

[ e (D)  eaneds)

8

2k—1

= 3 a[r(4) @new]

n=0

p
)
where the A, are certain real constants. Repeated applications of
Theorems 3.1, 3.2, and 3.5 show that the sum on the right converges

almost everywhere and in L,(H) to Kf,f, as 80 and p .» ©. This
proves the lemma.

CoroLLARY 4.4. For h € H, set

n(f) = ([ = Al dgly )"
f1<r=p<® and 2=r<o, then [Pl = A1, ]

Proor. (—An)*P,(f) = (—An)TP,*(f) and by Theorem
VAL ||(— AT, = A(p, a)||h||?¢. Thus by Theorem 4.2, ||h,(f)]|,
= |lg((— AT*f)|, = Alp, 1, a)|h||Re@||f|l, for the same p and
r as in Theorem 4.2.

THeOREM 4.5. If k is a positive integer

a2f) = A( Jjw [T(k — is)T(f)|? ds) 1/2 .

Proor. The Mellin transform is an isometry from Ly(R*, dyly) to
Ly(R, ds). The Mellin transform of y*P,*)( f) is
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KJ:O yku(k)(f)y —is—1 dy

and k integrations by parts and use of Theorem II1.3.4 shows that this
integral is KI'(k — is)T*(f) for all real numbers s. Thus the desired
identity holds.
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