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SOME PROPERTIES OF PSEUDO-CONFORMAL IMAGES OF 
REINHARDT CIRCULAR DOMAINS 

STEFAN BERGMAN AND KYONG T. HAHN 1 

0. Introduction. A one-to-one mapping of a domain D of C2 by a 
pair of analytic functions, say 

(1) T = [zk*=zk*(zuz2\k= 1,2], 

onto another domain D* is called a PCT (pseudo-conformal trans
formation). In contrast to the case of simply connected domains in the 
complex plane C, simply connected domains D in C2 are as a rule 
not homogeneous. It is of interest in the theory of PCTs to determine 
and investigate the "interior distinguished sets"; i.e., sets possessing 
certain properties which in a PCT go over into sets having the same 
properties. As indicated in the previous papers [B.3], [B.7]? [B.8], 
[B.9], [B . l l ] , [B.12], the theory of the kernel function enables us to 
determine certain (absolute) invariants/p(^(z1? z2;Zi,z2) =JD{I/)(Z,Z), 

Z = (zu z2), i.e., functions which in a PCT T of D onto D* go over into 
functions/D*^)(z*,z*), z* = (zi*9z2*), v— 1, 2, • • -, which at the 
corresponding points z* possess the same value as /o ( , / )at z. There 
are many different methods to determine invariants of D. There arises, 
however, the problem of determining domains D, for which the in
variant JD

{v) is constant throughout D. The second problem is to find 
domains for which two different invariants, say/D^> and /D(M), V ^ M, 
are linearly independent. In the present paper we investigate these 
problems for Reinhardt circular domains R. (For simplicity sake we 
assume that the center of R is the origin O.) 

REMARK. A domain which admits the group zk* = zke
i(p, 0 ^ <p ^ 2n, 

k = 1, 2, of PCTs onto itself (automorphisms) is called a circular 
domain. See e.g., [B.-T., pp. 33-34]. A Reinhardt circular domain is 
a circular domain which admits the (two-parameter) group zk* — 
zke

1^ , 0 g <pk S 2TT, of P C T S onto itself. 
Since JR

{v) is an analytic function of zÌ7 z2, %1? z2, we have a series 
development of llJR

{p) at O in the form (9) of §1, see p. 426, and show 
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that the coefficients E„LPtP are polynomials in B0^land BrSy r + s > 0, 
r = 0, 5 ^ 0 . The Brs are geometric quantities of R, i.e., quantities 
which can be computed if the domain R is given. 

In §1 the above polynomials En_PfP(Brs) are determined for the 
Reinhardt circular domains ft In this way we obtain a condition 
which permits us to decide whether or not HJR{I/) is constant through
out the domain ft This method is again applied to determine a 
condition for R in order that two invariants, say /R

( 1 ) and /K ( 2 ) , are 
linearly independent. 

In case if HJR{U) is not constant throughout the domain R, we 
investigate in §2 the behavior of the hypersurfaces 1//R

 {u) = constant. 
We consider three different cases. Since using the theory of the 
kernel function one can determine the hypersurfaces HJD(V) = 

constant for a large class of domains D, we obtain in §2 a procedure 
to determine in D the pseudo-conformal image t = T(O) of the 
center O of R, provided that D is a pseudo-conformal image of R. 
Once t = T(O), t = (tu t2) is known, we determine the representative 
domain R(D, t), see [B.8, p. 187 ft]. If D = T(R), then R(D, t) can 
differ from a Reinhardt circular domain only by a linear (affine) 
PCT, see (72), p. 191 of [B.8] ; in this case R(D, t) must be a circular 
domain. 

REMARK. Circular domains obtained by linear PCTs from Reinhardt 
circular domains will be investigated in a future paper. 

In §3 we discuss a special class of Reinhardt circular domains, 
namely, 

Rp= [ | * i p + W 2 < i ] , p > o , p ^ i , 

see [B.4] and [B.8, p. 197], and show that any two invariants of 
Rp for each p > 0 are linearly dependent. Therefore, a domain of this 
class has essentially one nontrivial (linearly independent) invariant. 
It would be most interesting to construct a domain explicitly in which 
there are two or more linearly independent invariants. 

