A NOTE ON INFINITE SERIES OF ISOLS

JUDITH GERSTING

1. Introduction. Let E denote the collection of all nonnegative integers (numbers), Λ the collection of all isols, and Λ_{R} the collection of all regressive isols. In [3], J. C. E. Dekker introduced the definition of an infinite series of isols, $\sum_{T} a_{n}$, where T denotes a regressive isol and a_{n} denotes a function from E into E. We recall the definition: When T is a finite regressive isol,

$$
\sum_{T} a_{n}=a_{0}+\cdots+a_{T-1} \quad(0 \text { if } T=0)
$$

When T is an infinite regressive isol,

$$
\sum_{T} a_{n}=\operatorname{Req} \sum_{0}^{\infty} j\left(t_{n}, \nu\left(a_{n}\right)\right)
$$

where $j(x, y)$ is a recursive function mapping E^{2} one-to-one onto E, t_{n} is any regressive function ranging over a set in T, and for any number $n, \nu(n)=\{x \mid x<n\}$. Some properties of infinite series of isols were studied in [1] and [3]. By results in [3], $\sum_{T} a_{n}$ is an isol and is independent of the choice of the regressive function whose range is in T. In the particular case that a_{n} is a recursive function, then $\sum_{T} a_{n}$ is a regressive isol [1, Theorem 1]. In [2], J. Barback studied some properties of regressive isols that can be represented as infinite series $\sum_{T} a_{n}$ where the function a_{n} is not necessarily recursive. These regressive isols were of the form $\sum_{T} a_{n}$ where $T \leqq * a_{n-1}$. The definition of the relation $T \leqq * a_{n-1}$ is as follows: If T is finite, then $T \leqq *$ a_{n-1}; if T is infinite, $T \leqq * a_{n-1}$ means that there is a regressive function t_{n} ranging over a set in T such that $t_{n} \leqq a_{n-1}$, that is, the mapping $t_{n} \rightarrow a_{n-1}$ has a partial recursive extension. The following properties are known about the $\leqq *$ relation:
(1) If $T \leqq * a_{n}$, then $t_{n} \leqq * a_{n}$ for every regressive function t_{n} ranging over a set in T;
(2) if $T \leqq * a_{n}$, then $T \leqq * a_{n-1}$;
(3) if $T \leqq^{*} a_{n-1}$, then $\sum_{T} a_{n}$ is a regressive isol [2, Proposition 5] ; and
(4) $T \leqq{ }^{*} a_{n}$ for every recursive function a_{n}.

Our first two theorems below deal with the following question: Let
Received by the editors February 20, 1970 and, in revised form, April 19, 1971.
AMS 1970 subject classifications. Primary 02F40.
T be an infinite regressive isol and a_{n} a function from E into E such that $T \leqq * a_{n}$. By combining (2) and (3) above, we know that $\sum_{T} a_{n}$ is a regressive isol. Let S be an isol such that $S \leqq \sum_{T} a_{n}$. We know from [4] that S will be a regressive isol. Can S also be represented as an infinite sum over T ? Theorem 1 shows that this is the case; Theorem 2, however, indicates that even if a_{n} is a recursive function, S need not have a representation as $\sum_{T} b_{n}$ for any recursive function b_{n} with $b_{n} \leqq a_{n}$. Theorem 3 shows that the converse of (3) above is false, i.e., $T \leqq^{*} a_{n-1}$ is not a necessary condition for $\sum_{T} a_{n}$ to be a regressive isol.

2. Three theorems.

Theorem 1. Let T be an infinite regressive isol and a_{n} a function from E into E such that $T \leqq * a_{n}$. Let S be a (regressive) isol such that $S \leqq \sum_{T} a_{n}$. Then there exists a function b_{n} from E into E such that
(a)

$$
\begin{gather*}
T \leqq * b_{n} \\
b_{n} \leqq a_{n} \quad \text { for all } n \in E \tag{b}\\
S=\sum_{T} b_{n} \tag{c}
\end{gather*}
$$

