LOWER BOUNDS FOR POLYNOMIAL APPROXIMATIONS TO RATIONAL FUNCTIONS

S. J. POREDA AND G. S. SHAPIRO

1. Introduction and preliminary definitions. For a complex valued function f defined on a compact set E in the plane, let $||f||_E = \sup_{z \in E} |f(z)|$.

If Γ is a closed Jordan curve and R(z) is a rational function having at least one pole inside Γ , then one can easily show that there exists a $\delta > 0$ such that $||R - p||_{\Gamma} \ge \delta$ for all polynomials p. Obviously the same δ will not work for all Γ and all R since $||R||_{\Gamma}$ can be arbitrarily small. However, if we normalize the problem by requiring that R be of the form $R(z) = q_{n-1}(z)/\prod_{i=1}^{n} (z - a_i)$, where q_{n-1} is a polynomial of degree n - 1 (or less), all the a_i 's are inside Γ and $||R||_{\Gamma} = 1$, then one might inquire as to the existence of a $\delta_n > 0$, independent of Γ and R, with the property that $||R - p||_{\Gamma} \ge \delta_n$ for all polynomials p. The authors plan to give a more detailed treatment of this problem and its implications including the proofs of the following theorems, elsewhere.

2. Some partial answers. A weaker question than the one just stated pertains to the existence of a $\delta_n(\Gamma) > 0$, independent of R but not of Γ , such that $||R - p||_{\Gamma} \ge \delta_n(\Gamma)$ for all polynomials p. The following theorem establishes the existence of a $\delta_n(\Gamma) > 0$ in the case where Γ is the unit circle $U = \{|z| = 1\}$.

THEOREM 1. For $n = 1, 2, \cdots$ there exists $\delta_n(U) > 0$ such that if $R_n(z)$ is a rational function of the form $R_n(z) = q_{n-1}(z)/\prod_{k=1}^n (z - a_k)$ where q_{n-1} is a polynomial of degree n - 1, $|a_k| < 1$ for $k = 1, 2, \cdots, n$ and $||R_n||_U = 1$ then, $||R_n - p||_U \ge \delta_n(U)$ for all polynomials p.

PROOF. If we define δ_n by the recursive formula $\delta_n = \delta_{n-1}/(3 + 2\delta_{n-1})$ with $\delta_1 = 1/2$ then our proof proceeds by way of induction. We now weaken our original problem by considering only those rational functions whose poles have a common locus.

THEOREM 2. For $n = 1, 2, \cdots$ there exists $\delta_{n^*} > 0$ such that if Γ is any closed Jordan curve and if $R_n^*(z) = q_{n-1}(z)/(z-a)^n$, where q_{n-1} is a polynomial of degree n-1, the point z = a lies in the interior of Γ and $||R_n^*||_{\Gamma} = 1$ then $||R_n^* - p||_{\Gamma} > \delta_{n^*}$ for all polynomials p. Furthermore, we may choose δ_{n^*} to be given by $\delta_{n^*} = \{4^n + 4^{n-1}(1+4^n) + 4^{n-2}(1+4^n+4^{n-1}(1+4^n)) + \cdots$

+ $4(1 + 4^n + 4^{n-1}(1 + 4^n) + \cdots + 4^2(1 + 4^n + 4^{n-1}(1 + 4^n) + \cdots)))^{-1}$. Copyright © 1974 Rocky Mountain Mathematics Consortium 3. A related question. Let Γ and the point z = a be as in Theorem 2, and let $\delta_{n^*}(\Gamma, a)$ be the largest δ_{n^*} that satisfies the conditions in that theorem. Since the lower bounds we mention for these constants tend to zero as n increases, we are naturally led to the question of whether the $\lim_{n\to\infty} \delta_{n^*}(\Gamma, a) = 0$ for each Γ and each a. Our final theorem answers this question affirmatively in the case where $\Gamma = U$ is the unit circle.

THEOREM 3. Let $\delta_{n^*}(\Gamma, a)$ be as defined above. Then $\lim_{n\to\infty}\delta_{n^*}(U, a) = 0$, (for all |a| < 1).

PROOF. The theorem is first proved in the case where a = 0 by considering the sequence of rational functions defined by

$$\delta_n(z) = \sum_{k=2}^n \frac{z^{-k}}{k \log k} - \sum_{k=2}^n \frac{z^k}{k \log k}$$

and its convergence on U [1, p. 253]. The theorem is then easily extended to any point z = a inside U.

4. An application to rational approximation. If f is defined and continuous on Γ , a closed Jordan curve, and $\epsilon > 0$ there exists [2, p. 100] a rational function $Q_{n,k}$ of the form

$$Q_{n,k}(z) = q_{n-1}(z) / \prod_{k=1}^{n} (z - a_k) + p_k(z)$$

where q_{n-1} and p_k are polynomials of respective degrees n-1 and k (for some n and some k). The a_k 's are inside Γ and such that, $\|f - Q_{n,k}\|_{\Gamma} < \epsilon$. Since $\|Q_{n,k}\|_{\Gamma} < 2\|f\|_{\Gamma}$ if ϵ is sufficiently small, a natural question to ask is whether $\|q_{n-1}(z)/\prod_{k=1}^{n} (z-a_k)\|_{\Gamma}$ is bounded in any way. If as in § 1, there exists a $\delta_n > 0$ (possibly independent of Γ) we would then have:

$$\left\| q_{n-1}(z) / \prod_{1}^{n} (z-a_{k}) \right\|_{\Gamma} < 2 \|f\|_{\Gamma} / \delta_{n}.$$

In this way, one can immediately state corollaries to Theorems 1 and 2.

References

1. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1968.

2. A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. III, Prentice-Hall, Englewood Cliffs, N. J., 1967.

CLARK UNIVERSITY, WORCESTER, MA 01610