1. Conditions for the existence of nonconstant invariants in a 
Reinhardt circular domain. As mentioned in the introduction the use 
of the kernel function, among others, enables us to determine various 
invariants, i.e., real or complex functions which preserves their values 
in PCTs. 

The functions 

(la) HPlKz,z) = K-i det ( d*l°%_K ) , 
\ dzmdzn I 
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(lb) 1//<*+1>(Z, z) = K-' det ( f {1'P ) , 

m,n= 1,2; v = 1,2, • • -, 

see [B.6, p. 51 ff], [B.7] and §4, p. 182 ff. of [B.8], and the scalar 
curvature 

(2) J(z, 2 ) = { X r'"aRmB, m, n = 1,2, 
^ m,n 

are examples of invariants. Here Tmn are the contravariant com
ponents of the metric tensor (Tmn) and Rmn are the components of the 
Ricci curvature tensor, see [K.l] or [Y.B]. Investigating the question 
when a domain can be mapped pseudo-conformally onto a Reinhardt 
circular domain (or onto a general circular domain), it is useful to 
consider the level hypersurfaces 

(3) Wv){z, z) = c = const, 

since various properties of (3) are preserved in a PCT. The set de
fined by the relation (3) is as a rule three dimensional. However, it 
can happen that for some values of c, (3) degenerates to a two-
dimensional set or a point set.2 

REMARK. Here and in the following we formulate results for the 
invariants 1//H Similar results are also valid for other invariants. 

A simply connected domain D of C2 which possesses the property 
that its boundary, dD, can be written in the form 

(4) s(M, M) = 0, 

where s is a real continuous function of two real variables,3 is a 
Reinhardt circular domain with the center at the origin. It will be 
denoted by R. 

REMARK. R admits the group of automorphisms 

(5) zk*= zkexp[Upk], 0^<pk^27T,k= 1,2. 

DEFINITION. A domain which can be obtained by a linear (affine) 
PCT 

(6) zk* = AkizY + Ak2z2y det (Akv) ^ 0, Akv = const, k = 1, 2, 

from a Reinhardt circular domain will be denoted by R. The domains 
R obtained in this way are circular domains. 

2As one can show it is impossible that the above set is one dimensional. 
3s has to satisfy some additional conditions. See, e.g., [B.T., pp. 33-34]. 
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It is at first of interest to decide for what circular domains, (1), 
(2) or other invariants are constant in the whole domain. If this is 
not the case, it is important to investigate the critical sets of (3) and 
indicate the conditions when these sets degenerate (for some values 
of c) to sets of lower dimension. The above properties of level hyper
surfaces (3) are preserved under PCT's. Since in the case of an 
arbitrary (schlicht) bounded domain D, as a rule one can compute the 
hypersurfaces (3), we obtain in this way a necessary condition in 
order that D is a pseudo-conformal image of a circular domain. As 
we shall show, using the same approach, one obtains also sufficient 
conditions in order that D is pseudo-conformally equivalent to a 
domain R. 

REMARK. A further class of domains which is of interest to investi
gate is the class of domains which can be obtained from Reinhardt 
circular domains by the PCT's 

zk* = g*1*1 + ^ 2 Z 2 , AklBk2 - Ak,Bkl ft 0, k = 1,2, 
DklZi "h Dk2Z2 

where Akn and Bkn are constants. 
It is important that in the case of Reinhardt circular domains one 

obtains an answer to the above questions in terms of equation between 
certain geometric quantities of the domain R. The "moments" 

f zl
mz2

nzì
Mz2

N dio, 
(7) J D 

do) = volume element, m, n, M, N = 0,1,2, • • -, 

are examples of geometric quantities of D. 
In the case of a Reinhardt circular domain, all the moments except 

Bmp= f |*iMz2 |2pd<o, 
(8) j R 

(m,p) = (0,0), (1,0), (0,1), (2,0), ••- , 

vanish. The invariants UJR
{u)(z,z), v = 1, 2, • • -, of R admit in the 

neighborhood of the center of R (which we choose as the origin O] 
the development 

(9) l//R<*>(Z,z)= £ i E<lp>p|Zl|2<»-<»|Z2p. 
n = 0 p=0 

Here En-PtP are polynomials in Boo1 a n d Brs, r + s> 0, r § 0 , s i ^ O 

THEOREM 1.1. The necessary and sufficient condition in order tha\ 
the invariant 1IJR(V)(Z, Z) is a constant is that all polynomials 
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(10) E ( tp ,p = E*iPJß (Bw), p = 0 ,1 , • • -, n; n = 1, 2, • • -, 

vanish. (Infinitely many conditions.) 