Proof. Let t_{n} be any regressive function ranging over a set in T. Because $T \leqq{ }^{*} a_{n}$, it follows from results in [2] that $\sum_{T} a_{n}$ is a regressive isol and that

$$
\begin{equation*}
j\left(t_{0}, 0\right), \cdots, j\left(t_{0}, a_{0}-1\right), j\left(t_{1}, 0\right), \cdots, j\left(t_{1}, a_{1}-1\right), \cdots \tag{1}
\end{equation*}
$$

represents a regressive enumeration of a set $\tau \in \sum_{T} a_{n}$. By the inequality $S \leqq \sum_{T} a_{n}$, there exists a set $\sigma \in S$ such that σ is a separated subset of τ. Let s_{n} denote the function ranging over σ which preserves the ordering established in (1). It follows that s_{n} is a regressive function. We now wish to define a function b_{n} in such a manner that $t_{n} \leqq * b_{n}$. Let the number t_{n} be given for any $n \in E$. Because of the relation $t_{n} \leqq * a_{n}$, the set

$$
\left(j\left(t_{n}, 0\right), \cdots, j\left(t_{n}, a_{n}-1\right)\right) \subset \tau
$$

can be effectively generated. (Note that this set is empty in the event that $a_{n}=0$.) Since σ is a separated subset of τ, the number of elements of σ which appear in this set, say k, can be effectively determined. We define $b_{n}=k$.

Now b_{n} is defined for all n, and clearly $t_{n} \leqq * b_{n}$. Thus we have $T \leqq * b_{n}$, and (a) is satisfied. Also it is clear that $b_{n}=k \leqq a_{n}$, so that
(b) also holds. Again by the results in [2], $\sum_{T} b_{n}$ is regressive and

$$
j\left(t_{0}, 0\right), \cdots, j\left(t_{0}, b_{0}-1\right), j\left(t_{1}, 0\right), \cdots, j\left(t_{1}, b_{1}-1\right), \cdots
$$

represents a regressive enumeration of a set $\gamma \in \sum_{T} b_{n}$. Let r_{n} be the regressive function determined by this enumeration of γ. We now have $S=\operatorname{Req} \sigma$ and $\sum_{T} b_{n}=\operatorname{Req} \gamma$, with $\sigma=\rho s_{n}$ and $\gamma=\rho r_{n}$. To complete the proof, it is necessary to show that $\gamma \simeq \sigma$. We will construct a one-to-one partial recursive function $g(x)$ such that $\gamma \subset \delta g$ and $g(\gamma)=\sigma$.

Making use of the assumption $T \leqq * a_{n}$, let $f(x)$ denote the partial recursive function such that $\rho t_{n} \subset \delta f$ and $f\left(t_{n}\right)=a_{n}$. Also, since σ is a separated subset of τ, let σ^{*} and τ^{*} denote the disjoint recursively enumerable sets containing σ and $\tau-\sigma$, respectively. Let $k(x)$ and $l(x)$ denote the recursive functions such that $j(k(x), l(x))=x$. Define the functions v and w by

$$
\begin{aligned}
v(x, i) & =j(k(x), i) \\
w(x) & =1 \quad \text { for } x \in \sigma^{*} \\
& =0 \quad \text { for } x \in \tau^{*}
\end{aligned}
$$

Clearly v and w are partial recursive functions. Finally, let

$$
g(x)=v\left(x,(\mu y \leqq f k(x)-1)\left[\sum_{i=0}^{y} w v(x, i)=l(x)+1\right]\right) .
$$

Then $g(x)$ is a partial recursive function. Also, if $g(x)=g(z)$ for some x and z belonging to δg, then

$$
\begin{aligned}
g(x)=g(z) & \Rightarrow j\left(k(x), y_{1}\right)=j\left(k(z), y_{2}\right) \\
& \Rightarrow k(x)=k(z) \text { and } y_{1}=y_{2} \\
& \Rightarrow(\forall i)(v(x, i)=v(z, i)) \text { and } y_{1}=y_{2} \\
& \Rightarrow \sum_{i=0}^{y_{1}} w v(x, i)=\sum_{i=0}^{y_{2}} w v(z, i) \\
& \Rightarrow l(x)+1=l(z)+1 \\
& \Rightarrow l(x)=l(z) .
\end{aligned}
$$

Since $k(x)=k(z)$ and $l(x)=l(z)$, it follows that $x=z$ and g is one-toone.
For $x \in \gamma$, say $x=r_{n}=j\left(t_{p}, q\right)$ with $0 \leqq q<b_{p}$, then $f k(x)-1$ $=a_{p}-1$ and $\left\{v(x, i) \mid 0 \leqq i \leqq a_{p}-1\right\}$ is

$$
\left\{j\left(t_{p}, 0\right), \cdots, j\left(t_{p}, a_{p}-1\right)\right\} \subset \tau
$$

There are b_{p} elements of σ in this set and $q+1=l(x)+1 \leqq b_{p}$. Hence $g(x)$ is defined, namely $g(x)$ is the $(q+1)$ st member from left to right in this set, as ordered above, which belongs to σ, and this is exactly s_{n}. Hence $g\left(r_{n}\right)=s_{n}$, that is, $\gamma \subset \delta g$ and $g(\gamma)=\sigma$. This completes the proof.

