A PRIORI TRUNCATION ERROR ESTIMATES FOR CONTINUED FRACTIONS $K(1/b_n)$

DAVID A. FIELD

The primary goal is to obtain *a priori* truncation error estimates of continued fractions of the form

$$K(1/b_n) = \frac{1}{b_1} + \frac{1}{b_2} + \cdots,$$

where for each $n=1, 2, \cdots, b_n \in E_n$, and the E_n are subsets of the complex plane called element regions. The method employed is based upon a correspondence between sequences of element regions and sequences of value regions which determine a nested sequence of disks. Truncation error bounds are obtained by estimating the diameter of the nth disk which contains the nth approximant $f_n = A_n/B_n$ of the continued fraction; the A_n and B_n denote the nth numerator and denominator respectively.

The element regions E_n , can be disks, half-planes, and/or complements of disks. The following theorem, from which the results of Hillam, Sweezy and Thron ([2], [3]) are easily derived, is a typical result. In this theorem the E_n are complements of disks.

Let $\{c_n\}$ be a sequence of complex numbers and let $\{r_n\}$ and $\{\delta_n\}$ be sequences of real numbers such that

(1)
$$0 \le |c_n| < r_n, \, \delta_1 = 1, \, 0 < \delta_n \le 1, \, n \ge 0.$$

Let $K(1/b_n)$ be a continued fraction with elements b_n satisfying the conditions

(2)
$$\left| b_n + c_n + \frac{\overline{c}_{n-1}}{r_{n-1}^2 - |c_{n-1}|^2} \right| \ge r_n + \frac{t_{n-1}}{\delta_n (r_{n-1}^2 - |c_{n-1}|^2)}$$

If $f_n = A_n/B_n$ denotes the *n*th approximant of $K(1/b_n)$, where A_n and B_n are the *n*th numerator and *n*th denominator respectively, then for $n \ge 2$, $p \ge 0$

(3)
$$|f_{n+p} - f_n| \leq 2r_0 \prod_{j=2}^n g_j(\gamma_{j-1}, \delta_j)$$
$$\leq 2r_0 \prod_{j=2}^n M_j(\delta_j) \leq 2r_0 \prod_{j=2}^n \delta_j$$

Work supported in part by the Air Force Office of Scientific Research under Grant No. AFOSR-70-1888.

362 D. A. FIELD

where

$$(4a) g_{j}(\gamma_{j-1}, \delta_{j}) = \frac{\lambda_{j}(1 - \gamma_{j-1}^{2})}{2[(1/\delta_{j}) + \lambda_{j} - \gamma_{j-1}][(1/\delta_{j}) - \delta_{j-1}]}$$

$$(4b) 0 \leq \gamma_{j-1} = \left| \frac{B_{j-2}}{B_{j-1}} - \frac{\overline{c}_{j-1}}{r_{j-1}^{2} - |c_{j-1}|^{2}} \right| \left(\frac{r_{j-1}}{r_{j-1}^{2} - |c_{j-1}|^{2}} \right)^{-1} \leq 1$$

$$(4c) \lambda_{j} = \frac{2r_{j}(r_{j-1}^{2} - |c_{j-1}|^{2})}{r_{j-1}}$$

and

$$0 \leq M(\delta_{j}) = \frac{1 + \lambda_{j}\delta_{j} - \delta_{j}^{2} - ((1 - \delta_{j}^{2})[(1 - \lambda_{j})^{2} - \delta_{j}^{2}])^{1/2}}{\lambda_{j}\delta_{j}^{2}}$$

$$\leq \delta_{i} < 1.$$

The inequality (2) defines the element regions E_n , which by (1) cannot contain the origin. When $K(1/b_n)$ converges to a value f, truncation error estimates are obtained from (3) by replacing f_{n+p} by f. $K(1/b_n)$ will converge if $\prod M_j(\delta_j)$ (or $\prod \delta_j$) diverges to zero. If the product $\prod M(\delta_j)$ diverges to zero then the convergence of $K(1/b_n)$ is uniform over $\{E_n\}$. Although a simpler estimate of truncation error is obtained from $\prod \delta_j$ than from $\prod M(\delta_j)$, the latter estimate is in general much better. Furthermore, the error bounds in (3) are expressed directly in terms of the parameters which define E_n .

With simple geometric arguments, this theorem is useful in estimating truncation errors for continued fraction expansions of many functions of complex variables. Examples include: $\tan z$, $\tanh z$, $\arctan z$, $\arctan z$, $\arctan z$, $\log(1+z)/(1-z)$, $\log(1+z)$, e^z , and $J_c(z)/J_{c-1}(z)$, the ratio of two consecutive Bessel Functions of complex order c, where $c \neq 0, -1, -2, \cdots$

REFERENCES

- 1. David A. Field and William B. Jones, A priori estimates for truncation error of continued fractions $K(1/b_n)$, Numer. Math. 19 (1972), 283-302.
- 2. K. L. Hillam, Some convergence criteria for continued fractions, Doctoral Thesis, University of Colorado, Boulder (1962).
- 3. W. B. Sweezy and W. J. Thron, Estimates of the speed of convergence of certain continued fractions, SIAM Journal of Numerical Analysis 4 (1967), No. 2, 254-270.
- 4. W. J. Thron, On parabolic convergence regions for continued fractions, Math. Zeitschr., Bd. 69 (1958), 172-182.

College of the Holy Cross, Worcester, Mass. 01610