We proceed now to the determination of En
v__P}P(Brs), v — 1,2, 

for a Reinhardt circular domain R. 
The kernel function KR of R has the development 

(11) K=KR = E *Uzil2mM2", Bmp= jJ7J|zi|2mM2pd<o 
R 

at the origin. Here do) is the volume element, and ^ means the 
summation over 

(12) (m, p) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), • • •. 

The invariants \IJR{U) admit the developments 

- ^ r = XESKI2mN2|2" 

at the origin. 
To obtain a recurrence formula for l//(l/+1) in terms of the co

efficients E£l , we first compute det(fm
(?), T^ = d%llj^)ldzmdzn: 

n = l m + p = n 

(13) ^ = 2 ^ 2 S mpÊ^. Nil2^-1»!^!2^-1», 

^ t = 2 2 p2 £& l«il2™l«a|
a("-1>-

n = l m + p = n 

Hence, 

detffi) = f 2 E 
/ • j ^ \ <M = 1 m+p=q r+s=n 

ms(ms - pr) X £^ p E # |z1|2<m+r-1>|z2|2(p'HP~1). 

From this the coefficients of det ( t{v)) can be written down explicitly. 
For example, it we write 

(15) det (?<£) = 2 *# KPN 2 ' , 



428 STEFAN BERGMAN AND K. T. HAHN 

then 

fc+i 

PkO = ZJ m 2 EmQ £fc-m+l,b 
m = l 

(16) P{oi = 2 I2 EtU+1 E& , 
P=I 

PÏÏ = 2 m(l+l-p)[m(l+l)-p(k+l)]E^pEk^m+l<l_p+l. 
m + p = l 

Further, a formal computation shows that the coefficients of 

(17) K-i = 2EUZl |2»>|Z2p 

are given by 

m+p p k -, 

(18) Dmp = Boo1 2 ( - 1 ) * 2 I I (ß™,/',ßo"o ) 1 • 
fc=0 Li=l J 

Here the second summation runs over all possible combinations of 
nonnegative integers for which 

k k 

(19) ^ rrii= m, ^ p{ = p, mi + p i ê l 
i = i i = i 

hold. 
A formal computation yields for the coefficients E„J and E ^ 

the expressions 

(20) 2IB6?22D£'-XI1* /I , 

In the case of E^p, ^ i means the summation is taken from q = 2 
to q = 3 + m + p, and in the case of E^p from g = 7 t o g = 9 + 
m + p. ^ 2 means the summation over nonnegative integers kj, I 
such that 

2 fc, = m + 1, 2 ^ = p + 1, 

0 < fc, + ^ m + p + l , j = U , ' - , r , r = ( j - l ; 

for EJ/p, and 



TABLE 1* 

Expression for Emp in terms ofBmp 

/ m + p + 3 \ 

H 2 ) 
| X 3 ' 

Zr Ukl-kl1-s 

^ 0 0 

3 

n o i 
^ 1 0 1 

^ 1 0 

3 

Du 

DSU 

1 

4 

4 

^ 1 1 0 - 4 

j7(l> 
^ 2 0 

3 

D?i 

D2\
l 

OiS 

1 

4 

9 

4 

n o i o 
^ 1 0 2 

n o o i 
^ 1 1 1 

-19 

- 4 

5 

j^OOOl 
^ 1 1 1 0 10 

E\l 

3 

D% 

DÏ? 