Remark. The next theorem shows that if $T \leqq * a_{n}$ is replaced in the hypothesis of Theorem 1 by the stronger condition that a_{n} is a recursive function, this recursive property need not carry through to the b_{n} function. Some preliminary ideas are needed. Let f be a one-to-one function from E into E and let T be an infinite regressive isol. Let t_{n} be any regressive function ranging over a set in T. We then let $\phi_{f}(T)$ be defined as the recursive equivalence type of the range of the function $t_{f(n)}$. M. Hassett proved in [6] that there exist infinite regressive isols S and T such that $S \leqq T$ while $S \neq \phi_{f}(T)$ for any strictly increasing recursive function f.

Theorem 2. There is an infinite regressive isol T, a recursive function a_{n}, and a regressive isol S such that $S \leqq \sum_{T} a_{n}$ and for no recursive function b_{n}, with $b_{n} \leqq a_{n}$ for all n, is it the case that $S=$ $\sum_{T} b_{n}$.

Proof. Let S and T be infinite regressive isols such that $S \leqq T$ and $S \neq \phi_{f}(T)$ for any strictly increasing recursive function f. Let a_{n} denote the recursive function identically equal to 1 . Then $T=$ $\sum_{T} a_{n}$, and hence $S \leqq \sum_{T} a_{n}$. Let us assume that there is a recursive function b_{n} having the properties

$$
\begin{equation*}
b_{n} \leqq a_{n} \quad \text { for all } n \in E \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\sum_{T} b_{n} \tag{2}
\end{equation*}
$$

It follows from (1) and the definition of a_{n} that $b_{n} \leqq 1$ for all $n \in E$. However since S is infinite, (2) implies that $\left\{n \mid b_{n}=1\right\}$ is an infinite set. Let $f(x)$ be the strictly increasing recursive function ranging over this set. Then

$$
S=\sum_{T} b_{n}=\operatorname{Req}\left(j\left(t_{f(0)}, 0\right), j\left(t_{f(1)}, 0\right), \cdots\right)=\phi_{f}(T)
$$

Therefore $S=\phi_{f}(T)$ for a strictly increasing recursive function f, and this is a contradiction. This completes the proof.

Remark. The next result illustrates that for T an infinite regressive
isol, the converse of the theorem

$$
T \leqq * a_{n-1} \Rightarrow \sum_{T} a_{n} \in \Lambda_{R}
$$

does not hold.
Theorem 3. There exist an infinite regressive isol T and a function a_{n} from E into E such that $\sum_{T} a_{n} \in \Lambda_{R}$ but T 丰 $^{*} a_{n-1}$.

Proof. Let \tilde{t}_{n} be any regressive function ranging over an isolated set which does not include zero. We define a function t_{n} from E into E by the enumeration

$$
3 \tilde{t}_{0}, 3 \tilde{t}_{0}+1,3 \tilde{t}_{0}+2,3 \tilde{t}_{1}, 3 \tilde{t}_{1}+1,3 \tilde{t}_{1}+2, \cdots
$$

It is clear that t_{n} is a regressive function. Also, Req $\rho t_{n}=3 \operatorname{Req} \rho \tilde{t}_{n}$, so that t_{n} ranges over an isolated set. Letting $T=\operatorname{Req} \rho t_{n}, T$ is thus an infinite regressive isol. In addition, if $p(x)$ denotes the partial recursive function $p(x)=x+1$, we see that $p\left(t_{n}\right)=t_{n+1}$ for $n=3 k$ or $n=3 k+1, k \in E$.

