LOWER BOUNDS FOR POLYNOMIAL APPROXIMATIONS TO RATIONAL FUNCTIONS

S. J. POREDA AND G. S. SHAPIRO

1. Introduction and preliminary definitions. For a complex valued function f defined on a compact set E in the plane, let $\|f\|_{E}=$ $\sup _{z \in E}|f(z)|$.

If Γ is a closed Jordan curve and $R(z)$ is a rational function having at least one pole inside Γ, then one can easily show that there exists a $\delta>0$ such that $\|R-p\|_{\Gamma} \geqq \delta$ for all polynomials p. Obviously the same δ will not work for all Γ and all R since $\|R\|_{r}$ can be arbitrarily small. However, if we normalize the problem by requiring that R be of the form $R(z)=q_{n-1}(z) / \prod_{i=1}^{n}\left(z-a_{i}\right)$, where q_{n-1} is a polynomial of degree $n-1$ (or less), all the a_{i} 's are inside Γ and $\|R\|_{\Gamma}=1$, then one might inquire as to the existence of a $\delta_{n}>0$, independent of Γ and R, with the property that $\|R-p\|_{\Gamma} \geqq \delta_{n}$ for all polynomials p. The authors plan to give a more detailed treatment of this problem and its implications including the proofs of the following theorems, elsewhere.
2. Some partial answers. A weaker question than the one just stated pertains to the existence of a $\delta_{n}(\Gamma)>0$, independent of R but not of Γ, such that $\|R-p\|_{\Gamma} \geqq \delta_{n}(\Gamma)$ for all polynomials p. The following theorem establishes the existence of a $\delta_{n}(\Gamma)>0$ in the case where Γ is the unit circle $U=\{|z|=1\}$.

Theorem 1. For $n=1,2, \cdots$ there exists $\delta_{n}(U)>0$ such that if $R_{n}(z)$ is a rational function of the form $R_{n}(z)=q_{n-1}(z) / \prod_{k=1}^{n}\left(z-a_{k}\right)$ where q_{n-1} is a polynomial of degree $n-1,\left|a_{k}\right|<1$ for $k=1,2, \cdots, n$ and $\left\|R_{n}\right\|_{U}=1$ then, $\left\|R_{n}-p\right\|_{U} \geqq \delta_{n}(U)$ for all polynomials p.

Proof. If we define δ_{n} by the recursive formula $\delta_{n}=\delta_{n-1} /$ $\left(3+2 \delta_{n-1}\right)$ with $\delta_{1}=1 / 2$ then our proof proceeds by way of induction. We now weaken our original problem by considering only those rational functions whose poles have a common locus.

Theorem 2. For $n=1,2, \cdots$ there exists $\delta_{n^{*}}>0$ such that if Γ is any closed Jordan curve and if $R_{n}{ }^{*}(z)=q_{n-1}(z) /(z-a)^{n}$, where q_{n-1} is a polynomial of degree $n-1$, the point $z=a$ lies in the interior of Γ and $\left\|R_{n}{ }^{*}\right\|_{\Gamma^{*}}=1$ then $\left\|R_{n}{ }^{*}-p\right\|_{\Gamma}>\delta_{n^{*}}$ for all polynomials p. Furthermore, we may choose $\delta_{n^{*}}$ to be given by $\delta_{n^{*}}=$ $\left\{4^{n}+4^{n-1}\left(1+4^{n}\right)+4^{n-2}\left(1+4^{n}+4^{n-1}\left(1+4^{n}\right)\right)+\cdots\right.$
$\left.+4\left(1+4^{n}+4^{n-1}\left(1+4^{n}\right)+\cdots+4^{2}\left(1+4^{n}+4^{n-1}\left(1+4^{n}\right)+\cdots\right)\right)\right\}^{-1}$.
Copyright © 1974 Rocky Mountain Mathematics Consortium
3. A related question. Let Γ and the point $z=a$ be as in Theorem 2 , and let $\delta_{n^{*}}(\Gamma, a)$ be the largest $\delta_{n^{*}}$ that satisfies the conditions in that theorem. Since the lower bounds we mention for these constants tend to zero as n increases, we are naturally led to the question of whether the $\lim _{n \rightarrow \infty} \delta_{n^{*}}(\Gamma, a)=0$ for each Γ and each a. Our final theorem answers this question affirmatively in the case where $\Gamma=U$ is the unit circle.

Theorem 3. Let $\boldsymbol{\delta}_{n^{*}}(\Gamma, a)$ be as defined above. Then $\lim _{n \rightarrow \infty} \delta_{n^{*}}(U, a)$ $=0$, (for all $|a|<1$).
Proof. The theorem is first proved in the case where $a=0$ by considering the sequence of rational functions defined by

$$
\delta_{n}(z)=\sum_{k=2}^{n} \frac{z^{-k}}{k \log k}-\sum_{k=2}^{n} \frac{z^{k}}{k \log k}
$$

and its convergence on U [1, p. 253]. The theorem is then easily extended to any point $z=a$ inside U.
4. An application to rational approximation. If f is defined and continuous on Γ, a closed Jordan curve, and $\epsilon>0$ there exists [2, p. 100] a rational function $Q_{n, k}$ of the form

$$
Q_{n, k}(z)=q_{n-1}(z) / \prod_{k=1}^{n}\left(z-a_{k}\right)+p_{k}(z)
$$

where q_{n-1} and p_{k} are polynomials of respective degrees $n-1$ and k (for some n and some k). The a_{k} 's are inside Γ and such that, $\left\|f-Q_{n, k}\right\|_{r}<\epsilon$. Since $\left\|Q_{n, k}\right\|_{\Gamma}<2\|f\|_{\Gamma}$ if ϵ is sufficiently small, a natural question to ask is whether $\left\|q_{n-1}(z) / \prod_{k=1}^{n}\left(z-a_{k}\right)\right\|_{r}$ is bounded in any way. If as in $\S 1$, there exists a $\delta_{n}>0$ (possibly independent of Γ) we would then have:

$$
\left\|q_{n-1}(z) / \prod_{1}^{n}\left(z-a_{k}\right)\right\|_{r}<2\|f\|_{r} / \delta_{n}
$$

In this way, one can immediately state corollaries to Theorems 1 and 2.

References

1. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1968.
2. A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. III, Prentice-Hall, Englewood Cliffs, N. J., 1967.

Clark University, Worcester, MA 01610