D(|J 

D{{ 

16 

4 

4 

- 1 

4 

n i i o 
^A)()2 

n ( ) ( ) 2 
^ 1 1 0 

n 0 1 1 

-16 

-16 

- 9 

5 

yV>01 1 
^ 1 1 0 0 19 

Note. The terms of Eo\} and EQ^ can be found from the terms of E^ and E^Q,. respectively, with Bmp replaced by Bp m 

Example: EQO = B10BoiBöo , 
Eio = (ß ioßn + 4ß0iß2o)ßoo ~" 4ßf0ßoißoo > £oi = (ßoißii + 4ß10ßo2)ßoo — ^ß^jßioßoo > e t c -

*Tables of£^p(Brs), v = 1, 2, for a small number of n have been published in a mimeographed report by S. Bergman, 
"Interior distinguished points in the theory of functions of two complex variables" at Stanford University in collaboration 
with K. T. Hahn. It should be noted that some numerical errors occur in the previous tables and that the figures in the 
present tables are correct. 
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2 k, = m + 3, S Ï, = p + 3, 
j = i i - i 

0 < fc, + ^ m + p + 2 J j = l , 2 , ' " , r , f = ( / - 3 , 

for E^p, Dk\k2"-kr are integers for which one can obtain recurrence 
formulas. The values of the coefficients Dk

l
k
2'''.rkr for E^ and 

Enp are found in Tables 1 and 2. 
The method applied can also be used to determine conditions for 

R in order that any two invariants /R
("} are linearly independent. As 

an example we derive a condition that / f i
(1) and / R ( 2 ) are independent. 

The necessary and sufficient condition in order that HJR{I'\ V = 1,2, 
are linearly independent is that 

(21) ff,,,(=«i»^, „-W. *-!.». 
d(Pl>P2) 

Using (9) we obtain the series development for D ( 1 2 ) at O, 

D(l ,2)= £ £ i#4>fpPl»-''p2P 
n==o p=o 

where HniPtP are polynomials in Boo and Brs, r + 5 > 0, s i^ 0, 
r ^ O . We obtain for H0o

 } again expression (20). Here ^ means 
summation from 9 = 10 to 13, ̂ 2 means summation over nonnegative 
integers kjy lj such that 

2 k = 5 , i /,- = 5, 0 < ^ + lj^ 3, 7 = 1, 2, • • -, r, r = 9 - 4. 

The values of the coefficients Dk\- k\ _4 are found in Table 3. 

THEOREM 1.2. Let R be a Reinhardt circular domain. HQO2) 7̂  0 
is a sufficient condition in order that /R

( 1 ) and JR
{2) are linearly 

independent. 

2. The class of domains which are pseudo-conformally equivalent 
to a Reinhardt circular domain. By the PCT 

(1) zk* = zk- ak, k= 1,2, 

where ak are conveniently chosen constants, a Reinhardt circular 
domain with the center at an arbitrary point P= (aiy a2), |«i|2 + 
| # 2 | 2 > 0 , is transformed into a Reinhardt circular domain with a 
center at the origin O. Assume that JR

{l,) is not constant. The following 
three cases are possible: 



TABLE 3 

Expression for HQO2) in terms ofBi 

00 
to 

|«(2) 
X 10 ' 

2 ' 2 ' 

10 

Tronin 
^100112 
^100112 
d o n i l i 
p.001121 
^110102 
r.110102 
^001121 
n i n n o 
^000113 

r.000113 
^111110 

r» 111002 
^000221 

O000221 
^111002 

n000122 
^112100 
r.112100 
^000122 
7^011120 
^100103 

n100103 
^011120 
n001220 
U \ 10003 
n i 10003 
J-A)01220 
n i i o i n 
^002111 
ri002111 
^110111 

4 

- 4 

32 

- 32 

36 

- 36 

64 

- 64 

256 

-256 

288 

- 2 8 8 

576 

-576 

16 

- 16 

11 

1^0001112 
^1110011 

n i l 10011 
^0001112 
7^0001112 
^1110110 
n i n o i i o 
^0001112 
^0011102 
^1100021 

r i 1100021 
^0011102 

r i l l l i oo i 
^0000221 
7^0000221 
^1111001 

n0000113 
^1111010 
n i l 11010 
^0000113 
n000ii03 
^1110020 
n i l 10020 
^0001103 
n ( ) 111001 
-^1000221 
n1000221 
^0111001 