We now define a function a_{n} from E into E by

$$
\begin{aligned}
a_{n} & =t_{n} & & \text { if } n=3 k \text { for some } k \in E, \\
& =t_{n+2} & & \text { if } n=3 k+1 \text { for some } k \in E, \\
& =t_{n} & & \text { if } n=3 k+2 \text { for some } k \in E .
\end{aligned}
$$

We know that $\sum_{T} a_{n} \in \Lambda$. We wish to show that $\sum_{T} a_{n} \in \Lambda_{R}$. Let the set σ be defined as $\sigma=\sum_{0}^{\infty} j\left(t_{n}, \nu\left(a_{n}\right)\right)$; then $\sigma \in \sum_{T} a_{n}$. Consider the following enumeration of $\boldsymbol{\sigma}$, where the ordering proceeds from left to right on the first line, then from left to right on the second line, etc.:

$$
\begin{aligned}
\sigma= & j\left(t_{0}, 0\right), \cdots, j\left(t_{0}, t_{0}-1\right), j\left(t_{2}, 0\right), \cdots, j\left(t_{2}, t_{2}-1\right), j\left(t_{1}, 0\right), \cdots \\
& j\left(t_{1}, t_{3}-1\right), j\left(t_{3}, 0\right), \cdots \cdot j\left(t_{3}, t_{3}-1\right), j\left(t_{5}, 0\right), \cdots, j\left(t_{5}, t_{5}-1\right), \\
& j\left(t_{4}, 0\right), \cdots, j\left(t_{4}, t_{6}-1\right), j\left(t_{6}, 0\right), \cdots .
\end{aligned}
$$

Let b_{n} be the function determined by this enumeration. Then σ will be a regressive set if we can establish that b_{n} is a regressive function. To see that b_{n} is in fact regressive, let $b_{n+1}=j\left(t_{i}, y\right)$ be given. If $y \neq 0$, then $b_{n}=j\left(t_{i}, y-1\right)$. If $y=0$, we consider the index i and determine whether $i=3 k, i=3 k+1$, or $i=3 k+2$ for some $k \in E$. If $i=3 k$, then $b_{n}=j\left(t_{i-2}, t_{i}-1\right)$. If $i=3 k+2$, then $b_{n}=$ $j\left(t_{i-2}, t_{i-2}-1\right)$. If $i=3 k+1$, then $b_{n}=j\left(p\left(t_{i}\right), p\left(t_{i}\right)-1\right)$. In any case, b_{n} can be effectively determined from b_{n+1}. Thus b_{n} is a regressive function and σ is a regressive set. Therefore $\sum_{T} a_{n} \in \Lambda_{R}$.

Suppose now that $T \leqq * a_{n-1}$. Let $q(x)$ denote the partial recursive function such that $\rho t_{n} \subset \delta q$ and $q\left(t_{n}\right)=a_{n-1}$. We note that if $n=$ $3 k+2$ for some $k \in E$, then $q\left(t_{n}\right)=a_{n-1}=t_{n+1}$. Define a function $s(x)$ on ρt_{n} by

$$
\begin{aligned}
s\left(t_{n}\right) & =p\left(t_{n}\right) \quad \text { if } n=3 k \text { for some } k \in E, \\
& =p\left(t_{n}\right) \quad \text { if } n=3 k+1 \text { for some } k \in E, \\
& =q\left(t_{n}\right) \quad \text { if } n=3 k+2 \text { for some } k \in E
\end{aligned}
$$

Then the function $s(x)$ has a partial recursive extension mapping t_{n} into t_{n+1}. Hence $t_{n} \leqq t_{n+1}$, which is a contradiction. Thus $T \neq{ }^{*} a_{n-1}$. This completes the proof.

References

1. J. Barback, Recursive functions and regressive isols, Math. Scand. 15 (1964), 29-42. MR 31 \#1189.
2. ——, Regressive upper bounds, Rend. Sem. Mat. Univ. Padova 39 (1967), 248-272. MR 37 \#63.
3. J. C. E. Dekker, Infinite series of isols, Proc. Sympos. Pure Math., vol. 5, Amer. Math. Soc., Providence, R. I., 1962, pp. 77-96.
4. ——, The minimum of two regressive isols, Math. Z. 83 (1964), 345-366. MR 28 \#3927.
5. J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. California Publ. Math. 3 (1960), 67-213. MR 22 \#7938.
6. M. J. Hassett, A note on regressive isols, Math. Z. 97 (1967), 425-426. MR 35 \#2735.
7. F. J. Sansone, Combinatorial functions and regressive isols, Pacific J. Math. 13 (1963), 703-707. MR 32 \#5509.

Arizona State University, Tempe, Arizona 85281
Purdue University at Indianapolis, Indianapolis, Indiana 46205

