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A PRIORI TRUNCATION ERROR ESTIMATES FOR 
CONTINUED FRACTIONS K(llbn) 

DAVID A. FIELD 

The primary goal is to obtain a priori truncation error estimates of 
continued fractions of the form 

K ( 1 / w " i + i + •••• 
where for each n = 1, 2, • • - , & „ £ En, and the En are subsets of the 
complex plane called element regions. The method employed is based 
upon a correspondence between sequences of element regions and 
sequences of value regions which determine a nested sequence of 
disks. Truncation error bounds are obtained by estimating the diam­
eter of the nth disk which contains the nth approximant/n = A^IBn of the 
continued fraction; the A^ and Bn denote the nth numerator and de­
nominator respectively. 

The element regions En, can be disks, half-planes, and/or comple­
ments of disks. The following theorem, from which the results of 
Hillam, Sweezy and Thron ([2] , [3]) are easily derived, is a typical 
result. In this theorem the En are complements of disks. 

Let {cn} be a sequence of complex numbers and let {rn} and {8n} be 
sequences of real numbers such that 

(1) 0 g \cn | < rw 8i = 1, 0 < 8n ̂  1, n ̂  0. 

Let K(llbn) be a continued fraction with elements bn satisfying the 
conditions 

Cn-l | ^ , „ , ^ n - 1 (2) lfc-+c-+
rrt^i»la'" + ^-,-b,-n 

If fn = An/Bn denotes the nth approximant of K(llbn), where A„ and 
Bn are the nth numerator and nth denominator respectively, then for 
n è 2 , p è 0 

(3) \fn+p-fn\^2rof[gt(yj-i>*l) 

ê 2r0 ft WW ̂  2r0 f\ 8, 
j=2 j = 2 
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where 

(4a) 

a.(y. , 5.)= V 1 - y§-i) 
& ^ - 1 ' >' 2[(1/8,) + A, - y , ^ ] [(1/8,) - 8,_,] 

<*>«»-- lt7-ì^fcFl(7^fcF)"'sl 

(4c) ^ • , - 1 9 - P ) 

and 

0 ^ M ( 8 i ) = 1 + *A - ¥ - ((i - ¥ ) [(i - x,)2 - g/] ) m 

(4d) W 

g S, < 1. 

The inequality (2) defines the element regions En> which by (1) 
cannot contain the origin. When K(llbn) converges to a value f, 
truncation error estimates are obtained from (3) by replacing / n + p by 
/ . K(llbn) will converge if J J Mj(8j) (or J | 8j) diverges to zero. If the 
product Y\ M(8j) diverges to zero then the convergence of K(llbn) is 
uniform over {En}. Although a simpler estimate of truncation error 
is obtained from J | 8j than from JJ M(8j), the latter estimate is in 
general much better. Furthermore, the error bounds in (3) are ex­
pressed directly in terms of the parameters which define En. 

With simple geometric arguments, this theorem is useful in estimat­
ing truncation errors for continued fraction expansions of many func­
tions of complex variables. Examples include: tan z, tanh z, arctan z, 
arctanhs, log(l + z)l(l — z), log(l + 2), ez, and ]c(

z)IJc-\(z)^ m e 

ratio of two consecutive Bessel Functions of complex order c, where 
c ^ 0 , - 1 , - 2 , ••• . 
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