32 

- 32 

72 

- 72 

128 

- 128 

272 

- 272 

288 

- 288 

1152 

-1152 

1280 

-1280 

12 

nOOiinoi 
^11000021 
n11000021 
^00111101 
n o o o i i m 
^11100002 
n11100002 
^00011111 
nooi u n o 
^11000003 

n11000003 
^00111110 

n00000122 
^11111000 
n i n i i o o o 
^00000122 

16 

- 16 

64 

- 64 

576 

-576 

704 

-704 

13 

noooi uno 
^111000002 
n i l 1000002 
^000111110 

128 

-128 

Example: H&2>= (4BI0B0
2iB1

2
1B21 - 4B0,B,20B1

2
1B12 + • • -^oo" + (32Bf0Bo2

1B,1B,2 - 32B0
3,B1

2
0B11B2i + • • ') 
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(2a) I, v EU • EÜl > 0, 

(2b) II, : Ei'iä • E$i < 0, 

(2c) III, : Ei'tä • E$l = 0. 

In the case of a Reinhardt circular domain of type I„, i.e., if there 
exists JR^ÌZ, ~Z) satisfying (2a), the level hypersurface 

(3) 1//R<"> = E$ 

has a critical point (maximum or minimum point) at the origin. There
fore, if D is a pseudo-conformal image of R, then the image of O is 
a critical point (maximum or minimum) of one of the level hyper-
surfaces: 

(4) UJD(I,)(Z, Z) = C = const 

inD. 

LEMMA 2.1. The level hypersurface (3) of a Reinhardt circular 
domain R can degenerate to a point only at the origin O (the center 
ofR). 

PROOF. Let P be the image of the Reinhardt circular domain in 
the pi, p2-space, p* = \Zk\2, see Fig. 2.1. To the level hypersurfaces 
(3) correspond in P the lines 

(5) l//p(">(pi,P2) = c. 

Suppose that one level line of (5) for c = Ci degenerates to a point, 
say p0. If po = (zi°, 22°) *s s u c n t n a t \zi°\2 + 1*2°I2 > 0> then either 
|^i°I > 0, |^2°| > 0, or at least one of the above inequalities holds. 
If both inequalities hold, then to p0 corresponds a torus in R. If 
\zv

{)\ — 0, |z3_J > 0, v = 1 or 2, then to p0 corresponds in fia circle 
which lies in zv = 0. Thus (3) degenerates to a point if and only 
if p 0 is the origin (p1? p2) = (0, 0) (the center of R). 

Consequently it holds; 

THEOREM 2.1a. Let D be a domain in C2 which possesses a kernel 
function. The necessary condition in order that the domain D is a 
pseudo-conformal image of a Reinhardt circular domain R^ of the 
type lv is that a level hypersurface (4) for a conveniently chosen value 
of c or a segment of (4) degenerates to a point, say t = (ti, t2). The 
point t is the image of the center ofR\v. 

THEOREM 2.1b. If D is a pseudo-conformal image of R\v, then there 
exists a point t> described in Theorem 2.1a, and the representative 
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R(D, t) = R is a domain which one can obtain from RY by a linear 
transformation-, Risa circular domain. 

The proof of Theorem 2.1b follows from the first theorem on p. 189 
and the second theorem on p. 190 of [B.8]. Indeed, if B*, see the 
second theorem on p. 190, is a Reinhardt circular domain Rj with 
the center at t = t*, then RiR^, t) = Rh and R(D, i) = R can be 
obtained from RIt, by a linear PCT (see Lemma 2.3). 

• P . 

Domain P , 

FIGURE 2.1 

The case llv. Let D be a pseudo-conformal image of a Reinhardt 
circular domain R such that the coefficients of the development (9) 
of §1 satisfy condition (2b). (If the development (9) of §1 satisfies 
(2b), then R will be denoted by Ruv.) In this case a three-dimensional 
hypersurface (4) (with c = Eoo ) passes through the center O of RUi/. 
If in addition to the invariant /(,;) a closed distinguished line, say ql, 
lying on the distinguished hypersurface (3) is known, then we can 
determine in D the location of the image of the center O of RIït/ 

The domain Ruv admits the group of automorphisms (5) of §1. 
Therefore, if the point, say I, I j£ O, lying on the hypersurface (3) is a 
distinguished point, then a closed curve c1 lying on (3) is a distinguished 
line. Let I = (h{\ l2°), lk

{) ^ 0, k = 1, 2, then the torus T2 = 
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[%k — fc°exp[f^fc], fc= 1, 2] is a distinguished surface. The inter
section of (3) with T2 is a closed curve cl. 

