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LOWER BOUNDS FOR POLYNOMIAL APPROXIMATIONS 
TO RATIONAL FUNCTIONS 

S. J. POREDA AND G. S. SHAPIRO 

1. Introduction and preliminary definitions. For a complex valued 
function / defined on a compact set E in the plane, let | |/ | |E = 
supz G E | /(z) | . 

If r is a closed Jordan curve and R(z) is a rational function having 
at least one pole inside T, then one can easily show that there exists a 
8 > 0 such that ||R — p|| , = 8 for all polynomials p. Obviously the 
same 8 will not work for all T and all R since | |# | | r can be arbitrarily 
small. However, if we normalize the problem by requiring that R be 
of the form R(z) = qn-i(

z)lY\^=i (z ~~ a*)> w n e r e qn-\ is a polynomial 
of degree n — 1 (or less), all the a/s are inside T and ||R||r = 1, then 
one might inquire as to the existence of a 8n > 0, independent of V 
and R, with the property that \\R — p | | r ^ 8n for all polynomials p. 
The authors plan to give a more detailed treatment of this problem 
and its implications including the proofs of the following theorems, 
elsewhere. 

2. Some partial answers. A weaker question than the one just 
stated pertains to the existence of a ôn(r) > 0, independent of R but 
not of r , such that ||R — p| | r ^ 8n(T) for all polynomials p. The fol
lowing theorem establishes the existence of a ôn(r) > 0 in the case 
where T is the unit circle U = {\z\ = 1}. 

THEOREM 1. For n = 1, 2, • • • there exists 8n(U) > 0 such that if 
Rn(z) is a rational function of the form Rn(z) =qn-i(

z)lYlk=i (z ~ ak) 
where qn_l is a polynomial of degree n — 1, \ak\ < lfor k = 1, 2, • • % n 
and \\Rn\\u — 1 then, fli^ — p\\u^8n(U) for all polynomials p. 

PROOF. If we define 8n by the recursive formula 8n = 8n_J 
(3 + 2ôn_!) with ox = 1/2 then our proof proceeds by way of induc
tion. We now weaken our original problem by considering only those 
rational functions whose poles have a common locus. 

THEOREM 2. For n = 1, 2, • • • there exists 8n* > 0 such that if T 
is any closed Jordan curve and if Rn*(z) — qn-i(z)l(z — a)n, where 
</n_! is a polynomial of degree n — 1, the point z = a lies in the 
interior of Y and ||#n*||r

 = 1 then ||Kn*~~ p\\{> an* for all poly
nomials p. Furthermore, we may choose 8n* to be given by 8n* = 
{4n + 4n~1(l + 4n) + 4"-2(l + 4" 4- 4"-!(l + 4")) + • • • 

+ 4(1 + 4n + 4n-!( l + 4n) 4- • • • + 42(1 + 4n + 4"~1(1 + 4") + • - - ) )}" 1 . 
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3. A related question. Let F and the point z = a be as in Theorem 
2, and let 8n*(T,a) be the largest 8n* that satisfies the conditions in 
that theorem. Since the lower bounds we mention for these constants 
tend to zero as n increases, we are naturally led to the question of 
whether the limn^ooôn*(r, a) = 0 for each T and each a. Our final 
theorem answers this question affirmatively in the case where T = U 
is the unit circle. 

THEOREM 3. Let 8n*(T, a) be as defined above. Then limn_>00ôn*((7, a) 
= 0, (forali \a\ < 1). 

PROOF. The theorem is first proved in the case where a = 0 by con
sidering the sequence of rational functions defined by 

and its convergence on U [1, p. 253]. The theorem is then easily 
extended to any point z = a inside U. 

4. An application to rational approximation. If / is defined and 
continuous on T, SL closed Jordan curve, and e > 0 there exists [2, p. 
100] a rational function Qnk of the form 

n 

Çn,k(Z) = 9n-l(z)l J ! (* ~ ak) + Pk(*) 
k = l 

where qn_l and pk are polynomials of respective degrees n — 1 and 
k (for some n and some k). The ak's are inside T and such that, 
\\f-Qn,k\\i<€- S i n c e ll<?n,*llr < 4 / ì l r i f * i s sufficiently small, 
a natural question to ask is whether ||9n-i(^)/Hfc=i (z ~ a*)||r *s 

bounded in any way. If as in § 1, there exists a 8n > 0 (possibly inde
pendent of r ) we would then have: 

| | 9»-i(*)/ n ( 2 - ^ ) | | r < 2 | | / | | r / a n . 

In this way, one can immediately state corollaries to Theorems 1 and 2. 
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