LEMMA 2.2. Suppose that around each point of cl an invariant 
sphere of radius p° is drawn. Then all these spheres have a point of 
intersection at the center ofRu. 

If we draw hyperspheres Hp
4 with the centers along c1 and of 

(noneuclidean) radius p, p < p°, then there does not exist a point 
which belongs to all Hp

4. For p = p° one point, the center of Ru , 
will be the common point of intersection of all H4

0. 
If p > p°, then a /owr-dimensional domain will be the intersection 

ofallHp
4. 

Consequently it holds: 

THEOREM 2.2. Let D be a pseudo-conformal image of a Reinhardt 
circular domain RIIj;. Then through the image of the origin passes a 
distinguished hypersutface H3 = [IIJR}^ — Eoo] • Suppose that hl 

is a closed distinguished line lying on H3. If we draw around every 
point p of hl an invariant hypersphere H4 of radius p, then for a 
sufficiently small p the intersection of all H4 will be empty. If p 
increases continuously, then there exists a value of p, say p = p(\ 
so that all H4 intersect at one point, say t. For p > p°, the intersection 
of all H4 is a four-dimensional set. Then t = T(O), i.e., t is the image 
of the center O ofRuv. 

LEMMA 2.3. A circular domain C with the center at the origin O 
is mapped by a linear PCT (6) of §1 onto a circular domain C* with 
the same center at O. 

PROOF. C admits the group of automorphisms: 

Zk = zke
iip, 0 g <p ^ 2TT, k = 1, 2. 

Let C* = T(C), where T is the PCT (6) of §1. Let fo* z2*) = T(zl9 z2) 
be a point in C*. Then 

zk* = AkiZi + Ak2z2 = (Aklzx + Ak2z2)e~^ = zk*e'^. 

Therefore, C* admits the group 

zk* = a;* V * , 0 g ip ^ 2TT, k = 1, 2, 

of PCT onto itself. 

LEMMA 2.4. Suppose D is a pseudo-conformal image of a Reinhardt 
circular domain with the image of the center at t, t Œ. D. Then R(D, t) 
is a circular domain with the center at t. 
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PROOF. By [B.8, p. 190 ff.], the domain R(D, t) can be obtained from 
a Reinhardt circular domain by a linear transformation. By Lemma 
2.3 R(D, t) must be a circular domain. 

REMARK. Suppose that an invariant, say / , is known, such that , 

iß) ~T} r T °> Pfc - \zk\> 

then the intersection of (5) with/(pi,p2) = c = const for a convenient
ly chosen value of c will be a point (pi0, p2°), p*° 7̂  0, yielding a 
torus T2 in the zl9 %2-space. The intersection of this torus with H3 is 
the line hl considered in Theorem 2.2. 

If one of the p*0, k = 1, 2, vanishes, then the image of (pi(),p2°) 
in the £1, z2-space is a curve which we can use as the curve hl in 
Theorem 2.2. 

If the intersection 

(7) [HMz,z) = Cl] n[J(z,z) = c2] 

is a torus T2, then in Theorem 2.2 we can use T2 instead of hl. 
In the case III„ we consider the following two subcases: (a) R 

possesses a distinguished set s passing through O and admits a group 
of automorphisms transforming an arbitrary point of s into the origin 
O. Then an arbitrary point of T(s) can be used as the image of O in 
D = T(R). (b) R does not admit the group of automorphisms indicated 
in (a). 

Assuming that a second invariant J (linearly independent of HJ(v)) 
is known in both cases (a) and (b), we can proceed as in the case 11 .̂ 
An example of a Reinhardt circular domain Rul possessing an interior 
distinguished surface s = s2 is considered in [B.8, p. 197 ff.]. 

3. An example of a domain Rlu In the cases I„ and II„ we obtained 
the series developments for the invariants around the center O. This 
permits us to determine the behavior of the invariant hypersurfaces 
j(v) = const in the neighborhood of the center O. 

It is of interest that for a class of domains, namely for 

(1) R p = [|z1 |2/"+ M 2 < 1 , P>0, p?l], 

one can obtain for the kernel function (and consequently for most of 
the quantities connected with the invariant metric) expressions which 
are rational functions of zi9 z2 and zi9 z2 (see [B.4]). These results 
represent a useful illustration of our considerations. Further we show 
that any two invariants are linearly dependent for the Reinhardt 
circular domains Rp. 



PSEUDO-CONFORMAL IMAGES OF REINHARDT CIRCULAR DOMAINS 437 

In [B.4] and [B.ll , p. 34], the kernel function Kp = KRf) and the 
invariant 1//P

(1) are computed. We have for Rp 

(2) KRp = Kp = (1 - \z2\
2y-2Dfr2C\ 

(3) l//^1) s l//p(D = 9TT2(D4 - ifc2C4)/2D4, fc2 = (p2 - l)/3, 

where 

(4) C = (1 - M*)" - |z,|8, D = (p + 1)(1 - |z2P)p + (p - l ) | Z i p . 

A formal computation shows that the scalar curvature for Rp is 
given by the rational function: 

r . 4fc2C4(D4 - 3CD3 - 6fcC2D2 - fcC3D - 3fc2C4) 
(5) /„ - 1 + 3 ( D 2 _ fcC2)(D2 + fcc2)3 

It is interesting to observe that the scalar curvature Jp assumes the 
maximum value, Jp= — 1, on the boundary dRp and the minimum 
value, Jp = - 1 - p(p - l)2/2(p + 2)(2p + l ) 2 on the plane ^ = 0. 

LEMMA 3.1. The domain functions 

(6a) Xp(z,z) = N 2 / ( l - M2)", 

(6b) Yp(z,2)= D(zyz)IC{zyz\ 

where C(z, z) and D(z, z) are given in (4), define (pseudo-conformal) 
invariants of Rp, which are linearly dependent. 

PROOF. From (3), 

JV•) = 2Yp4/9rr2(Yp4 - k2) or Yp
4 = fc2/p(1)/(/P

(1) " 2/9TT2). 

Since Jp(
{\z,z) > 2l9ir2 on Rp, Yp is a well-defined invariant of 

Rp. From the relation 

(7) Xp = (Yp - (p + 1))/(YP + (p - 1)), 

and the inequality p + 1 S Yp < » , it follows that Xp is also a well-
defined invariant of Rp. Clearly, Xp and Yp are linearly dependent. 

By (5) and (6b), Jp can be expressed in terms of Yp by well-defined 
rational function. Therefore, we have 

COROLLARY. Any two of the invariants Xp, Yp, 1//P
(1) and Jp are 

linearly dependent in Rp. 

Let TT : Rp-+ Qp2 d R2 be the projection map given by Tr(zh z2) — 
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(pi, p2), Pk = M 2 , k = 1, 2, and Y : Çp
2 -* [p + 1, oo ) by 

(i - P2y + P l 
(8) Y ( p 1 ? p 2 ) = l + p-

(i - P2y - P l 

where Qp
2 = {(pi,p2) : (1 ~~ P2)p > Pi} CI R2. Then under the com

posite map Y -7T: Rp—» [p + 1, oo), the points on the plane ^ = 0 
correspond to the point Y = p + 1 and the boundary points of Rp 

correspond to Y = oo . 

LEMMA 3.2. For pi ^ p2 , p\, p2 > 0, two domains RPl and RPz 

cannot be mapped onto each other by a PCT. 

PROOF. Suppose that there is a PCT, wk = Wk(%i, z2), k = 1, 2, 
from RPl onto RP2 and that px > p2. Let wk(0,0) = wk

{). Since 
YPl(0, 0) = pi 4- 1 and Yp is an invariant, YP2(wi(\w2

()) = pi + 1. 
But YP2 (u^0, t^2°) = p 2 + 1 which leads to px ^ p2 

LEMMA 3.3. Let Jp(z,z) be any pseudo-conformal invariant oj 
Rp. If Jp depends linearly on Xp> z G Rp, then all level hypersurfaces 
ofjp are given by the equation: 

(9) M 2 = *(i - M2)", t e [o,i). 

PROOF. If Jp depends linearly on Xp then it can be expressed by 
Xp in the form of an (real) analytic function. Therefore, the totality ol 
level hypersurfaces of one invariant coincide with the totality of level 
hypersurfaces of the other. Hence, all the level hypersurfaces of 
Jp are given by the level hypersurfaces Xp = t, t G [0,1), which proves 
the lemma. 

We note that any two distinct level hypersurfaces of a pseudo-
conformal invariant of Rp which depends linearly on Xp cannot be 
mapped onto each other by a holomorphic automorphism. 

LEMMA 3.4. The domain Rp admits a group Gp of holomorphic 
automorphisms: 

(10) 0i, 0 2 e [ O , 2 j r ] , ( O , t a ) e f l p . 

w2= **~-h exp[ifl2], 
1 t2Z2 

See [B.8, p. 197]. Conversely, all holomorphic automorphisms of Rp 

are given in the form (10). 
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PROOF. The first part of the lemma follows by the same method 
used in [B.8]. To prove the converse, we let g be any holomorphic 
automorphism of Rp. By the previous remark, two points z and gz 
must lie on the same level hypersurface of Xp. Since Gp acts transi
tively on each level hypersurface, there must be an element of Gp 

which is identical to g. So g G Gp is of the form (10). 
It is clear that Gp contains the structural group Tp of a Reinhardt 

domain as a subgroup. An element of Tp is given by 

t(Zi,z2) = (zi exp[i6l],z2 exp[i02])-

The orbit of z° G Rp, OT(z0) = { ( « ^ e x p f i ö j , z2°exp[i02] ) : 0 ^ 
61, 02=Z2TT} with respect to Tp forms a two-dimensional torus if 

Zl°fi09 z2°^0. For z°=(0,j52°) with z2° / 0 or (2 l°,0) with 
Zlo je 0, 0T(*()) is a circle. 0T(z°) = 2° if and only if z° = (0, 0). 
Since Gp acts transitively on each level hypersurface of Xp and any 
two distinct level hypersurfaces cannot be mapped onto each other 
by an element of Gp, the orbit OG(z0) of z° G Rp with respect to Gp 

coincides with the level hypersurface of Xp passing through z°. In 
particular, if z° lies on z{ = 0 then 0G(z°) is two dimensional and 
OG(z0) = 0G(0). Thus, we have 

LEMMA 3.5. On Rp the orbit 0G(z°) of a point z° = (zi°, z2°) with 
respect to Gp forms a three-dimensional hypersurface if Zi° ̂  0, 
and a two-dimensional analytic surface if z^ = 0. Furthermore, such 
orbits coincide with level hypersurfaces ofXp. 

THEOREM 3.1. On Rp any two pseudo-conformal invariants Jp
(l) 

andjp
{2) are linearly dependent. 

PROOF. First we note that an invariant of Rp cannot take a constant 
value on a four-dimensional set of Rp, unless it reduces to a constant. 
On the other hand, an invariant must take a constant value on each 
orbit and hence its level hypersurfaces are of dimension two or three. 
It is therefore clear that the totality of the level hypersurfaces of the 
invariant Jp

il) includes all the orbits of Rp with respect to Gp. 
Conversely, for any level hypersurface of Jp

il) there exists exactly one 
orbit to which the level hypersurface coincides. In fact, let z° be a 
point on the level hypersurface, i.e., Jp

il)(z,z) = c = Jp
(l)(z°,z°). 

Since Rp = U2 G R PG(Z), there exists exactly one orbit which passes 
through z{\ Since 0G(z°) is homogeneous, Jp

(i\z,z) = c for all 
z G OG(Z{)). Suppose that there exists a point z on the level hypersurface 
such that z ^0G{z°). Then again there exists another orbit 0G(z) 
on which Jp(l)(z, z) = Jp

il)(z, z) = c. Since two orbits are either 
identical or disjoint, the level hypersurface JP

(1)(z,z) = c consists of 
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two disjoint orbits, which is impossible. Thus, by Lemma 3.5 the 
totality of level hypersurfaces of /p

( 1 ) and Xp coincide. The same 
holds for /p (2 ) and Xp. This completes the proof. 
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